Solutions of Selected Problems

May 26, 2022

Chapter I

1.9 Consider the potential equation in the disk $\Omega:=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}<\right.$ $1\}$, with the boundary condition

$$
\frac{\partial}{\partial r} u(x)=g(x) \quad \text { for } x \in \partial \Omega
$$

on the derivative in the normal direction. Find the solution when g is given by the Fourier series

$$
g(\cos \phi, \sin \phi)=\sum_{k=1}^{\infty}\left(a_{k} \cos k \phi+b_{k} \sin k \phi\right)
$$

without a constant term. (The reason for the lack of a constant term will be explained in Ch. II, §3.)

Solution. Consider the function

$$
\begin{equation*}
u(r, \phi):=\sum_{k=1}^{\infty} \frac{r^{k}}{k}\left(a_{k} \cos k \phi+b_{k} \sin k \phi\right) \tag{1.20}
\end{equation*}
$$

Since the partial derivatives $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \phi}$ refer to orthogonal directions (on the unit circle), we obtain $\frac{\partial}{\partial r} u$ by evaluating the derivative of (1.20). The values for $r=1$ show that we have a solution. Note that the solution is unique only up to a constant.
1.12 Suppose u is a solution of the wave equation, and that at time $t=0$, u is zero outside of a bounded set. Show that the energy

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left[u_{t}^{2}+c^{2}(\operatorname{grad} u)^{2}\right] d x \tag{1.19}
\end{equation*}
$$

is constant.
Hint: Write the wave equation in the symmetric form

$$
\begin{aligned}
u_{t} & =c \operatorname{div} v \\
v_{t} & =c \operatorname{grad} u
\end{aligned}
$$

and represent the time derivative of the integrand in (1.19) as the divergence of an appropriate expression.

Solution. We take the derivative of the integrand and use the differential equations

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{\mathbb{R}^{d}}\left[u_{t}^{2}+c^{2}(\operatorname{grad} u)^{2}\right] d x \\
& =\frac{\partial}{\partial t} \int_{\mathbb{R}^{d}} c^{2}\left[(\operatorname{div} v)^{2}+(\operatorname{grad} u)^{2}\right] d x \\
& =c^{2} \int_{\mathbb{R}^{d}}\left[2 \operatorname{div} v \operatorname{div} \frac{\partial}{\partial t} v+2 \operatorname{grad} u \operatorname{grad} \frac{\partial}{\partial t} u d x\right. \\
& =2 c^{3} \int_{\mathbb{R}^{d}}[\operatorname{div} v \operatorname{div} \operatorname{grad} u+\operatorname{grad} u \operatorname{grad} \operatorname{div} v] d x \\
& =2 c^{3} \int_{\mathbb{R}^{d}} \operatorname{div}[\operatorname{div} v \operatorname{grad} u] d x .
\end{aligned}
$$

The integrand vanishes outside the interior of a bounded set Ω. By Gauss' integral theorem the integral above equals

$$
2 c^{3} \int_{\partial \Omega} \operatorname{div} v \operatorname{grad} u \cdot n d s=0
$$

Chapter II

1.10 Let Ω be a bounded domain. With the help of Friedrichs' inequality, show that the constant function $u=1$ is not contained in $H_{0}^{1}(\Omega)$, and thus $H_{0}^{1}(\Omega)$ is a proper subspace of $H^{1}(\Omega)$.

Solution. If the function $u=1$ would belong to H_{0}^{1}, then Friedrichs' inequality would imply $\|u\|_{0} \leq c|u|_{1}=0$. This contradicts $\|u\|_{0}=\mu(\Omega)^{1 / 2}>0$.
1.12 A variant of Friedrichs' inequality. Let Ω be a domain which satisfies the hypothesis of Theorem 1.9. Then there is a constant $c=c(\Omega)$ such that

$$
\begin{gather*}
\|v\|_{0} \leq c\left(|\bar{v}|+|v|_{1}\right) \quad \text { for all } v \in H^{1}(\Omega) \tag{1.11}\\
\text { with } \quad \bar{v}=\frac{1}{\mu(\Omega)} \int_{\Omega} v(x) d x .
\end{gather*}
$$

Hint: This variant of Friedrichs' inequality can be established using the technique from the proof of the inequality 1.5 only under restrictive conditions
on the domain. Use the compactness of $H^{1}(\Omega) \hookrightarrow L_{2}(\Omega)$ in the same way as in the proof of Lemma 6.2 below.

Solution. Suppose that (1.11) does not hold. Then there is a sequence $\left\{v_{n}\right\}$ such that

$$
\left\|v_{n}\right\|=1 \quad \text { and } \quad\left|\bar{v}_{n}\right|+\left|v_{n}\right|_{1} \leq n \quad \text { for all } n=1,2, \ldots
$$

Since $H^{1}(\Omega) \hookrightarrow L_{2}(\Omega)$ is compact, a subsequence converges in $L_{2}(\Omega)$. After going to a subsequence if necessary, we assume that the sequence itself converges. It is a Cauchy sequence in $L_{2}(\Omega)$. The triangle inequality yields $\left|v_{n}-v_{m}\right|_{1} \leq\left|v_{n}\right|_{1}+\left|v_{m}\right|_{1}$, and $\left\{v_{n}\right\}$ is a Cauchy sequence in $H^{1}(\Omega)$.

Let $u=\lim _{n \rightarrow \infty} v_{n}$. From $|u|_{1}=\lim _{n \rightarrow \infty}\left|v_{n}\right|_{1}=0$ it follows that u is a constant function, and from $\bar{u}=0$ we conclude that $u=0$. This contradicts $\|u\|_{0}=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{0}=1$.
1.14 Exhibit a function in $C[0,1]$ which is not contained in $H^{1}[0,1]$. To illustrate that $H_{0}^{0}(\Omega)=H^{0}(\Omega)$, exhibit a sequence in $C_{0}^{\infty}(0,1)$ which converges to the constant function $v=1$ in the $L_{2}[0,1]$ sense.
Solution. Let $0<\alpha<1 / 2$. The function $v:=x^{\alpha}$ is continuous on [0,1], but $v^{\prime}=\alpha x^{\alpha-1}$ is not square integrable, i.e., $v^{\prime} \notin L_{2}[0,1]$. Hence, $v \in C[0,1]$ and $v \notin H^{1}[0,1]$.

Consider the sequence

$$
v_{n}:=1+e^{-n}-e^{-n x}-e^{-n(1-x)}, \quad n=1,2,3, \ldots
$$

Note that the deviation of v_{n} from 1 is very small for $e^{-\sqrt{n}}<x<1-e^{-\sqrt{n}}$, and that there is the obvious uniform bound $\left|v_{n}(x)\right| \leq 2$ in $[0,1]$. Therefore, $\left\{v_{n}\right\}$ provides a sequence as requested.
1.15 Let ℓ_{p} denote the space of infinite sequences $\left(x_{1}, x_{2}, \ldots\right)$ satisfying the condition $\sum_{k}\left|x_{k}\right|^{p}<\infty$. It is a Banach space with the norm

$$
\|x\|_{p}:=\|x\|_{\ell_{p}}:=\left(\sum_{k}\left|x_{k}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty .
$$

Since $\|\cdot\|_{2} \leq\|\cdot\|_{1}$, the imbedding $\ell_{1} \hookrightarrow \ell_{2}$ is continuous. Is it also compact?
Solution. For completeness we note that $\sum_{i}\left|x_{i}\right|^{2} \leq\left(\sum_{i}\left|x_{i}\right|\right)^{2}$, and $\|x\|_{2} \leq$ $\|x\|_{1}$ is indeed true.

