Group Action Systems:
a Mathematical tool for deriving
Provable secure cryptographic schemes

María Isabel González Vasco

Group Action Systems:
a Mathematical tool for deriving
Provable secure cryptographic schemes

Joint works with J. L. Villar (UPC) and R. Steinwandt (FAU)

- Introduction
- Some basics about PHFs
- Definitions
- Basic Results
- Cryptographic Applications

Overview

- Introduction
- Some basics about PHFs
- Definitions
- Basic Results
- Cryptographic Applications
- Group Action Based PHFs
- Group Action Systems
- Useful AcPHFs. Diversity.

Overview

- Introduction
- Some basics about PHFs

- Definitions
- Basic Results
- Cryptographic Applications
- Group Action Based PHFs
- Group Action Systems
- Useful AcPHFs. Diversity.
- Examples

Overview

- Introduction
- Some basics about PHFs

- Definitions
- Basic Results
- Cryptographic Applications
- Group Action Based PHFs
- Group Action Systems
- Useful AcPHFs. Diversity
- Examples
- Final Remarks
introduction
- Motivation: finding new suitable mathematical primitives for cryptographic designs.

introduction

- Motivation: finding new suitable mathematical primitives for cryptographic designs.
- Fact: work in that direction hardly exploits the constructions and theoretical frameworks available from number -theoretical cryptography.

introduction

- Motivation: finding new suitable mathematical primitives for cryptographic designs.
- Fact: work in that direction hardly exploits the constructions and theoretical frameworks available from number-theoretical cryptography.
- Our Goal: adapt the existing theory of Universal Projective Hash Functions to allow constructions arising in different areas of mathematics .

some basics about PHFs

Definitions
Let X, Π, S be non-empty sets, $L \subseteq X$, and K a finite index set. Consider $\mathrm{H}:=\left\{\mathrm{H}_{\mathrm{k}}: \mathrm{X} \mapsto \Pi\right\}_{\mathrm{k} \in \mathrm{K}}$ and $\alpha: \mathrm{K} \mapsto \mathrm{S}$.

Definitions

Let X, Π, S be non-empty sets, $L \subseteq X$, and K a finite index set. Consider $\mathrm{H}:=\left\{\mathrm{H}_{\mathrm{k}}: \mathrm{X} \mapsto \Pi\right\}_{\mathrm{k} \in \mathrm{K}}$ and $\alpha: \mathrm{K} \mapsto \mathrm{S}$.

Then the tuple $\mathrm{H}=(\mathrm{H}, \mathrm{K}, \mathrm{X}, \mathrm{L}, \Pi, \mathrm{S}, \alpha)$ is a projective hash family

- PHF - for (X, L) provided that

$$
\alpha(\mathrm{k}) \approx \mathrm{H}_{\mathrm{k} \mid \mathrm{L}}()
$$

(i.e., $\left.\forall \mathrm{x} \in \mathrm{L}, \mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{~K}, \alpha\left(\mathrm{k}_{1}\right)=\alpha\left(\mathrm{k}_{2}\right) \Rightarrow \mathrm{H}_{\mathrm{k}_{1}}(\mathrm{x})=\mathrm{H}_{\mathrm{k}_{2}}(\mathrm{x})\right)$.

Given only the projection $\alpha(k) \ldots$

...it could be hard to compute H_{k} outside L

Definitions

Moreover, we say that $\mathrm{H}=(\mathrm{H}, \mathrm{K}, \mathrm{X}, \mathrm{L}, \Pi, S, \alpha)$ is
$\rightarrow \varepsilon$-universal $: \Leftrightarrow \forall s \in S, x \in X \backslash L, \pi \in \Pi$

$$
\mathrm{P}\left[\mathrm{H}_{\mathrm{k}}(\mathrm{x})=\pi / \alpha(\mathrm{k})=\mathrm{s}\right] \leq \varepsilon ;
$$

