Group Action Systems: a Mathematical tool for deriving Provable Secure Cryptographic Schemes

María Isabel González Vasco

Group Action Systems: a Mathematical tool for deriving Provable Secure Cryptographic Schemes

Joint works with J. L. Villar (UPC) and R. Steinwandt (FAU)

Introduction

- Introduction
- Some basics about PHFs
 - Definitions
 - Basic Results
 - Cryptographic Applications

- Introduction
- Some basics about PHFs
 - Definitions
 - Basic Results
 - Cryptographic Applications
- Group Action Based PHFs
 - Group Action Systems
 - Useful AcPHFs. Diversity.

- Introduction
- Some basics about PHFs
 - Definitions
 - Basic Results
 - Cryptographic Applications
- Group Action Based PHFs
 - Group Action Systems
 - Useful AcPHFs. Diversity.
- Examples

- Introduction
- Some basics about PHFs
 - Definitions
 - Basic Results
 - Cryptographic Applications
- Group Action Based PHFs
 - Group Action Systems
 - Useful AcPHFs. Diversity
- Examples
- Final Remarks

Introduction

 Motivation: finding new suitable mathematical primitives for cryptographic designs.

Introduction

- Motivation: finding new suitable mathematical primitives for cryptographic designs.
- Fact: work in that direction hardly exploits the constructions and theoretical frameworks available from number-theoretical cryptography.

Introduction

- Motivation: finding new suitable mathematical primitives for cryptographic designs.
- Fact: work in that direction hardly exploits the constructions and theoretical frameworks available from number-theoretical cryptography.
- Our Goal: adapt the existing theory of Universal Projective Hash Functions to allow constructions arising in different areas of mathematics.

Some basics about PHFs

Let X, Π , S be non-empty sets, $L \subseteq X$, and K a finite index set. Consider H:= $\{H_k : X \mapsto \Pi\}_{k \in K}$ and $\alpha : K \mapsto S$.

Let X, Π , S be non-empty sets, $L \subseteq X$, and K a finite index set. Consider H:= $\{H_k : X \mapsto \Pi\}_{k \in K}$ and $\alpha : K \mapsto S$.

Then the tuple $H = (H, K, X, L, \Pi, S, \alpha)$ is a projective hash family - PHF - for (X, L) provided that $\alpha(k) \approx H_{k|L}()$

(i.e.,
$$\forall x \in L, k_1, k_2 \in K, \alpha(k_1) = \alpha(k_2) \Rightarrow H_{k_1}(x) = H_{k_2}(x)$$
).

Some Basics About PHFs

Given only the projection $\alpha(k)$...

... it could be hard to compute He outside L

$$\rightarrow$$
 ϵ -universal : $\Leftrightarrow \forall s \in S, x \in X \setminus L, \pi \in \Pi$
 $P[H_k(x) = \pi / \alpha(k) = s] \le \epsilon;$

- $\Rightarrow \varepsilon$ -universal : $\Leftrightarrow \forall s \in S, x \in X \setminus L, \pi \in \Pi$ $P[H_{k}(x) = \pi / \alpha(k) = s] \le \varepsilon;$
- $\varepsilon \text{-universal}_2: \Leftrightarrow \forall s \in S, x \in X \setminus L, x^* \in X \setminus (LU\{x\}), \pi, \pi^* \in \Pi$ $P[H_k(x) = \pi / H_k(x^*) = \pi^*, \alpha(k) = s] \leq \varepsilon;$

- \rightarrow ϵ -universal : $\Leftrightarrow \forall s \in S, x \in X \setminus L, \pi \in \Pi$ $P[H_k(x) = \pi / \alpha(k) = s] \leq \epsilon;$
- $\text{$\epsilon$-universal}_2: \Leftrightarrow \forall \ s \in S, \ x \in X \setminus L, \ x^* \in X \setminus (LU\{x\}), \ \pi, \ \pi^* \in \Pi$ $P[H_k(x) = \pi / H_k(x^*) = \pi^*, \ \alpha(k) = s \] \le \epsilon \ ;$
- \Rightarrow ϵ -smooth: \Leftrightarrow $(x, \alpha(k), H_k(x))$ and $(x, \alpha(k), \pi)$ are ϵ -close for $k \in K, x \in X \setminus L$ and $\pi \in \Pi$ chosen uniformly at random;

- \rightarrow ϵ -universal : $\Leftrightarrow \forall s \in S, x \in X \setminus L, \pi \in \Pi$ $P[H_k(x) = \pi / \alpha(k) = s] \leq \epsilon;$
- $\varepsilon\text{-universal}_2: \Leftrightarrow \forall \ s \in S, \ x \in X \setminus L, \ x^* \in X \setminus (LU\{x\}), \ \pi, \ \pi^* \in \Pi$ $P[H_k(x) = \pi / H_k(x^*) = \pi^*, \ \alpha(k) = s \] \le \epsilon;$
- \Rightarrow ϵ -smooth: \Leftrightarrow $(x, \alpha(k), H_k(x))$ and $(x, \alpha(k), \pi)$ are ϵ -close for $k \in K, x \in X \setminus L$ and $\pi \in \Pi$ chosen uniformly at random;
- → Strongly universal₂ \approx worst case smoothness.