Next consider the sequence $\left\{x^{j}\right\}_{j=1}^{\infty}$, where the $j-t h$ component of x^{j} equals 1 and all other components vanish. Obviously, the sequence belongs to the unit ball in ℓ_{1}, but there is no subsequence that converges in ℓ_{2}. The imbedding is not compact.
1.16 Consider
(a) the Fourier series $\sum_{k=-\infty}^{+\infty} c_{k} e^{i k x}$ on $[0,2 \pi]$,
(b) the Fourier series $\sum_{k, \ell=-\infty}^{+\infty} c_{k \ell} e^{i k x+i \ell y}$ on $[0,2 \pi]^{2}$.

Express the condition $u \in H^{m}$ in terms of the coefficients. In particular, show the equivalence of the assertions $u \in L_{2}$ and $c \in \ell_{2}$.

Show that in case (b), $u_{x x}+u_{y y} \in L^{2}$ implies $u_{x y} \in L^{2}$.
Solution. Let $v(x, y)=\sum_{k=-\infty}^{+\infty} c_{k} e^{i k x}$. The equivalence of $v \in L_{2}$ and $c \in \ell_{2}$ is a standard result of Fourier analysis. In particular,

$$
\begin{aligned}
v_{x} \in L_{2} & \Leftrightarrow \sum_{k \ell}\left|k c_{k \ell}\right|^{2}<\infty \\
v_{y} \in L_{2} & \Leftrightarrow \sum_{k \ell}\left|\ell c_{k \ell}\right|^{2}<\infty \\
v_{x x} \in L_{2} & \Leftrightarrow \sum_{k \ell}\left|k^{2} c_{k \ell}\right|^{2}<\infty \\
v_{x y} \in L_{2} & \Leftrightarrow \sum_{k \ell}\left|k \ell c_{k \ell}\right|^{2}<\infty \\
v_{y y} \in L_{2} & \Leftrightarrow \sum_{k \ell}\left|\ell^{2} c_{k \ell}\right|^{2}<\infty
\end{aligned}
$$

If $v_{x x}+v_{y y} \in L_{2}$, then $\sum_{k \ell}\left|\left(k^{2}+\ell^{2}\right) c_{k \ell}\right|^{2}<\infty$. It follows immediately that $v_{x x}$ and $v_{y y}$ belong to L_{2}. Young's inequality $2|k l| \leq k^{2}+\ell^{2}$ yields $\sum_{k \ell}\left|k \ell c_{k \ell}\right|^{2}<\infty$ and $v_{x y} \in L_{2}$.

A simple regularity result for the solution of the Poisson equation on $[0, \pi]^{2}$ is obtained from these considerations. Let $f \in L_{2}\left([0, \pi]^{2}\right)$. We extend the domain to $[-\pi, \pi]^{2}$ by setting

$$
f(-x, y)=-f(x, y), \quad f(x,-y)=-f(x, y)
$$

and have an expansion

$$
f(x, y)=\sum_{k, \ell=1}^{\infty} c_{k \ell} \sin k x \sin \ell y
$$

Since all the involved sums are absolutely convergent,

$$
u(x, y)=\sum_{k, \ell=1}^{\infty} \frac{c_{k \ell}}{k^{2}+\ell^{2}} \sin k x \sin \ell y
$$

is a solution of $-\Delta u=f$ with homogeneous Dirichlet boundary conditions. The preceding equivalences yield $u \in H^{2}\left([0, \pi]^{2}\right)$.
2.11 Let Ω be bounded with $\Gamma:=\partial \Omega$, and let $g: \Gamma \rightarrow \mathbb{R}$ be a given function. Find the function $u \in H^{1}(\Omega)$ with minimal H^{1}-norm which coincides with g on Γ. Under what conditions on g can this problem be handled in the framework of this section?

Solution. Let g be the restriction of a function $u_{1} \in C^{1}(\Omega)$. We look for $u \in H_{0}^{1}(\Omega)$ such that $\left\|u_{1}+u\right\|_{1}$ is minimal. This variational problems is solved by

$$
(\nabla u, \nabla v)_{0}+(u, v)_{0}=\langle\ell, v\rangle \quad \forall v \in H_{0}^{1}
$$

with $\langle\ell, v\rangle:=-\left(\nabla u_{1}, \nabla v\right)_{0}-\left(u_{1}, v\right)_{0}$.
It is the topic of the next § to relax the conditions on the boundary values.
2.12 Consider the elliptic, but not uniformly elliptic, bilinear form

$$
a(u, v):=\int_{0}^{1} x^{2} u^{\prime} v^{\prime} d x
$$

on the interval $[0,1]$. Show that the problem $J(u):=\frac{1}{2} a(u, u)-\int_{0}^{1} u d x \rightarrow$ min! does not have a solution in $H_{0}^{1}(0,1)$. - What is the associated (ordinary) differential equation?

Solution. We start with the solution of the associated differential equation

$$
-\frac{d}{d x} x^{2} \frac{d}{d x} u=1
$$

First we require only the boundary condition at the right end, i.e., $u(1)=0$, and obtain with the free parameter A :

$$
u(x)=-\log x+A\left(\frac{1}{x}-1\right)
$$

When we restrict ourselves to the subinterval $[\delta, 1]$ with $\delta>0$ and require $u_{\delta}(\delta)=0$, the (approximate) solution is

$$
u_{\delta}(x)=-\log x+\frac{\delta \log \delta}{1-\delta}\left(\frac{1}{x}-1\right)
$$

for $x>\delta$ and $u_{\delta}(x)=0$ for $0 \leq x \leq \delta$. Note that $\lim _{\delta \rightarrow 0} u_{\delta}(x)=-\log x$ for each $x>0$.

Elementary calculations show that $\lim _{\delta \rightarrow 0} J\left(u_{\delta}\right)=J(-\log x)$ and that $\left\|u_{\delta}\right\|_{1}$ is unbounded for $\delta \rightarrow 0$. There is no solution in $H_{0}^{1}(0,1)$ although the functional J is bounded from below.

We emphasize another consequence. Due to Remark II.1.8 $H^{1}[a, b]$ is embedded into $C[a, b]$, but $\int_{0}^{1} x^{2} v^{\prime}(x)^{2} d x<\infty$ does not imply the continuity of v.
2.14 In connection with Example 2.7, consider the continuous linear mapping

$$
\begin{aligned}
& L: \ell_{2} \rightarrow \ell_{2} \\
& (L x)_{k}=2^{-k} x_{k}
\end{aligned}
$$

Show that the range of L is not closed.
Hint: The closure contains the point $y \in \ell_{2}$ with $y_{k}=2^{-k / 2}, k=1,2, \ldots$.
Solution. Following the hint define the sequence $\left\{x^{j}\right\}$ in ℓ_{2} by

$$
x_{k}^{j}= \begin{cases}2^{+k / 2} & \text { if } j \leq k \\ 0 & \text { otherwise }\end{cases}
$$

From $y=\lim _{j \rightarrow \infty} L x^{j}$ it follows that y belongs to the closure of the range, but there is no $x \in \ell_{2}$ with $L x=y$.
3.7 Suppose the domain Ω has a piecewise smooth boundary, and let $u \in H^{1}(\Omega) \cap C(\bar{\Omega})$. Show that $u \in H_{0}^{1}(\Omega)$ is equivalent to $u=0$ on $\partial \Omega$.
Solution. Instead of performing a calculation as in the proof of the trace theorem, we will apply the trace theorem directly.

