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Introduction

Motivation: finding new suitable mathematical
primitives for cryptographic designs.

Fact: work in that direction hardly exploits the
constructions and theoretical frameworks available from
number-theoretical cryptography.

Our Goal: adapt the existing theory of Universal 
Projective Hash Functions to allow constructions arising
in different areas of mathematics .
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Definitions
Let X, Π, S be non-empty sets, L⊆ X, and K a finite index set.       

Consider H:={ Hk : X a Π }k∈ K and α : K a S. 
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Definitions
Let X, Π, S be non-empty sets, L⊆ X, and K a finite index set.       

Consider H:={ Hk : X a Π }k∈ K and α : K a S. 

Then the tuple H = (H, K, X, L, Π, S, α) is a projective hash family
- PHF - for (X, L) provided that

α (k) ≈ Hk|L ()

(i.e., ∀ x∈ L, k1, k2 ∈ K,  α(k1) = α(k2) ⇒Hk1
(x) = Hk2

(x) ).
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L 

X

Π

Hk(x)x

Given only the projection α(k)…

X* Hk(x*)

α(k)
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L 

X

Π

Hk(x)x

…it could be hard to compute Hk outside L

X* Hk(x*)
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Moreover, we say that H = (H, K, X, L , Π, S, α) is

ε-universal :⇔ ∀s ∈ S, x  ∈ X\L, π ∈ Π
P[Hk(x) = π /  α (k)=s ] ≤ ε ;
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P[Hk(x) = π /  α (k)=s ] ≤ ε ;
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ε-close for k ∈ K, x ∈ X\L and π ∈Π
chosen uniformly at random ;
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Moreover, we say that H = (H, K, X, L , Π, S, α) is

ε-universal :⇔ ∀s ∈ S, x  ∈ X\L, π ∈ Π
P[Hk(x) = π /  α (k)=s ] ≤ ε;

ε-universal2:⇔ ∀ s ∈ S, x  ∈ X\L, x* ∈ X\(LU{x}), π, π* ∈ Π
P[Hk(x) = π / Hk(x*) = π*, α (k)=s ] ≤ ε;

ε- smooth : ⇔ (x, α(k), Hk(x))  and (x, α(k), π) are          
ε-close for k ∈ K, x ∈ X\L and π ∈Π
chosen uniformly at random;

Strongly universal2 ≈ worst case smoothness.



Basic Results

Ways of “upgrading” the weaker types of PHFs to achieve 
more robust types:

Universal to universal2 - Cramer and Shoup, [EUROCRYPT 2002]

Universal to smooth - Cramer and Shoup, [EUROCRYPT 2002]

Universal2 to strongly universal2    
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Basic Results

Ways of “upgrading” the weaker types of PHFs to achieve 
more robust types:

Universal to universal2 - Cramer and Shoup, [EUROCRYPT 2002]

Universal to smooth - Cramer and Shoup, [EUROCRYPT 2002]

Universal2 to strongly universal2

Methods for constructing cryptographically useful PHFs

Some Basics About PHFs
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Cryptographic Applications

Cramer and Shoup [EUROCRYPT 2002]

IND-CCA Encryption Scheme in the standard model

Kurosawa and Desmedt [CRYPO 2004]

Hybrid encryption scheme

Genaro and Lindell [EUROCRYPT 2003]

Password based authenticated key exchange

Kalai [EUROCRYPT 2005]

2-out-of-1 oblivious transfer protocol.
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Cryptographic Applications

Cramer and Shoup [EUROCRYPT 2002]

Π is the message space

k is kept secret, α(k) and x are public

m ∈ Π is encrypted using Hk(x) as a one time pad, for x ∈ L, i.e., 
E(α(k)) (m) = (x, Hk(x)⊕m)

IND-CCA security is achieved by appending a proof of integrity

Some Basics About PHFs
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Cryptographic Applications

Kalai [EUROCRYPT 2005] 

Sender’s (B) input: two strings γ0, γ1, 
Receiver’s (A) input: choice bit b.