Basic Results

- Ways of "upgrading" the weaker types of PHFs to achieve more robust types:
 - Universal to universal₂ Cramer and Shoup, [EUROCRYPT 2002]
 - Universal to smooth Cramer and Shoup, [EUROCRYPT 2002]
 - Universal₂ to strongly universal₂

Basic Results

- Ways of "upgrading" the weaker types of PHFs to achieve more robust types:
 - Universal to universal₂ Cramer and Shoup, [EUROCRYPT 2002]
 - Universal to smooth Cramer and Shoup, [EUROCRYPT 2002]
 - Universal₂ to strongly universal₂
- Methods for constructing cryptographically useful PHFs

- Cramer and Shoup [EUROCRYPT 2002]
 - IND-CCA Encryption Scheme in the standard model

- Cramer and Shoup [EUROCRYPT 2002]
 - IND-CCA Encryption Scheme in the standard model
- Kurosawa and Desmedt [CRYPO 2004]
 - Hybrid encryption scheme

- Cramer and Shoup [EUROCRYPT 2002]
 - IND-CCA Encryption Scheme in the standard model
- Kurosawa and Desmedt [CRYPO 2004]
 - Hybrid encryption scheme
- Genaro and Lindell [EUROCRYPT 2003]
 - Password based authenticated key exchange

- Cramer and Shoup [EUROCRYPT 2002]
 - IND-CCA Encryption Scheme in the standard model
- Kurosawa and Desmedt [CRYPO 2004]
 - Hybrid encryption scheme
- Genaro and Lindell [EUROCRYPT 2003]
 - Password based authenticated key exchange
- Kalai [EUROCRYPT 2005]
 - 2-out-of-1 oblivious transfer protocol.

- Cramer and Shoup [EUROCRYPT 2002]
 - П is the message space
 - \Box k is kept secret, $\alpha(k)$ and x are public
 - $m \in \Pi$ is encrypted using $H_k(x)$ as a one time pad, for $x \in L$, i.e., $E(\alpha(k))$ $(m) = (x, H_k(x) \oplus m)$
 - IND-CCA security is achieved by appending a proof of integrity

Kalai [EUROCRYPT 2005]

Sender's (B) input: two strings γ_0 , γ_1 ,

Receiver's (A) input: choice bit b.

Goal: A learns γ_b , but nothing about γ_{b-1} . B learns nothing about b.

Kalai [EUROCRYPT 2005]

Sender's (B) input: two strings γ_0 , γ_1 .

Receiver's (A) input: choice bit b.

Goal: A learns γ_b , but nothing about γ_{1-b} . B learns nothing about b.

■ A chooses $x_b \in L$ and $x_{1-b} \in X \setminus L$ and sends (X, x_0, x_1) to B;

■ Kalai [EUROCRYPT 2005]

Sender's (B) input: two strings γ_0 , γ_1 .

Receiver's (A) input: choice bit b.

Goal: A learns γ_b , but nothing about γ_{1-b} . B learns nothing about b.

- A chooses $x_b \in L$ and $x_{1-b} \in X \setminus L$ and sends (X, x_0, x_1) to B;
- B chooses independently two random keys k_0 , k_1 and sends $\alpha(k_0)$, $\alpha(k_1)$, $y_0 = \gamma_0 \oplus H_{k_0}(x_0)$ and $y_1 = \gamma_1 \oplus H_{k_1}(x_1)$;

■ Kalai [EUROCRYPT 2005]

Sender's (B) input: two strings γ_0 , γ_1 .

Receiver's (A) input: choice bit b.

Goal: A learns γ_b , but nothing about γ_{1-b} . B learns nothing about b.