Let $u \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ and suppose that $u\left(x_{0}\right) \neq 0$ for some $x_{0} \in \Gamma$. There is a smooth part $\Gamma_{1} \subset \Gamma$ with $x_{0} \in \Gamma_{1}$ and $|u(x)| \geq \frac{1}{2}\left|u\left(x_{0}\right)\right|$ for $x \in \Gamma_{1}$. In particular, $\|u\|_{0, \Gamma_{1}} \neq 0$. By definition of $H_{0}^{1}(\Omega)$ there is a sequence $\left\{v_{n}\right\}$ in $C_{0}^{\infty}(\Omega)$ that converges to u. Clearly, $\left\|v_{n}\right\|_{0, \Gamma_{1}}=0$ holds for all n, and $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{0, \Gamma_{1}}=0 \neq\|u\|_{0, \Gamma_{1}}$. This contradicts the continuity of the trace operator. We conclude from the contradiction that $u\left(x_{0}\right)=0$.
4.4 As usual, let u and u_{h} be the functions which minimize J over V and S_{h}, respectively. Show that u_{h} is also a solution of the minimum problem

$$
a(u-v, u-v) \longrightarrow \min _{v \in S_{h}}!
$$

Because of this, the mapping

$$
\begin{aligned}
R_{h}: V & \longrightarrow S_{h} \\
u & \longmapsto u_{h}
\end{aligned}
$$

is called the Ritz projector.
Solution. Given $v_{h} \in S_{h}$, set $w_{h}:=v_{h}-u_{h}$. From the Galerkin orthogonality (4.7) and the symmetry of the bilinear form we conclude with the Binomial formula that

$$
\begin{aligned}
a\left(u-v_{h}, u-v_{h}\right) & =a\left(u-u_{h}, u-u_{h}\right)+2 a\left(u-u_{h}, w_{h}\right)+a\left(w_{h}, w_{h}\right) \\
& =a\left(u-u_{h}, u-u_{h}\right)+a\left(w_{h}, w_{h}\right) \\
& \geq a\left(u-u_{h}, u-u_{h}\right)
\end{aligned}
$$

This proves that the minimum is attained at u_{h}.
4.6 Suppose in Example 4.3 that on the bottom side of the square we replace the Dirichlet boundary condition by the natural boundary condition $\partial u / \partial \nu=0$. Verify that this leads to the stencil

$$
\left[\begin{array}{ccc}
& -1 & \\
-1 / 2 & 2 & -1 / 2
\end{array}\right]_{*}
$$

at these boundary points.

Neumann boundary
Fig. Numbering of the elements next to the center C on the Neumann boundary.

Solution. Let C be a point on the Neumann boundary. The boundary condition $\partial u / \partial \nu=0$ is a natural boundary condition for the Poisson equation, and it is incorporated by testing u with the finite element functions in H^{1} and not only in H_{0}^{1}. Specifically, it is tested with the nodal function ψ_{C} that lives on the triangles I-IV in the figure above. Recalling the computations in Example 4.3 we get

$$
\begin{aligned}
a\left(\psi_{C}, \psi_{C}\right) & =\int_{I-I V}\left(\nabla \psi_{C}\right)^{2} d x d y \\
& =\int_{I+I I I+I V}\left[\left(\partial_{1} \psi_{C}\right)^{2}+\left(\partial_{2} \psi_{C}\right)^{2}\right] d x d y \\
& =\int_{I+I I I}\left(\partial_{1} \psi_{C}\right)^{2} d x d y+\int_{I+I V}\left(\partial_{2} \psi_{C}\right)^{2} d x d y \\
& =h^{-2} \int_{I+I I I} d x d y+h^{-2} \int_{I+I V} d x d y=2
\end{aligned}
$$

There is no change in the evaluation of the bilinear form for the nodal function associated to the point north of C, i.e., $a\left(\psi_{C}, \psi_{N}\right)=-1$. Next we have

$$
\begin{aligned}
a\left(\psi_{C}, \psi_{E}\right) & =\int_{I} \nabla \psi_{C} \cdot \nabla \psi_{E} d x d y \\
& =\int_{I} \partial_{1} \psi_{C} \partial_{1} \psi_{E} d x d y=\int_{I}\left(-h^{-1}\right) h^{-1} d x d y=-1 / 2
\end{aligned}
$$

Since the same number is obtained for $a\left(\psi_{C}, \psi_{W}\right)$, the stencil is as given in the problem.
5.14 The completion of the space of vector-valued functions $C^{\infty}(\Omega)^{n}$ w.r.t. the norm

$$
\|v\|^{2}:=\|v\|_{0, \Omega}^{2}+\|\operatorname{div} v\|_{0, \Omega}^{2}
$$

is denoted by $H(\operatorname{div}, \Omega)$. Obviously, $H^{1}(\Omega)^{n} \subset H(\operatorname{div}, \Omega) \subset L_{2}(\Omega)^{n}$. Show that a piecewise polynomial v is contained in $H(\operatorname{div}, \Omega)$ if and only if the components $v \cdot \nu$ in the direction of the normals are continuous on the interelement boundaries.
Hint: Apply Theorem 5.2 and use (2.22). - Similarly piecewise polynomials in the space $H(\operatorname{rot}, \Omega)$ are characterized by the continuity of the tangential components; see Problem VI.4.8.
Solution. By definition, $w=\operatorname{div} v$ holds in the weak sense if

$$
\begin{equation*}
\int_{\Omega} w \phi d x=-\int_{\Omega} v \cdot \nabla \phi d x \quad \forall \phi \in C_{0}^{\infty}(\Omega) \tag{1}
\end{equation*}
$$

Assume that $\Omega=\Omega_{1} \cup \Omega_{2}$ and that $\left.v\right|_{\Omega_{i}} \in C^{1}\left(\Omega_{i}\right)$ for $i=1,2$. Set $\Gamma_{12}=$ $\partial \Omega_{1} \cap \partial \Omega_{2}$. By applying Green's formula to the subdomains we obtain

$$
\begin{align*}
-\int_{\Omega} v \cdot \nabla \phi d x & =-\sum_{i=1}^{2} \int_{\Omega_{i}} v \cdot \nabla \phi d x \\
& =\sum_{i=1}^{2}\left[\int_{\Omega_{i}} \operatorname{div} v \phi d x+\int_{\partial \Omega_{i}} v \cdot \phi \nu d x\right] \\
& =\int_{\Omega} \operatorname{div} v \phi d x+\int_{\Gamma_{12}}[v \cdot \nu] \phi d x \tag{2}
\end{align*}
$$

Here [•] denotes the jump of a function. The right-hand side of (2) can coincide with the left-hand side of (1) for all $\phi \in C_{0}^{\infty}$ only if the jump of the normal component vanishes.