Goal: A learns γ b, but nothing about γb-1 . B learns nothing about b. 
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Receiver’s (A) input: choice bit b.

Goal: A learns γ b, but nothing about γ1-b . B learns nothing about b. 

A chooses xb ∈ L and x1-b ∈ X\L and sends (X, x0, x1) to B;

B chooses independently two random keys k0, k1 and sends 
α(k0), α(k1), y0 = γ0⊕Hk0

(x0) and y1 = γ1⊕Hk1
(x1);
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Cryptographic Applications

Kalai [EUROCRYPT 2005] 

Sender’s (B) input: two strings γ0, γ1.

Receiver’s (A) input: choice bit b.

Goal: A learns γ b, but nothing about γ1-b . B learns nothing about b. 

A chooses xb ∈ L and x1-b ∈ X\L and sends (X, x0, x1) to B;

B chooses independently two random keys k0, k1 and sends 
α(k0), α(k1), y0 = γ0⊕Hk0

(x0) and y1 = γ1⊕Hk1
(x1);

A retrieves γb by computing yb⊕Hkb
(xb) using the projection key 

α(kb). Note that as  x1-b ∈ X\L,  α(k1-b) does not give enough 
information for computing Hk1-b

outside L.

Some Basics About PHFs
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Group Systems

“Atoms” from which PHFs are derived for Cramer-Shoup
Encryption Scheme [EUROCRYPT 2002].
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Group Systems

“Atoms” from which PHFs are derived for Cramer-Shoup
Encryption Scheme [EUROCRYPT 2002].

A group system is a tuple (H, X, L, Π), where X and Π are finite 
abelian groups, L ≤ X,   H ≤ Hom(X, Π).
To derive a PHF, one must specify the action of H on L in 
terms of a set {g1,…,gd} of generators for L, i.e.

α(k) = (Hk(g1), …, Hk(gd)).
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Group Systems

“Atoms” from which PHFs are derived for Cramer and 
Shoup’s Encryption Scheme [EUROCRYPT 2002].

A group system is a tuple (H, X, L, Π), where X and Π are finite 
abelian groups, L ≤ X,   H ≤ Hom(X, Π). 
To derive a PHF, one must specify the action of H on L in 
terms of a set {g1,…,gl} of generators for L, i.e.

α(k) = (Hk(g1), …, Hk(gl)).
Using group systems, they derived instances of their 
encryption scheme based on the DDH problem and the 
Decision Composite Residuosity assumption.
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Group Action Systems (I)

Let X be a finite set and H a finite group left-acting on X.                 
Denote by φ(h) the permutation induced by h∈H on X .  
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Group Action Systems (I)

Let X be a finite set and H a finite group left-acting on X.                 
Denote by φ(h) the permutation induced by h∈H on X .  

Let S be a finite group and χ: H a S a group homorphism.

Then, the  tuple (X, H, χ,S) is called a                               
group action system. 
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Group Action Systems (II)

Given a group action system (X, H, χ,S), a PHF can be 
constructed via a suitable indexing of H, i.e., given a finite set 
K, ~ : K a H the tuple

(X, H, K, S, χ, ~) defines a PHF (AcPHF) 

H = (H, K, X, L, X, S, χ °~ ), 

where

L:= { x ∈ X | |(Kerχ)(x)| = 1 }.
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Group Action Systems (III)

Note that:

L:= { x ∈ X | (Kerχ)(x) = x };
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Note that:

L:= { x ∈ X | (Kerχ)(x) = x };
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Note that:

L:= { x ∈ X | (Kerχ)(x) = x };

Kerχ⊆ Stab(L);

H leaves L invariant;
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Group Action Systems (III)

Note that:

L:= { x ∈ X | (Kerχ)(x) = x };

Kerχ⊆ Stab(L);

H leaves L invariant;

We will be interested in systems for which the

(Kerχ)−orbits of  elements in X\L are large.
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L 

X

Π

~(k)(x)x

X* ~(k)(x*)

χ(~(k))

AcPHFs
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Useful AcPHFs.