Definitions

Moreover, we say that $H=(H, K, X, L, \Pi, S, \alpha)$ is
$\rightarrow \varepsilon$-universal $: \Leftrightarrow \forall s \in S, x \in X \backslash L, \pi \in \Pi$

$$
\mathrm{P}\left[\mathrm{H}_{\mathrm{k}}(\mathrm{x})=\pi / \alpha(\mathrm{k})=\mathrm{s}\right] \leq \varepsilon ;
$$

$\rightarrow \varepsilon$-universal $2: \Leftrightarrow \forall s \in S, x \in X \backslash L, x^{*} \in X \backslash(L U\{x\}), \pi, \pi^{*} \in \Pi$ $\mathrm{P}\left[\mathrm{H}_{\mathrm{k}}(\mathrm{x})=\pi / \mathrm{H}_{\mathrm{k}}\left(\mathrm{X}^{*}\right)=\pi^{*}, \alpha(\mathrm{k})=\mathrm{s}\right] \leq \varepsilon ;$

Definitions

Moreover, we say that $\mathrm{H}=(\mathrm{H}, \mathrm{K}, \mathrm{X}, \mathrm{L}, \Pi, \mathrm{S}, \alpha)$ is
$\rightarrow \varepsilon$-universal $: \Leftrightarrow \forall s \in S, x \in X \backslash L, \pi \in \Pi$

$$
\mathrm{P}\left[\mathrm{H}_{\mathrm{k}}(\mathrm{x})=\pi / \alpha(\mathrm{k})=\mathrm{s}\right] \leq \varepsilon ;
$$

$\rightarrow \varepsilon$-universal $2: \Leftrightarrow \forall s \in S, x \in X \backslash L, x^{*} \in X \backslash(\operatorname{LU}\{x\}), \pi, \pi^{*} \in \Pi$

$$
\mathrm{P}\left[\mathrm{H}_{\mathrm{k}}(\mathrm{x})=\pi / \mathrm{H}_{\mathrm{k}}\left(\mathrm{x}^{*}\right)=\pi^{*}, \alpha(\mathrm{k})=\mathrm{s}\right] \leq \varepsilon ;
$$

$\rightarrow \varepsilon$ - smooth $: \Leftrightarrow\left(\mathrm{x}, \alpha(\mathrm{k}), \mathrm{H}_{\mathrm{k}}(\mathrm{x})\right)$ and $(\mathrm{x}, \alpha(\mathrm{k}), \pi)$ are ε-close for $\mathrm{k} \in \mathrm{K}, \mathrm{x} \in \mathrm{X} \backslash \mathrm{L}$ and $\pi \in \Pi$ chosen uniformly at random ;

Definitions

Moreover, we say that $H=(H, K, X, L, \Pi, S, \alpha)$ is
$\rightarrow \varepsilon$-universal $: \Leftrightarrow \forall s \in S, x \in X \backslash L, \pi \in \Pi$

$$
\mathrm{P}\left[\mathrm{H}_{\mathrm{k}}(\mathrm{x})=\pi / \alpha(\mathrm{k})=\mathrm{s}\right] \leq \varepsilon ;
$$

$\rightarrow \varepsilon$-universal $2: \Leftrightarrow \forall s \in S, x \in X \backslash L, x^{*} \in X \backslash(\operatorname{LU}\{x\}), \pi, \pi^{*} \in \Pi$

$$
\mathrm{P}\left[\mathrm{H}_{\mathrm{k}}(\mathrm{x})=\pi / \mathrm{H}_{\mathrm{k}}\left(\mathrm{x}^{*}\right)=\pi^{*}, \alpha(\mathrm{k})=\mathrm{s}\right] \leq \varepsilon ;
$$

$\rightarrow \varepsilon$ - smooth : $\Leftrightarrow\left(\mathrm{x}, \alpha(\mathrm{k}), \mathrm{H}_{\mathrm{k}}(\mathrm{x})\right)$ and $(\mathrm{x}, \alpha(\mathrm{k}), \pi)$ are ε-close for $k \in K, x \in X \backslash L$ and $\pi \in \Pi$ chosen uniformly at random;
\rightarrow Strongly universal ${ }_{2} \approx$ worst case smoothness.