Conversely, if the jumps of the normal component vanish, then (1) holds if we set pointwise $w(x):=\operatorname{div} v(x)$, and this function is the divergence in the weak sense.
6.12 Let \mathcal{T}_{h} be a family of uniform partitions of Ω, and suppose S_{h} belong to an affine family of finite elements. Suppose the nodes of the basis are $z_{1}, z_{2}, \ldots, z_{N}$ with $N=N_{h}=\operatorname{dim} S_{h}$. Verify that for some constant c independent of h, the following inequality holds:

$$
c^{-1}\|v\|_{0, \Omega}^{2} \leq h^{2} \sum_{i=1}^{N}\left|v\left(z_{i}\right)\right|^{2} \leq c\|v\|_{0, \Omega}^{2} \quad \text { for all } v \in S_{h}
$$

Solution. Let $\hat{z}_{1}, \hat{z}_{2}, \ldots, \hat{z}_{s}$ be the nodes of a basis of the s-dimensional space Π on the reference triangle $T_{\text {ref. }}$. The norm

$$
\|v \mid\|:=\left(\sum_{i=1}^{s}\left|v\left(\hat{z}_{i}\right)\right|^{2}\right)^{1 / 2}
$$

is equivalent to $\|\cdot\|_{0, T_{\text {ref }}}$ on Π since Π is a finite dimensional space. Let T_{h} be an element of \mathcal{T}_{h} with diameter h. A scaling argument in the spirit of the transformation formula 6.6 shows that

$$
\|v\|_{0, T_{h}} \quad \text { and } \quad h^{2} \sum_{z_{i} \in T_{h}}\left|v\left(z_{i}\right)\right|^{2}
$$

differ only by a factor that is independent of h. By summing over all elements of the triangulation we obtain the required formula.
6.13 Under appropriate assumptions on the boundary of Ω, we showed that

$$
\inf _{v \in S_{h}}\left\|u-v_{h}\right\|_{1, \Omega} \leq c h\|u\|_{2, \Omega}
$$

where for every $h>0, S_{h}$ is a finite-dimensional finite element space. Show that this implies the compactness of the imbedding $H^{2}(\Omega) \hookrightarrow H^{1}(\Omega)$. [Thus, the use of the compactness in the proof of the approximation theorem was not just a coincidence.]

Solution. Let B be the unit ball in $H^{2}(\Omega)$.
Let $\varepsilon>0$. Choose h such that $c h<\varepsilon / 4$, and for any $u \in B$ we find $v_{h} \in S_{h}$ with $\left\|u-v_{n}\right\|_{1} \leq \varepsilon / 4$. Since $\operatorname{dim} S_{h}$ is finite, the bounded set $\left\{v \in S_{h} ;\|v\|_{1} \leq 1\right\}$ can be covered by a finite number of balls with diameter $\varepsilon / 2$. If the diameter of these balls are doubled, they cover the set B. Hence, B is precompact, and the completeness of the Sobolev space implies compactness.
6.14 Let \mathcal{T}_{h} be a κ-regular partition of Ω into parallelograms, and let u_{h} be an associated bilinear element. Divide each parallelogram into two triangles, and let $\|\cdot\|_{m, h}$ be defined as in (6.1). Show that

$$
\inf \left\|u_{h}-v_{h}\right\|_{m, \Omega} \leq c(\kappa) h^{2-m}\left\|u_{h}\right\|_{2, \Omega}, \quad m=0,1
$$

where the infimum is taken over all piecewise linear functions on the triangles in \mathcal{M}^{1}.

Solution. The combination of the idea of the Bramble-Hilbert-Lemma and a scaling argument is typical for a priori error estimates.

Given a parallelogram $T_{j} \in \mathcal{T}_{h}$ the interpolation operator

$$
\begin{aligned}
I: H^{2}\left(T_{J}\right) & \left.\rightarrow \mathcal{M}^{1}\right|_{T_{j}} \\
(I u)\left(z_{i}\right) & =u\left(z_{i}\right) \forall \text { nodes } z_{i} \text { of } T_{j}
\end{aligned}
$$

is bounded

$$
\|I u\|_{1, T_{j}} \leq c(\kappa)\|u\|_{2, T_{j}} .
$$

Since $I u=u$ if u is a linear polynomial, we conclude from Lemma 6.2 that

$$
\|u-I u\|_{1, T_{j}} \leq c(\kappa)|u|_{2, T_{j}}
$$

The standard scaling argument shows that

$$
\|u-I u\|_{m, T_{j}} \leq c(\kappa) h^{2-m}|u|_{2, T_{j}} \quad m=0,1
$$

The extension to the domain Ω is straight forward. After setting $v_{h}=I u_{h}$ and summing the squares over all parallelograms in \mathcal{T}_{h} the proof is complete.
7.11 Let $\Omega=(0,2 \pi)^{2}$ be a square, and suppose $u \in H_{0}^{1}(\Omega)$ is a weak solution of $-\Delta u=f$ with $f \in L_{2}(\Omega)$. Using Problem 1.16, show that $\Delta u \in L_{2}(\Omega)$, and then use the Cauchy-Schwarz inequality to show that all second derivatives lie in L_{2}, and thus u is an H^{2} function.

Solution. We rather let $\Omega=(0, \pi)^{2}$ since this does not change the character of the problem.

We extend f to $\Omega_{\text {sym }}:=(-\pi, \pi)^{2}$ by the (anti-) symmetry requirements

$$
f(-x, y)=-f(x, y), \quad f(x,-y)=-f(x, y)
$$

without changing the symbol. Since $f \in L_{2}\left(\Omega_{\text {sym }}\right), f$ can be represented as a Fourier series with sine functions only

$$
f(x, y)=\sum_{k, \ell=1}^{\infty} a_{k \ell} \sin k x \sin \ell y
$$

Parseval's inequality yields

$$
\sum_{k, \ell}\left|a_{k \ell}\right|^{2}=\pi^{2}\|f\|_{2, \Omega}
$$

Obviously, the solution has the representation

$$
u(x, y)=\sum_{k \ell} \frac{a_{k \ell}}{k^{2}+\ell^{2}} \sin k x \sin \ell y
$$

The coefficients in the representation

$$
u_{x x}=-\sum_{k, \ell} \frac{k^{2}}{k^{+} \ell^{2}} a_{k \ell} \sin k x \sin \ell y
$$

are obviously square summable, and $u_{x x} \in L_{2}(\Omega)$. The same is true for $u_{y y}$. More interesting is

$$
u_{x y}=\sum_{k, \ell} \frac{k \ell}{k^{2}+\ell^{2}} a_{k \ell} \cos k x \cos \ell y .
$$

From Young's inequality $2 k \ell \leq k^{2}+\ell^{2}$ we conclude that we have square summability also here. Hence, $u_{x y} \in L_{2}(\Omega)$, and the proof of $u \in H^{2}(\Omega)$ is complete.

Chapter III

1.11 If the stiffness matrices are computed by using numerical quadrature, then only approximations a_{h} of the bilinear form are obtained. This holds also for conforming elements. Estimate the influence on the error of the finite element solution, given the estimate

$$
\left|a(u, v)-a_{h}(u, v)\right| \leq \varepsilon(h)\|u\|_{1}\|v\|_{1} \quad \text { for all } v \in S_{h} .
$$

Moreover, assume that the two bilinear forms are coercive with the constant $\alpha>0$.

Note that the original assumption in the book has to be replaced by the more restrictive assumption above, since the difference $a(.,)-.a_{h}(.,$. need not be coercive.