- A chooses $x_b \in L$ and $x_{1-b} \in X \setminus L$ and sends (X, x_0, x_1) to B;
- B chooses independently two random keys k_0 , k_1 and sends $\alpha(k_0)$, $\alpha(k_1)$, $y_0 = \gamma_0 \oplus H_{k_0}(x_0)$ and $y_1 = \gamma_1 \oplus H_{k_1}(x_1)$;
- A retrieves γ_b by computing $y_b \oplus H_{k_b}(x_b)$ using the projection key $\alpha(k_b)$. Note that as $x_{1-b} \in X \setminus L$, $\alpha(k_{1-b})$ does not give enough information for computing $H_{k_{1-b}}$ outside L.

Some Basics About PHFs

Group Action Based Projective Hash Families

• "Atoms" from which PHFs are derived for Cramer-Shoup Encryption Scheme [EUROCRYPT 2002].

Group Action Based PHFs

- *Atoms" from which PHFs are derived for Cramer-Shoup Encryption Scheme [EUROCRYPT 2002].
- A group system is a tuple (H, X, L, Π) , where X and Π are finite abelian groups, $L \subseteq X$, $H \subseteq Hom(X, \Pi)$.

Group Action Based PHFs

- "Atoms" from which PHFs are derived for Cramer-Shoup Encryption Scheme [EUROCRYPT 2002].
- A group system is a tuple (H, X, L, Π) , where X and Π are finite abelian groups, $L \subseteq X$, $H \subseteq Hom(X, \Pi)$.
- To derive a PHF, one must specify the action of H on L in terms of a set $\{g_1,...,g_d\}$ of generators for L, i.e.

$$\alpha(k) = (H_k(g_1), ..., H_k(g_d)).$$

- "Atoms" from which PHFs are derived for Cramer and Shoup's Encryption Scheme [EUROCRYPT 2002].
- A group system is a tuple (H, X, L, Π) , where X and Π are finite abelian groups, $L \subseteq X$, $H \subseteq Hom(X, \Pi)$.
- To derive a PHF, one must specify the action of H on L in terms of a set $\{g_1,...,g_l\}$ of generators for L, i.e.

$$\alpha(k) = (H_k(g_1), ..., H_k(g_l)).$$

 Using group systems, they derived instances of their encryption scheme based on the DDH problem and the Decision Composite Residuosity assumption.

Group Action Based PHFs

Group Action Systems (1)

Let X be a finite set and H a finite group left-acting on X. Denote by $\phi(h)$ the permutation induced by $h \in H$ on X.

Group Action Based PHFs

Let X be a finite set and H a finite group left-acting on X. Denote by $\phi(h)$ the permutation induced by $h \in H$ on X.

Let S be a finite group and $\chi: H \mapsto S$ a group homorphism.

Then, the tuple (X, H, χ, S) is called a group action system.

Group Action Based PHFs

Given a group action system (X, H, χ ,S), a PHF can be constructed via a suitable indexing of H, i.e., given a finite set K, \hbar : K \mapsto H the tuple

$$(X, H, K, S, \chi, \hbar)$$
 defines a PHF (AcPHF)
 $\mathbf{H} = (H, K, X, L, X, S, \chi \cdot \hbar),$

where

L:=
$$\{ x \in X \mid |(Ker\chi)(x)| = 1 \}$$
.

Group Action Based PHFs

Note that:

• L:= $\{x \in X \mid (Ker\chi)(x) = x\}$;

Note that:

- L:= $\{x \in X \mid (Ker\chi)(x) = x\};$
- Ker $\chi \subseteq Stab(L)$;

Note that:

- L:= $\{x \in X \mid (Ker\chi)(x) = x\};$
- Ker $\chi \subseteq Stab(L)$;
- H leaves L invariant;

Note that:

- L:= $\{ x \in X \mid (Ker\chi)(x) = x \};$
- Ker $\chi \subseteq Stab(L)$;
- H leaves L invariant;
- We will be interested in systems for which the $(Ker\chi)$ -orbits of elements in $X\L$ are large.

ACPHFS

Group Action Based PHFs

Useful ACPHFS.

A group action system (X, H, χ, S) is *p-diverse* if $|(Ker\chi)(x)| \ge p, \ \forall \ x \in X \setminus L$.

useful ACPHFS.

A group action system (X, H, χ, S) is *p-diverse* if $|(Ker\chi)(x)| \ge p$, $\forall x \in X \setminus L$.

Lemma. If (X, H, χ, S) is p-diverse, then $(X, H, K, S, \chi, \hbar)$ is (1/p)-universal.

useful ACPHFS.

A group action system (X, H, χ, S) is *p-diverse* if $|(Ker\chi)(x)| \ge p, \ \forall \ x \in X \setminus L$.

Lemma. If (X, H, χ, S) is p-diverse, then $(X, H, K, S, \chi, \hbar)$ is (1/p)-universal.