Basic Results

- Ways of "upgrading" the weaker types of PHFs to achieve more robust types:
- Universal to universal 2 - Cramer and Shoup, [EUROCRYPT 2002]
- Universal to smooth - Cramer and Shoup, [EUROCRYPT 2002]
- Universal 2 to strongly universal 2

Basic Results

- Ways of "upgrading" the weaker types of PHFs to achieve more robust types:
- Universal to universal 2 - Cramer and Shoup, [EUROCRYPT 2002]
- Universal to smooth - Cramer and Shoup, [EUROCRYPT 2002]
- Universal 2 to strongly universal ${ }_{2}$
- Methods for constructing cryptographically useful PHFs

cryptographic Applications

- Cramer and Shoup [EUROCRYPT 2002]
- IND-CCA Encryption Scheme in the standard model

cryptographic Applications

- Cramer and Shoup [EUROCRYPT 2002]
- IND-CCA Encryption Scheme in the standard model
- Kurosawa and Desmedt [CRYPO 2004]
- Hybrid encryption scheme

cryptographic Applications

- Cramer and Shoup [EUROCRYPT 2002]
- IND-CCA Encryption Scheme in the standard model
- Kurosawa and Desmedt [CRYPO 2004]
- Hybrid encryption scheme
- Genaro and Lindell [EUROCRYPT 2003]
- Password based authenticated key exchange

cryptographic Applications

- Cramer and Shoup [EUROCRYPT 2002]
- IND-CCA Encryption Scheme in the standard model
- Kurosawa and Desmedt [CRYPO 2004]
- Hybrid encryption scheme
- Genaro and Lindell [EUROCRYPT 2003]
- Password based authenticated key exchange
- Kalai [EUROCRYPT 2005]
- 2-out-of-1 oblivious transfer protocol.

cryptographic Applications

- Cramer and Shoup [EUROCRYPT 2002]
- Π is the message space
- k is kept secret, $\alpha(k)$ and x are public
- $m \in \Pi$ is encrypted using $H_{k}(x)$ as a one time pad, for $x \in L$, i.e.,

$$
\mathrm{E}(\alpha(\mathrm{k}))(\mathrm{m})=\left(\mathrm{x}, \mathrm{H}_{\mathrm{k}}(\mathrm{x}) \oplus \mathrm{m}\right)
$$

- IND-CCA security is achieved by appending a proof of integrity

cryptographic Applications

- Kalai [eurocrypt 2005]

Sender's (B) input: two strings γ_{0}, γ_{1},
Receiver's (A) input: choice bit b.
Goal: A learns γ_{b}, but nothing about $\gamma_{\mathrm{b}-1}$. B learns nothing about b .

cryptographic Applications

- Kalai [eurocrypt 2005]

Sender's (B) input: two strings γ_{0}, γ_{1}.
Receiver's (A) input: choice bit b.
Goal: A learns γ_{b}, but nothing about $\gamma_{1-\mathrm{b}}$. B learns nothing about b .

- A chooses $x_{b} \in L$ and $x_{1-b} \in X \backslash L$ and sends $\left(X, x_{0}, x_{1}\right)$ to B;

cryptographic Applications

- Kalai [eurocrypt 2005]

Sender's (B) input: two strings γ_{0}, γ_{1}.
Receiver's (A) input: choice bit b.
Goal: A learns γ_{b}, but nothing about $\gamma_{1-\mathrm{b}}$. B learns nothing about b .

- A chooses $x_{b} \in L$ and $x_{1-b} \in X \backslash L$ and sends $\left(X, x_{0}, x_{1}\right)$ to B;
- B chooses independently two random keys $\mathrm{k}_{0}, \mathrm{k}_{1}$ and sends $\alpha\left(\mathrm{k}_{0}\right), \alpha\left(\mathrm{k}_{1}\right), \mathrm{y}_{0}=\gamma_{0} \oplus \mathrm{H}_{\mathrm{k}_{0}}\left(\mathrm{x}_{0}\right)$ and $\mathrm{y}_{\mathrm{l}}=\gamma_{1} \oplus \mathrm{H}_{\mathrm{k}_{1}}\left(\mathrm{x}_{1}\right)$;

cryptographic Applications

- Kalai [eurocrypt 2005]

Sender's (B) input: two strings γ_{0}, γ_{1}.
Receiver's (A) input: choice bit b.
Goal: A learns γ_{b}, but nothing about $\gamma_{1-\mathrm{b}}$. B learns nothing about b .