Solution. Let u_{h} and w_{h} be the solutions of

$$
\begin{aligned}
a\left(u_{h}, v\right) & =(f, v) \quad \forall v \in S_{h}, \\
a_{h}\left(w_{h}, v\right) & =(f, v) \quad \forall v \in S_{h},
\end{aligned}
$$

Hence, $a\left(u_{h}-w_{h}, v\right)=a_{h}\left(w_{h}, v\right)-a\left(w_{h}, v\right)$, and by setting $v:=u_{h}-w_{h}$ we obtain

$$
\alpha\left\|u_{h}-w_{h}\right\|_{1}^{2} \leq a\left(u_{h}-w_{h}, u_{h}-w_{h}\right) \leq \varepsilon(h)\left\|w_{h}\right\|_{1}\left\|u_{h}-w_{h}\right\|_{1} .
$$

Now we divide by $\alpha\left\|u_{h}-w_{h}\right\|_{1}$, note that $a\left(w_{h}, w_{h}\right)=\left(f, w_{h}\right)$, and recall the coercivity of the bilinear forms to obtain

$$
\left\|u_{h}-w_{h}\right\|_{1} \leq \varepsilon(h) \alpha^{-2}\|f\| .
$$

We have to add this term to the standard error estimate for $\left\|u-u_{h}\right\|_{1}$.
1.12 The Crouzeix-Raviart element has locally the same degrees of freedom as the conforming P_{1} element \mathcal{M}_{0}^{1}, i. e. the Courant triangle. Show that the (global) dimension of the finite element spaces differ by a factor that is close to 3 if a rectangular domain as in Fig. 9 is partitioned.
Solution. The nodal variables of the conforming P_{1} element are associated to the nodes of a mesh (as in Fig. 9) with mesh size h.

The nodal points of the corresponding nonconforming P_{1} element are associated to the mesh with meshsize $h / 2$, but with those of the h-mesh excluded. Since halving the meshsize induces a factor of about 4 in the number of points, the elimination of the original points gives rise to a factor of about 3 .
3.8 Let $a: V \times V \rightarrow \mathbb{R}$ be a positive symmetric bilinear form satisfying the hypotheses of Theorem 3.6. Show that a is elliptic, i.e., $a(v, v) \geq \alpha_{1}\|v\|_{V}^{2}$ for some $\alpha_{1}>0$.

Solution. Given u, by the inf-sup condition there is a $v \neq 0$ such that $\frac{1}{2} \alpha\|u\|_{V} \leq a(u, v) /\|v\|_{V}$. The Cauchy inequality and (3.6) yield

$$
\frac{1}{4} \alpha^{2}\left\|u_{h}\right\|_{V}^{2} \leq \frac{a(u, v)^{2}}{\|v\|_{V}^{2}} \leq a(u, u) \frac{a(v, v)}{\|v\|_{V}^{2}} \leq C a(u, u)
$$

Therefore, we have ellipticity with $\alpha_{1} \geq \alpha^{2} /(4 C)$.
3.9 [Nitsche, private communication] Show the following converse of Lemma 3.7: Suppose that for every $f \in V^{\prime}$, the solution of (3.5) satisfies

$$
\lim _{h \rightarrow 0} u_{h}=u:=L^{-1} f
$$

Then

$$
\inf _{h} \inf _{u_{h} \in U_{h}} \sup _{v_{h} \in V_{h}} \frac{a\left(u_{h}, v_{h}\right)}{\left\|u_{h}\right\|_{U}\left\|v_{h}\right\|_{V}}>0
$$

Hint: Use (3.10) and apply the principle of uniform boundedness.
Solution. Given $f \in V^{\prime}$, denote the solution of (3.5) by u_{h}. Let $K_{h}: V^{\prime} \rightarrow$ $U_{h} \subset U$ be the mapping that sends f to u_{h}. Obviously, K_{h} is linear. To be precise, we assume that u_{h} is always well defined. Since $\left\|\left.f\right|_{V_{h}^{\prime}}\right\|_{V^{\prime}} \leq$ $\|f\|_{V^{\prime}}$, each K_{h} is a bounded linear mapping. From $\lim _{h \rightarrow 0} K_{h} f=L^{-1} f$ we conclude that $\sup _{h}\left\|K_{h} f\right\|<\infty$ for each $f \in V^{\prime}$. The principle of uniform boundedness assures that

$$
\alpha^{-1}:=\sup _{h}\left\|K_{h}\right\|<\infty
$$

Hence, $\left\|K_{h} u_{h}\right\| \geq \alpha\left\|u_{h}\right\|$ holds for each $u_{h} \in V^{\prime}$. Finally, the equivalence of (3.7) and (3.10) yields the inf-sup condition with the uniform bound $\alpha>0$.
3.10 Show that

$$
\begin{array}{ll}
\|v\|_{0}^{2} \leq\|v\|_{m}\|v\|_{-m} & \text { for all } v \in H_{0}^{m}(\Omega) \\
\|v\|_{1}^{2} \leq\|v\|_{0}\|v\|_{2} & \text { for all } v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) .
\end{array}
$$

Hint: To prove the second relation, use the Helmholtz equation $-\Delta u+u=f$.
Solution. By definition II.3.1 we have

$$
(u, v)_{0} \leq\|u\|_{-m}\|v\|_{m}
$$

Setting $u:=v$ we obtain $\|v\|_{0}^{2} \leq\|v\|_{-m}\|v\|_{m}$, i.e., the first statement.
Since zero boundary conditions are assumed, Green's formula yields

$$
\int_{\Omega} w_{i} \partial_{i} v d s=-\int_{\Omega} \partial_{i} w_{i} v d x
$$

Setting $w_{i}:=\partial_{i} v$ and summing over i we obtain

$$
\int_{\Omega} \nabla v \cdot \nabla v d x=-\int_{\Omega} \Delta v v d x .
$$

With the Cauchy inequality and $\|\nabla v\|_{0} \leq\|v\|_{2}$ the inequality for $s=1$ is complete.
3.12 (Fredholm Alternative) Let H be a Hilbert space. Assume that the linear mapping $A: H \rightarrow H^{\prime}$ can be decomposed in the form $A=A_{0}+K$, where A_{0} is H-elliptic, and K is compact. Show that either A satisfies the inf-sup condition, or there exists an element $x \in H, x \neq 0$, with $A x=0$.

Solution. If A does not satisfy an inf-sup condition, there is a sequence $\left\{x_{n}\right\}$ with $\left\|x_{n}\right\|=1$ and $A x_{n} \rightarrow 0$. Since K is compact, a subsequence of $\left\{K x_{n}\right\}$ converges. Without loss of generality we may assume that $\lim _{n \rightarrow \infty} K x_{n}=q$, $q \in H^{\prime}$. It follows that

$$
\lim _{n \rightarrow \infty} A_{0} x_{n}=\lim _{n \rightarrow \infty} A x_{n}-\lim _{n \rightarrow \infty} K x_{n}=0-q=-q
$$

Since A_{0} is invertible, the sequence $\left\{x_{n}\right\}$ converges to $z:=-A_{0}^{-1} q$, and $A z=\lim _{n \rightarrow \infty} A_{0} x_{n}+\lim _{n \rightarrow \infty} K x_{n}=0$. Moreover, $\|z\|=1$.
4.16 Show that the inf-sup condition (4.8) is equivalent to the following decomposition property: For every $u \in X$ there exists a decomposition

$$
u=v+w
$$

with $v \in V$ and $w \in V^{\perp}$ such that

$$
\|w\|_{X} \leq \beta^{-1}\|B u\|_{M^{\prime}}
$$

where $\beta>0$ is a constant independent of u.
Solution. This problem is strongly related to Lemma 4.2(ii). Assume that (4.8) holds. Given $u \in X$, since V and V^{\perp} are closed, there exists an orthogonal decomposition

$$
\begin{equation*}
u=v+w, \quad v \in V, w \in V^{\perp} \tag{1}
\end{equation*}
$$

From Lemma 4.2 (ii) it follows that $\|B w\|_{M^{\prime}} \geq \beta\|w\|_{X}$. Since v in the decomposition (1) lies in the kernel of B, we have $\|w\|_{X} \leq \beta^{-1}\|B w\|_{M^{\prime}}=$ $\beta^{-1}\|B u\|_{M^{\prime}}$.