Moreover...

useful ACPHFS.

A group action system (X, H, χ, S) is *p-diverse* if $|(Ker\chi)(x)| \ge p$, $\forall x \in X \setminus L$.

Lemma. If (X, H, χ, S) is p-diverse, then $(X, H, K, S, \chi, \hbar)$ is (1/p)-universal.

Moreover...

...there's a "dedicated" way of upgrading it to (l/p)-universal₂!!

Group Action Based PHFs

Examples

Let X be F_q^n , $\{\alpha_1,...,\alpha_n\}$ and F_q basis for X.

Let X be F_q^n , $\{\alpha_1,...,\alpha_n\}$ and F_q basis for X. Let $H \subseteq GL(n,q)$, leaving a d-dimensional space L invariant.

Let X be F_q^n , $\{\alpha_1,...,\alpha_n\}$ and F_q basis for X. Let $H \subseteq GL(n,q)$, leaving a d-dimensional space L invariant.

Define
$$\chi: H \mapsto GL(d, q)$$

 $M \mapsto M_d$

Let X be F_q^n , $\{\alpha_1,...,\alpha_n\}$ and F_q basis for X.

Let $H \subseteq GL(n, q)$, leaving a d-dimensional space L invariant.

Define
$$\chi : H \mapsto GL(d, q)$$

 $M \mapsto M_d$

...How to achieve p-diversity?

Examples

Take X non-abelian, $H \leq Aut(X)$,

Take X non-abelian, $H \le Aut(X)$, $L \le X$, H-invariant $(h(L) = L \ \forall \ h \in H)$

Take X non-abelian, $H \leq Aut(X)$,

 $L \leq X$, H-invariant $(h(L) = L \forall h \in H)$

Construct a projection $\chi: H \mapsto H_{|L}$ by means of a "group base" of L; i.e., a sequence $[\alpha_1,...,\alpha_n]$, with each $\alpha_i = (\alpha_{i1},...,\alpha_{ir_i})$, $\alpha_{ij_i} \in G$, so that each $g \in L$ can be expressed as a product:

$$g = \alpha_{lj_l} \cdots \alpha_{sj_s}$$
, where $\alpha_{ij_i} \in \alpha_i$.

Take X non-abelian, $H \leq Aut(X)$,

 $L \leq X$, H-invariant $(h(L) = L \forall h \in H)$

Construct a projection $\chi: H \mapsto H_{|L}$ by means of a "group base" of L; that is, a sequence $[\alpha_1,...,\alpha_n]$, with each $\alpha_i = (\alpha_{i1},...,\alpha_{ir_i}), \alpha_{ij_i} \in G$ so that each $g \in L$ can be expressed as a product:

$$g = \alpha_{lj_1} \cdots \alpha_{sj_s}$$
, where $\alpha_{ij_i} \in \alpha_i$.

Then,

$$\begin{array}{ccc} \chi: H & \mapsto & H_{\mid L} \\ & h & \mapsto (h(\alpha_{lj_1}), ..., h(\alpha_{sj_s})) \end{array}$$

Examples

Seems simple but...

Seems simple but...
further requirements are needed!

Seems simple but...

further requirements are needed!

For instance, for realising Cramer and Shoup's scheme:

- □ random elements from L must be hard to distinguish from random elements from X.
- "factoring" $x \in L$ with respect to the group base α should be hard (without trapdoor information)

(for details, see G-V, Martínez, Steinwandt, Villar [TCC 05])

Examples

Let p be a finite projective plane over a prime field F_q , let X be the point-set of p , L a fixed line in p , and c a fixed point on L.

Let p be a finite projective plane over a prime field F_q , let X be the point-set of p , L a fixed line in p , and c a fixed point on L.

Take H the group of elations with center c (note that every elation induces a permutation in the L points).

Examples

Let p be a finite projective plane over a prime field F_q , let X be the point-set of p , L a fixed line in p , and c a fixed point on L.

Take H the group of elations with center c (note that every elation induces a permutation in the L points).

Define χ as the group homomorphism

$$\chi: H \mapsto S_L$$

$$\zeta \mapsto \zeta_{|L|}$$

 Given a suitable group action system, we know how to construct "good" PHFs.

- Given a suitable group action system, we know how to construct "good" PHFs.
- Unfortunately, so far "good" ≠ "good enough", as the main cryptographic constructions require aditional properties.

- Given a suitable group action system, we know how to construct "good" PHFs.
- Unfortunately, so far "good" ≠ "good enough", as the main cryptographic constructions require aditional properties.
- However, this framework sheds some light on how to use (robust enough) problems not yet exploited.

Thank you!!!