- A chooses $\mathrm{x}_{\mathrm{b}} \in \mathrm{L}$ and $\mathrm{x}_{1-\mathrm{b}} \in \mathrm{X} \backslash \mathrm{L}$ and sends $\left(\mathrm{X}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)$ to B ;
- B chooses independently two random keys $\mathrm{k}_{0}, \mathrm{k}_{1}$ and sends $\alpha\left(\mathrm{k}_{0}\right), \alpha\left(\mathrm{k}_{1}\right), \mathrm{y}_{0}=\gamma_{0} \oplus \mathrm{H}_{\mathrm{k}_{0}}\left(\mathrm{x}_{0}\right)$ and $\mathrm{y}_{1}=\gamma_{1} \oplus \mathrm{H}_{\mathrm{k}_{1}}\left(\mathrm{x}_{1}\right)$;
- A retrieves γ_{b} by computing $\mathrm{y}_{\mathrm{b}} \oplus \mathrm{H}_{\mathrm{k}_{\mathrm{b}}}\left(\mathrm{X}_{\mathrm{b}}\right)$ using the projection key $\alpha\left(\mathrm{k}_{\mathrm{b}}\right)$. Note that as $\mathrm{x}_{1-\mathrm{b}} \in \mathrm{X} \backslash \mathrm{L}, \alpha\left(\mathrm{k}_{1-\mathrm{b}}\right)$ does not give enough information for computing $\mathrm{H}_{\mathrm{k}_{1-\mathrm{b}}}$ outside L .

Group Action Based Projective Hash Famílies

Group systems

- "Atoms" from which PHFs are derived for Cramer-Shoup Encryption Scheme [Eurocrypt 2002].

Group systems

- "Atoms" from which PHFs are derived for Cramer-Shoup Encryption Scheme [eurocrypt 2002].
- A group system is a tuple ($\mathrm{H}, \mathrm{X}, \mathrm{L}, \Pi$), where X and Π are finite abelian groups, $\mathrm{L} \leq \mathrm{X}, \mathrm{H} \leq \operatorname{Hom}(\mathrm{X}, \Pi)$.

Group systems

- "Atoms" from which PHFs are derived for Cramer-Shoup Encryption Scheme [Eurocrypt 2002].
- A group system is a tuple ($\mathrm{H}, \mathrm{X}, \mathrm{L}, \Pi$), where X and Π are finite abelian groups, $\mathrm{L} \leq \mathrm{X}, \mathrm{H} \leq \operatorname{Hom}(\mathrm{X}, \Pi)$.
- To derive a PHF, one must specify the action of H on L in terms of a set $\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{d}}\right\}$ of generators for L, i.e.

$$
\alpha(\mathrm{k})=\left(\mathrm{H}_{\mathrm{k}}\left(\mathrm{~g}_{1}\right), \ldots, \mathrm{H}_{\mathrm{k}}\left(\mathrm{~g}_{\mathrm{d}}\right)\right) .
$$

Group systems

- "Atoms" from which PHFs are derived for Cramer and Shoup's Encryption Scheme [EUROCRYPT 2002].
- A group system is a tuple ($\mathrm{H}, \mathrm{X}, \mathrm{L}, \Pi$), where X and Π are finite abelian groups, $\mathrm{L} \leq \mathrm{X}, \mathrm{H} \leq \operatorname{Hom}(\mathrm{X}, \Pi)$.
- To derive a PHF, one must specify the action of H on L in terms of a set $\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\}}\right\}$of generators for L, i.e.

$$
\alpha(\mathrm{k})=\left(\mathrm{H}_{\mathrm{k}}\left(\mathrm{~g}_{1}\right), \ldots, \mathrm{H}_{\mathrm{k}}\left(\mathrm{~g}_{\mathrm{l}}\right)\right) .
$$

- Using group systems, they derived instances of their encryption scheme based on the DDH problem and the Decision Composite Residuosity assumption.