Conversely, assume that the decomposition satisfies the conditions as formulated in the problem. If $u \in V^{\perp}$, then $v=0$ and $\|u\|_{X} \leq \beta^{-1}\|B u\|_{M^{\prime}}$ or $\|B u\|_{M^{\prime}} \geq \beta\|u\|_{X}$. Hence, the statement in Lemma 4.2(ii) is verified.
4.21 The pure Neumann Problem (II.3.8)

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

is only solvable if $\int_{\Omega} f d x+\int_{\Gamma} g d s=0$. This compatibility condition follows by applying Gauss' integral theorem to the vector field ∇u. Since $u+$ const is a solution whenever u is, we can enforce the constraint

$$
\int_{\Omega} u d x=0 .
$$

Formulate the associated saddle point problem, and use the trace theorem and the second Poincaré inequality to show that the hypotheses of Theorem 4.3 are satisfied.
Solution. Consider the saddle-point problem with $X=H^{1}(\Omega), M=\mathbb{R}$, and the bilinear forms

$$
\begin{aligned}
& a(u, v)=\int_{\Omega} \nabla u \nabla v d x \\
& b(u, \lambda)=\lambda \int_{\Omega} v d x=\lambda \bar{v} \mu(\Omega)
\end{aligned}
$$

Adopt the notation of Problem II.1.12. With the variant of Friedrich's inequality there we obtain

$$
\begin{aligned}
\|v\|_{1}^{2} & =|v|_{1}^{2}+\|v\|_{0}^{2} \leq|v|_{1}^{2}+2 c^{2}\left(|\bar{v}|^{2}+|v|_{1}^{2}\right) \\
& \leq c^{1}[a(v, v)+|\bar{v}|]^{2} \\
& =c^{1} a(v, v) \quad \text { if } \bar{v}=0 .
\end{aligned}
$$

This proves ellipticity of $a(\cdot, \cdot)$ on the kernel.
The inf-sup condition is verified by taking the constant test function $v_{0}=1$:

$$
b\left(\lambda, v_{0}\right)=\lambda \int_{\Omega} d x=\lambda \mu(\Omega)=\lambda\left\|v_{0}\right\|_{0} \mu(\Omega)^{1 / 2}=\lambda\left\|v_{0}\right\|_{1} \mu(\Omega)^{1 / 2}
$$

The condition holds with the constant $\mu(\Omega)^{1 / 2}$.
4.22 Let a, b, and c be positive numbers. Show that $a \leq b+c$ implies that $a \leq b^{2} / a+2 c$.
Solution.

$$
a \leq b(b+c) /(b+c)+c=b^{2} /(b+c)+c(1+b /(b+c)) \leq b^{2} / a+2 c .
$$

6.8 [6.7 in 2 nd ed.] Find a Stokes problem with a suitable right-hand side to show the following: Given $g \in L_{2,0}(\Omega)$, there exists $u \in H_{0}^{1}(\Omega)$ with

$$
\operatorname{div} u=g \quad \text { and } \quad\|u\|_{1} \leq c\|g\|_{0}
$$

where as usual, c is a constant independent of q. [This means that the statement in Theorem 6.3 is also necessary for the stability of the Stokes problem.]

Solution. We consider the saddle.point with the same bilinear forms as in (6.5), but with different right -hand sides,

$$
\begin{array}{lll}
a(u, v)+b(v, p)=0 & \text { for all } v \in X \\
(\operatorname{div} u, q)_{0} & =(g, q)_{0} & \text { for all } q \in M
\end{array}
$$

The inf-sup condition guarantees the existence of a solution $u \in H_{0}^{1}(\Omega)$ with $\|u\|_{1} \leq c\|g\|_{0}$. The zero boundary conditions imply $\int_{\partial \Omega} u \nu d s=0$, and it follows from the divergence theorem that $\int_{\Omega} g d x=0$. Hence, both $\operatorname{div} u$ and g live in $M=L_{2,0}$. Now, the second variational equality implies that the two functions are equal.

Note. The consistency condition $\int_{\Omega} g d x=0$ was missing in the second English edition, and there is only a solution $u \in H^{1}(\Omega)$. The addition of a multiple of the linear function $u_{1}=x_{1}$ yields here the solution. - We have changed the symbol for the right-hand side in order to have a consistent notation with (6.5).
6.8 [7.4 in 2 nd ed.] If Ω is convex or sufficiently smooth, then one has for the Stokes problem the regularity result

$$
\begin{equation*}
\|u\|_{2}+\|p\|_{1} \leq c\|f\|_{0} \tag{7.18}
\end{equation*}
$$

see Girault and Raviart [1986]. Show by a duality argument the L_{2} error estimate

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0} \leq c h\left(\left\|u-u_{h}\right\|_{1}+\left\|p-p_{h}\right\|_{0}\right) \tag{7.19}
\end{equation*}
$$

Solution. As usually in duality arguments consider an auxiliary problem. Find $\varphi \in X, r \in M$ such that

$$
\begin{array}{lll}
a(w, \varphi)+b(w, r) & =\left(u-u_{0}, w\right)_{0} & \text { for all } w \in X \tag{1}\\
b(\varphi, q) & =0 & \text { for all } q \in M
\end{array}
$$

The regularity assumption yields $\|\varphi\|_{2}+\|r\|_{1} \leq C\left\|u-u_{0}\right\|_{0}$, and by the usual approximation argument there are $\varphi_{h} \in X_{h}, r_{h} \in M_{h}$ such that

$$
\left\|\varphi-\varphi_{h}\right\|_{1}+\left\|r-r_{h}\right\|_{0} \leq C h\left\|u-u_{0}\right\|_{0} .
$$

The subtraction of (4.4) and (4.5) with the test function φ_{h}, r_{h} yields the analogon to Galerkin orthogonality

$$
\begin{array}{ll}
a\left(u-u_{h}, \varphi_{h}\right)+b\left(\varphi_{h}, p-p_{h}\right) & =0, \\
b\left(u-u_{h}, r_{h}\right) & =0 .
\end{array}
$$

Now we set $w:=u-u_{h}, q:=p-p_{h}$ in (1) and obtain

$$
\begin{aligned}
& \left(u-u_{h}, u-u_{h}\right)_{0}=a\left(u-u_{h}, \varphi\right)+b\left(u-u_{h}, r\right)+b\left(\varphi, p-p_{h}\right) \\
& \quad=a\left(u-u_{h}, \varphi-\varphi_{h}\right)+b\left(u-u_{h}, r-r_{h}\right)+b\left(\varphi-\varphi_{h}, p-p_{h}\right) \\
& \leq C\left(\left\|u-u_{h}\right\|_{1}\left\|\varphi-\varphi_{h}\right\|_{1}+\left\|u-u_{h}\right\|_{1}\left\|r-r_{h}\right\|_{1}+\left\|\varphi-\varphi_{h}\right\|_{1}\left\|p-p_{h}\right\|_{0}\right) \\
& \leq C\left(\left\|u-u_{h}\right\|_{1}+\left\|u-u_{h}\right\|_{1}+\left\|p-p_{h}\right\|_{0}\right) h\left\|u-u_{h}\right\|_{0} .
\end{aligned}
$$

After dividing by $\left\|u-u_{h}\right\|_{0}$ the proof is complete.
9.6 Consider the Helmholtz equation

$$
\begin{aligned}
-\Delta u+\alpha u=f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

with $\alpha>0$. Let $v \in H_{0}^{1}(\Omega)$ and $\sigma \in H(\operatorname{div}, \Omega)$ satisfy $\operatorname{div} \sigma+f=\alpha v$.