A group action system (X, H, χ, S) is  p-diverse if      
|(Kerχ)(x)| ≥ p,  ∀ x ∈ X\L.
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Useful AcPHFs.

A group action system (X, H, χ, S) is  p-diverse if      
|(Kerχ)(x)| ≥ p,  ∀ x ∈ X\L.

Lemma. If (X, H, χ, S)  is p-diverse, then (X, H, K, S, χ, ~) 

is  (1/p)-universal.
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Lemma. If (X, H, χ, S)  is p-diverse, then (X, H, K, S, χ, ~) 
is  (1/p)-universal.

Moreover…

M.I. González-Vasco, Bochum 05

Group Action Based PHFs



Useful AcPHFs.

A group action system (X, H, χ, S) is  p-diverse if      
|(Kerχ)(x)| ≥ p,  ∀ x ∈ X\L.

Lemma. If (X, H, χ, S)  is p-diverse, then (X, H, K, S, χ, ~) 
is  (1/p)-universal.

Moreover…

…there´s a “dedicated” way of upgrading it 

to (1/p)-universal2 !!
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An example using linear groups

Let X be Fq
n , {α1,…, αn} and Fq basis for X.
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An example using linear groups

Let X be Fq
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An example using linear groups

Let X be Fq
n , {α1,…, αn} and Fq basis for X.

Let H≤ GL(n, q), leaving a d-dimensional space L invariant.

Define    χ : H    a GL(d, q)
M   a Md

…How to achieve p-diversity? 

M.I. González-Vasco, Bochum 05
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An example using non-abelian groups

Take X non-abelian,  H ≤ Aut(X),

L ≤ X,  H-invariant (h(L) = L  ∀ h∈H)

Construct a projection   χ: H a H|L   by means of a      
“group base” of L; i.e., a sequence [α1,…, αn], with each                 
αi= (αi1,…, αiri

), αiji
∈G,  so that each g∈ L can be 

expressed as a product:    

g = α1j1
··· αsjs

, where αiji
∈ αi .
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An example using non-abelian groups

Take X non-abelian,  H ≤ Aut(X),
L ≤ X,  H-invariant (h(L) = L  ∀ h∈H)
Construct a projection χ: H a H|L  by means of a      
“group base” of L; that is, a sequence [α1,…, αn], with each           
αi= (αi1,…, αiri

), αiji
∈G  so that each g∈ L can be 

expressed as a product:    
g = α1j1

··· αsjs
, where αiji

∈ αi .
Then,          

χ : H    a H|L 

h    a (h(α1j1
),…,h(αsjs

))

Examples
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An example using non-abelian groups(II)

Seems simple but…

further requirements are needed! 

For instance, for realising Cramer and Shoup´s scheme:

random elements from L must be hard to distinguish from
random elements from X.

“factoring” x∈ L with respect to the group base α should be hard
(without trapdoor information)

(for details, see G-V, Martínez, Steinwandt, Villar [TCC 05])

Examples
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A Geometric Example

Let p be a finite projective plane over a prime field Fq , let
X be the point-set of p , L a fixed line in p , and c a fixed
point on L. 
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A Geometric Example

Let p be a finite projective plane over a prime field Fq , let
X be the point-set of p , L a fixed line in p , and c a fixed
point on L. 

Take H the group of elations with center c (note that
every elation induces a permutation in the L points).
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A Geometric Example

Let p be a finite projective plane over a prime field Fq , let
X be the point-set of p , L a fixed line in p , and c a fixed
point on L. 

Take H the group of elations with center c (note that
every elation induces a permutation in the L points).

Define χ as the group homomorphism

 χ :  H a SL

 ζa ζ|L
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A Geometric Example
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L

c

Kerχ = elations with axis L, 
thus |Kerχ| = q

p
a
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Final Remarks

Given a suitable group action system, we know how to
construct “good” PHFs.

Unfortunately, so far “good” ≠ “good enough”, as the main
cryptographic constructions require aditional properties. 

However, this framework sheds some light on how to use  
(robust enough) problems not yet exploited.
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Thank you!!!