Group Action Systems (1)

Let X be a finite set and H a finite group left-acting on X . Denote by $\phi(\mathrm{h})$ the permutation induced by $\mathrm{h} \in \mathrm{H}$ on X .

Group Action Systems (1)

Let X be a finite set and H a finite group left-acting on X . Denote by $\phi(\mathrm{h})$ the permutation induced by $\mathrm{h} \in \mathrm{H}$ on X .

Let S be a finite group and $\chi: H \mapsto S$ a group homorphism.

Then, the tuple (X, H, χ, S) is called a
group action system.

Group Action Systems (11)

Given a group action system ($\mathrm{X}, \mathrm{H}, \chi, \mathrm{S}$), a PHF can be constructed via a suitable indexing of H , i.e., given a finite set $\mathrm{K}, \hbar: \mathrm{K} \mapsto \mathrm{H}$ the tuple
(X, H, K, S, χ, \hbar) defines a PHF (AcPHF)

$$
\mathrm{H}=(\mathrm{H}, \mathrm{~K}, \mathrm{X}, \mathrm{~L}, \mathrm{X}, \mathrm{~S}, \chi \circ \hbar),
$$

where

$$
L:=\{x \in X| |(\operatorname{Ker} \chi)(x) \mid=1\} .
$$

Group Action Systems (III)

Note that:

- $\mathrm{L}:=\{\mathrm{x} \in \mathrm{X} \mid(\operatorname{Ker} \chi)(\mathrm{x})=\mathrm{x}\}$;

Group Action Systems (III)

Note that:

- $\mathrm{L}:=\{\mathrm{x} \in \mathrm{X} \mid(\operatorname{Ker} \chi)(\mathrm{x})=\mathrm{x}\}$;
- $\operatorname{Ker} \chi \subseteq \operatorname{Stab}(\mathrm{L})$;

Group Action Systems (III)

Note that:

- $\mathrm{L}:=\{\mathrm{x} \in \mathrm{X} \mid(\operatorname{Ker} \chi)(\mathrm{x})=\mathrm{x}\}$;
- Ker $\chi \subseteq \operatorname{Stab}(\mathrm{L})$;
- H leaves L invariant;

Group Action Systems (III)

Note that:

- $\mathrm{L}:=\{\mathrm{x} \in \mathrm{X} \mid(\operatorname{Ker} \chi)(\mathrm{x})=\mathrm{x}\}$;
- $\operatorname{Ker} \chi \subseteq \operatorname{Stab}(\mathrm{L})$;
- H leaves L invariant;
- We will be interested in systems for which the (Ker χ)-orbits of elements in $X \backslash L$ are large.

ACPHFS

Group Action Based PHFs
M.I. González-Vasco, Bochum 05

Useful AcPHFs.

A group action system ($\mathrm{X}, \mathrm{H}, \chi, \mathrm{S}$) is p-diverse if $|(\operatorname{Ker} \chi)(\mathrm{x})| \geq \mathrm{p}, \forall \mathrm{x} \in \mathrm{X} \backslash \mathrm{L}$.

useful AcPHFs.

A group action system ($\mathrm{X}, \mathrm{H}, \chi, \mathrm{S}$) is p-diverse if $|(\operatorname{Ker} \chi)(\mathrm{x})| \geq \mathrm{p}, \forall \mathrm{x} \in \mathrm{X} \backslash \mathrm{L}$.
Lemma. If ($\mathrm{X}, \mathrm{H}, \chi, \mathrm{S}$) is p-diverse, then ($\mathrm{X}, \mathrm{H}, \mathrm{K}, \mathrm{S}, \chi, \hbar$) is $(\mathrm{l} / \mathrm{p})$-universal.

useful AcPHFs.