Show the inequality of Prager-Synge type with a computable bound

$$
\begin{gather*}
|u-v|_{1}^{2}+\alpha\|u-v\|_{0}^{2} \\
+\|\operatorname{grad} u-\sigma\|_{0}^{2}+\alpha\|u-v\|_{0}^{2}=\|\operatorname{grad} v-\sigma\|_{0}^{2} . \tag{9.11}
\end{gather*}
$$

Recall the energy norm for the Helmholtz equation in order to interpret (9.13).

Solution. First we apply the Binomial formula

$$
\begin{aligned}
\|\operatorname{grad} v-\sigma\|_{0}^{2} & =\|\operatorname{grad}(v-u)-(\sigma-\operatorname{grad} u) i\|_{0}^{2} \\
& =\|\operatorname{grad}(v-u) i\|_{0}^{2}+\|\sigma-\operatorname{grad} u i\|_{0}^{2} \\
& -2 \int_{\Omega} \operatorname{grad}(v-u)(\sigma-\operatorname{grad} u) d x
\end{aligned}
$$

Green's formula yields an expression with vanishing boundary integral

$$
\begin{aligned}
-\int_{\Omega} \operatorname{grad}(v-u)(\sigma-\operatorname{grad} u) d x & =\int_{\Omega}(v-u)(\operatorname{div} \sigma-\Delta u) d x \\
& +\int_{\partial \Omega}(v-u)\left(\sigma \cdot n-\frac{\partial u}{d n}\right) d s \\
& =\int_{\Omega}(v-u)[-f+\alpha v+f-\alpha v] d x+0 \\
& =\int_{\Omega} \alpha(v-u)^{2} d x=\alpha\|v-u\|_{0}^{2}
\end{aligned}
$$

By collecting terms we obtain (9.11).
Note that $\sqrt{\|\operatorname{grad}(v) i\|_{0}^{2}+\alpha\|v\|_{0}^{2}}$ is here the energy norm of v.

Chapter IV

2.6 $\operatorname{By}(2.5), \alpha_{k} \geq \alpha^{*}:=1 / \lambda_{\max }(A)$. Show that convergence is guaranteed for every fixed step size α with $0<\alpha<2 \alpha^{*}$.
Solution. We perform a spectral decomposition of the error

$$
x_{k}-x^{*}=\sum_{j=1}^{n} \beta_{j} z_{j}
$$

with $A z_{j}=\lambda_{j} z_{j}$ for $j=1, \ldots, n$. The iteration

$$
x_{k+1}=x_{k}+\alpha\left(b-A x_{k}\right)
$$

leads to

$$
x_{k+1}-x^{*}=(1-\alpha A)\left(x_{k}-x^{*}\right)=\sum_{j=1}^{n}\left(1-\alpha \lambda_{j}\right) \beta_{j} z_{j} .
$$

The damping factors satisfy $-1<1-\alpha \lambda_{j}<1$ if $0<\alpha<2 / \lambda_{\max }(A)$, and convergence is guaranteed.
4.8 Show that the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

is positive definite, and that its condition number is 4 .
Hint: The quadratic form associated with the matrix A is $x^{2}+y^{2}+z^{2}+$ $(x+y+z)^{2}$.

Solution. The formula in the hint shows that $A \geq I$. By applying Young's inequality to the nondiagonal terms, we see that $(x+y+z)^{2} \leq 3\left(x^{2}+y^{2}+z^{2}\right)$ and $A \leq 4 I$. The quotient of the factors in the upper and the lower bound is 4 .
4.14 Let $A \leq B$ denote that $B-A$ is positive semidefinite. Show that $A \leq B$ implies $B^{-1} \leq A^{-1}$, but it does not imply $A^{2} \leq B^{2}$. - To prove the first part note that $\left(x, B^{-1} x\right)=\left(A^{-1 / 2} x, A^{1 / 2} B^{-1} x\right)$ and apply Cauchy's inequality. Next consider the matrices

$$
A:=\left(\begin{array}{cc}
1 & a \\
a & 2 a^{2}
\end{array}\right) \quad \text { and } \quad B:=\left(\begin{array}{cc}
2 & 0 \\
0 & 3 a^{2}
\end{array}\right)
$$

for establishing the negative result. From the latter it follows that we cannot derive good preconditioners for the biharmonic equation by applying those for the poisson equation twice.
Note: The converse is more favorable, i.e., $A^{2} \leq B^{2}$ implies $A \leq B$. Indeed, the Rayleigh quotient $\lambda=\max \{(x, A x) /(x, B x)$ is an eigenvalue, and the maximum is attained at an eigenvector, i.e., $A x=\lambda B x$. On the other hand, by assumption

$$
0 \leq\left(x, B^{2} x\right)-\left(x, A^{2} x\right)=\left(1-\lambda^{2}\right)\|B x\|^{2} .
$$

Hence, $\lambda \leq 1$ and the proof of the note is complete.

Solution. By Cauchy's inequality and $A \leq B$ it follows that

$$
\begin{aligned}
\left(x, B^{-1} x\right)^{2} & =\left(A^{-1 / 2} x, A^{1 / 2} B^{-1} x\right)^{2} \leq\left(x, A^{-1} x\right)\left(B^{-1} x, A B^{-1} x\right) \\
& \leq\left(x, A^{-1} x\right)\left(B^{-1} x, B B^{-1} x\right)
\end{aligned}
$$

We divide by $\left(x, B^{-1} x\right)$ and obtain $B^{-1} \leq A^{-1}$.
Consider the given matrices. The relation $(x, A x) \leq(x, B x)$ is established by applying Young's inequality to the nondiagonal terms. Furthermore

$$
A^{2}=\left(\begin{array}{cc}
1+a^{2} & a+2 a^{3} \\
a+2 a^{3} & a^{2}+4 a^{4}
\end{array}\right), \quad B^{2}=\left(\begin{array}{cc}
4 & 0 \\
0 & 9 a^{4}
\end{array}\right) .
$$

Obviously $B^{2}-A^{2}$ has a negative diagonal entry if $a \geq 2$.
4.15 Show that $A \leq B$ implies $B^{-1} A B^{-1} \leq B^{-1}$.

Solution. If $x=B^{-1} z$, then $(x, A x) \leq(x, B x)$ reads
$\left(B^{-1} z, A B^{-1} z\right) \leq\left(B^{-1} z, B B^{-1} z\right)$, i.e., $\left(z, B^{-1} A B^{-1} z\right) \leq\left(z, B^{-1} z\right)$.
4.16 Let A and B be symmetric positive definite matrices with $A \leq B$.

Show that

$$
\left(I-B^{-1} A\right)^{m} B^{-1}
$$

is positive definite for $m=1,2, \ldots$ To this end note that

$$
q(X Y) X=X q(Y X)
$$

holds for any matrices X and Y if q is a polynomial. Which assumption may be relaxed if m is even?
Remark: We can only show that the matrix is semidefinite since $A=B$ is submitted by the assumptions.