A group action system ($\mathrm{X}, \mathrm{H}, \chi, \mathrm{S}$) is p-diverse if $|(\operatorname{Ker} \chi)(\mathrm{x})| \geq \mathrm{p}, \forall \mathrm{x} \in \mathrm{X} \backslash \mathrm{L}$.
Lemma. If ($\mathrm{X}, \mathrm{H}, \chi, \mathrm{S}$) is p-diverse, then ($\mathrm{X}, \mathrm{H}, \mathrm{K}, \mathrm{S}, \chi, \hbar$) is ($1 / \mathrm{p}$)-universal.
Moreover...

Useful AcPHFs.

A group action system ($\mathrm{X}, \mathrm{H}, \chi, \mathrm{S}$) is p-diverse if $|(\operatorname{Ker} \chi)(\mathrm{x})| \geq \mathrm{p}, \forall \mathrm{x} \in \mathrm{X} \backslash \mathrm{L}$.
Lemma. If ($\mathrm{X}, \mathrm{H}, \chi, \mathrm{S}$) is p-diverse, then ($\mathrm{X}, \mathrm{H}, \mathrm{K}, \mathrm{S}, \chi, \hbar$) is ($1 / \mathrm{p}$)-universal.
Moreover...
...there's a "dedicated" way of upgrading it to $(\mathrm{l} / \mathrm{p})$-universal $l_{2}!!$

Examples

An example using linear groups

Let X be $\mathrm{F}_{\mathrm{q}}{ }^{\mathrm{n}},\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right\}$ and F_{q} basis for X .

An example using linear groups

Let X be $F_{q}{ }^{n},\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and F_{q} basis for X.
Let $\mathrm{H} \leq \mathrm{GL}(\mathrm{n}, \mathrm{q})$, leaving a d-dimensional space L invariant.

An example using linear groups

Let X be $F_{q}{ }^{n},\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and F_{q} basis for X.
Let $\mathrm{H} \leq \mathrm{GL}(\mathrm{n}, \mathrm{q})$, leaving a d -dimensional space L invariant. Define $\quad \chi: H \mapsto G L(d, q)$
$\mathrm{M} \mapsto \quad \mathrm{M}_{\mathrm{d}}$

An example using linear groups

Let X be $\mathrm{F}_{\mathrm{q}}{ }^{\mathrm{n}},\left\{\alpha_{\mathrm{q}}, \ldots, \alpha_{\mathrm{n}}\right\}$ and F_{q} basis for X .
Let $\mathrm{H} \leq \mathrm{GL}(\mathrm{n}, \mathrm{q})$, leaving a d -dimensional space L invariant.
Define $\chi: H \mapsto G L(d, q)$
$\mathrm{M} \mapsto \quad \mathrm{M}_{\mathrm{d}}$
... How to achieve p-diversity?

An example using non-abelian groups
Take X non-abelian, $\mathrm{H} \leq \operatorname{Aut}(\mathrm{X})$,

An example using non-abelian groups
Take X non-abelian, $\mathrm{H} \leq \operatorname{Aut}(\mathrm{X})$,
$\mathrm{L} \leq \mathrm{X}, \mathrm{H}$-invariant $(\mathrm{h}(\mathrm{L})=\mathrm{L} \quad \forall \mathrm{h} \in \mathrm{H})$

An example using non-abelian groups

Take X non-abelian, $\mathrm{H} \leq \operatorname{Aut}(\mathrm{X})$,
$\mathrm{L} \leq \mathrm{X}, \mathrm{H}$-invariant $(\mathrm{h}(\mathrm{L})=\mathrm{L} \quad \forall \mathrm{h} \in \mathrm{H})$
Construct a projection $\chi: \mathrm{H} \mapsto \mathrm{H}_{[\mathrm{L}}$ by means of a "group base" of L; i.e., a sequence $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$, with each $\alpha_{\mathrm{i}}=\left(\alpha_{\mathrm{i}, \ldots, \ldots,}, \alpha_{\mathrm{ir}_{\mathrm{i}}}\right), \alpha_{\mathrm{ij}_{\mathrm{i}}} \in G$, so that each $\mathrm{g} \in \mathrm{L}$ can be expressed as a product:

$$
\mathrm{g}=\alpha_{\mathrm{lj}_{1}} \cdots \alpha_{\mathrm{si}_{\mathrm{s}_{\mathrm{s}}}} \text { where } \alpha_{\mathrm{ij}_{\mathrm{i}}} \in \alpha_{\mathrm{i}} .
$$

An example using non-abelian groups

Take X non-abelian, $\mathrm{H} \leq \operatorname{Aut}(\mathrm{X})$,
$\mathrm{L} \leq \mathrm{X}, \mathrm{H}$-invariant ($\mathrm{h}(\mathrm{L})=\mathrm{L} \quad \forall \mathrm{h} \in \mathrm{H}$)
Construct a projection $\chi: \mathrm{H} \mapsto \mathrm{H}_{[\mathrm{L}}$ by means of a "group base" of L; that is, a sequence $\left[\alpha_{1}, . ., \alpha_{n}\right]$, with each $\alpha_{\mathrm{i}}=\left(\alpha_{\mathrm{i}}, \ldots, \alpha_{\mathrm{ir}_{\mathrm{i}}}\right), \alpha_{\mathrm{ij}_{\mathrm{i}}} \in G$ so that each $g \in \mathrm{~L}$ can be expressed as a product:

$$
\mathrm{g}=\alpha_{\mathrm{lj}_{1}} \cdots \alpha_{\mathrm{sj}_{\mathrm{s}_{\mathrm{s}}}} \text { where } \alpha_{\mathrm{ij}_{\mathrm{i}}} \in \alpha_{\mathrm{i}} .
$$

Then,

$$
\begin{aligned}
\chi: \mathrm{H} & \mapsto \quad \mathrm{H}_{\mid \mathrm{L}} \\
\mathrm{~h} & \mapsto\left(\mathrm{~h}\left(\alpha_{\mathrm{lj}_{\mathrm{j}}}\right), \ldots, \mathrm{h}\left(\alpha_{\mathrm{sj}_{\mathrm{s}}}\right)\right)
\end{aligned}
$$

An example using non-abelian groups Seems simple but...

An example using non-abelian groups Seems simple but...
further requirements are needed!

An example using non-abelian groups (11)

Seems simple but...
further requirements are needed!
For instance, for realising Cramer and Shoup's scheme:

- random elements from L must be hard to distinguish from random elements from X .
- "factoring" $x \in L$ with respect to the group base α should be hard (without trapdoor information)
(for details, see G-V, Martínez, Steinwandt, Villar [TCC 05])

A Geometric Example

Let p be a finite projective plane over a prime field F_{q}, let X be the point-set of p, L a fixed line in p, and c a fixed point on L .

A Geometric Example

Let p be a finite projective plane over a prime field F_{q}, let X be the point-set of p, L a fixed line in p, and c a fixed point on L .
Take H the group of elations with center c (note that every elation induces a permutation in the L points).

A Geometric Example

Let p be a finite projective plane over a prime field F_{q}, let X be the point-set of p, L fixed line in p, and c a fixed point on L .
Take H the group of elations with center c (note that every elation induces a permutation in the L points).
Define χ as the group homomorphism

$$
\begin{array}{rl}
\chi: ~ & H \\
\mapsto & \mathrm{~S}_{\mathrm{L}} \\
\zeta & \mapsto \zeta_{\mid \mathrm{L}}
\end{array}
$$

A Geometric Example

Examples

Final Remarks

Final Remarks

- Given a suitable group action system, we know how to construct "good" PHFs.

Final Remarks

- Given a suitable group action system, we know how to construct "good" PHFs.
- Unfortunately, so far "good" \neq "good enough", as the main cryptographic constructions require aditional properties.

Final Remarks

- Given a suitable group action system, we know how to construct "good" PHFs.
- Unfortunately, so far "good" " "good enough", as the main 2 cryptographic constructions require aditional properties.
- However, this framework sheds some light on how to use (robust enough) problems not yet exploited.

Thank you!!!