Solution. First let m be an even number, $m=2 n$. We compute

$$
\begin{aligned}
\left(x,\left(I-B^{-1} A\right)^{2 n} B^{-1} x\right) & =\left(x,\left(I-B^{-1} A\right)^{n} B^{-1}\left(I-A B^{-1}\right)^{n} x\right) \\
& =\left(\left(I-A B^{-1}\right)^{n} x, B^{-1}\left(I-A B^{-1}\right) x\right) \\
& =\left(z, B^{-1} z\right) \geq 0,
\end{aligned}
$$

where $z:=\left(I-A B^{-1}\right)^{n} x$. This proves that the matrix is positive semidefinite. [Here we have only used that B is invertible.]

Similar we get with z as above

$$
\begin{aligned}
\left(x,\left(I-B^{-1} A\right)^{2 n+1} B^{-1} x\right) & =\left(z, B^{-1}\left(I-A B^{-1}\right) z\right) \\
& =\left(z,\left(B^{-1}-B^{-1} A B^{-1}\right) z\right)
\end{aligned}
$$

The preceding problem made clear that $B^{-1}-B^{-1} A B^{-1} \geq 0$.

Chapter V

2.11 Show that for the scale of the Sobolev spaces, the analog

$$
\|v\|_{s, \Omega}^{2} \leq\|v\|_{s-1, \Omega}\|v\|_{s+1, \Omega}
$$

of (2.5) holds for $s=0$ and $s=1$.
For the solution look at Problem III.3.10.
5.7 Let V, W be subspaces of a Hilbert space H. Denote the projectors onto V and W by P_{V}, P_{W}, respectively. Show that the following properties are equivalent:
(1) A strengthened Cauchy inequality (5.3) holds with $\gamma<1$.
(2) $\left\|P_{W} v\right\| \leq \gamma\|v\|$ holds for all $v \in V$.
(3) $\left\|P_{V} w\right\| \leq \gamma\|w\|$ holds for all $w \in W$.
(4) $\|v+w\| \geq \sqrt{1-\gamma^{2}}\|v\|$ holds for all $v \in V, w \in W$.
(5) $\|v+w\| \geq \sqrt{\frac{1}{2}(1-\gamma)}(\|v\|+\|w\|)$ holds for all $v \in V, w \in W$.

Solution. We restrict ourselves on the essential items.
$(1) \Rightarrow(2)$. Assume that the strengthened Cauchy inequality holds. Let $v \in V$ and $w_{0}=P_{W} v$. It follows from the definition of the projector and the strengthened Cauchy inequality that

$$
\left(w_{0}, w_{0}\right)=\left(w_{0}\right) \leq \gamma\|v\|\left\|w_{0}\right\| .
$$

After dividing by $\left\|w_{0}\right\|$ we obtain the property (2).
$(2) \Rightarrow(1)$. Given nonzero vectors $v \in V$ and $w \in W$, set $\alpha=|(v, w)| /\|v\|\|w\|$. Denote the closest point on $\operatorname{span}\{w\}$ to v by w_{0}. It follows by the preceding item that $\|w\|=\alpha\|v\|$. By the orthogonality relations for nearest points we have

$$
\begin{aligned}
\gamma^{2}\|v\|^{2} & \geq\left\|P_{w}\right\|^{2}=\|v\|^{2}-\left\|v-P_{W} v\right\|^{2} \\
& \geq\|v\|^{2}-\left\|v-w_{0}\right\|^{2}=\left\|w_{0}\right\|^{2}=\alpha^{2}\|v\|^{2} .
\end{aligned}
$$

Hence, $\alpha \leq \gamma$, and the strengthened Cauchy inequality is true.
$(1) \Rightarrow(4)$. It follows from the strengthened Cauchy inequality that

$$
\begin{aligned}
\|v+w\|^{2} & =\|v\|^{2}+2(v, w)+\|w\|^{2} \\
& \geq\|v\|^{2}-2 \gamma\|v\|\|w\|+\|w\|^{2}=\left(1-\gamma^{2}\right)\|v\|^{2}+(\gamma\|v\|-\|w\|)^{2} \\
& \geq\left(1-\gamma^{2}\right)\|v\|^{2}
\end{aligned}
$$

and property (4) is true.
$(1) \Rightarrow(5)$. The strengthened Cauchy inequality implies

$$
\begin{aligned}
\|v+w\|^{2} & \geq\|v\|^{2}-\gamma(v, w)+\|w\|^{2} \\
& =\frac{1}{2}(1-\gamma)(\|v\|+\|w\|)^{2}+\frac{1}{2}(1+\gamma)(\|v\|-\|w\|)^{2} \\
& \geq \frac{1}{2}(1-\gamma)(\|v\|+\|w\|)^{2}
\end{aligned}
$$

This proves property (5).
$(5) \Rightarrow(1)$. By assumption

$$
\begin{aligned}
2(v, w) & =\|v\|^{2}+\|w\|^{2}-\|v-w\|^{2} \\
& \leq\|v\|^{2}+\|w\|^{2}-\frac{1}{2}(1-\gamma)(\|v\|+\|w\|)^{2}
\end{aligned}
$$

Since the relation is homogeneous, it is sufficient to verify the assertion for the case $\|v\|=\|w\|=1$. Here the preceding inequality yields

$$
2(v, w) \leq 1+1-2(1-\gamma)=2 \gamma=2 \gamma\|v\|\|w\|,
$$

and the strengthened Cauchy inequality holds.

Chapter VI

6.11 Show that

$$
\|\operatorname{div} \eta\|_{-1} \leq \text { const } \sup _{\gamma} \frac{(\gamma, \eta)_{0}}{\|\gamma\|_{H(\mathrm{rot}, \Omega)}}
$$

and thus that $\operatorname{div} \eta \in H^{-1}(\Omega)$ for $\eta \in\left(H_{0}(\operatorname{rot}, \Omega)\right)^{\prime}$. Since $H_{0}(\operatorname{rot}, \Omega) \supset$ $H_{0}^{1}(\Omega)$ implies $\left(H_{0}(\operatorname{rot}, \Omega)\right)^{\prime} \subset H^{-1}(\Omega)$, this completes the proof of (6.9).
Solution. Let $v \in H_{0}^{1}(\Omega)$. Its gradient $\gamma:=\nabla v$ satisfies $\nabla v \cdot \tau=0$ on $\partial \Omega$. Since rot $\nabla v=0$, we have $\gamma \in H_{0}(\operatorname{rot}, \Omega)$ and $\|\gamma\|_{0}=\|\gamma\|_{H_{0}(\mathrm{rot}, \Omega)}$. Partial integration yields

$$
\begin{aligned}
\|\operatorname{div} \eta\|_{-1} & =\sup _{v \in H_{0}^{1}(\Omega)} \frac{(v, \operatorname{div} \eta)_{0}}{\|v\|_{1}} \\
& =\sup _{v \in H_{0}^{1}(\Omega)} \frac{(\nabla v, \eta)_{0}}{\left(\|\nabla v\|_{0}^{2}+\|v\|_{0}^{2}\right)^{1 / 2}} \\
& \leq \sup _{\gamma} \frac{(\gamma, \eta)_{0}}{\|\gamma\|_{H_{0}(\mathrm{rot}, \Omega)}} .
\end{aligned}
$$

A standard density argument yields $\operatorname{div} \eta \in H^{-1}(\Omega)$.

