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Solutions of Selected Problems

May 26, 2022

Chapter I

1.9 Consider the potential equation in the disk Ω := {(x, y) ∈ R2; x2+y2 <

1}, with the boundary condition

∂

∂r
u(x) = g(x) for x ∈ ∂Ω

on the derivative in the normal direction. Find the solution when g is given

by the Fourier series

g(cosφ, sinφ) =
∞∑
k=1

(ak cos kφ+ bk sin kφ)

without a constant term. (The reason for the lack of a constant term will

be explained in Ch. II, §3.)

Solution. Consider the function

u(r, φ) :=
∞∑
k=1

rk

k
(ak cos kφ+ bk sin kφ). (1.20)

Since the partial derivatives ∂
∂r and ∂

∂φ refer to orthogonal directions (on

the unit circle), we obtain ∂
∂ru by evaluating the derivative of (1.20). The

values for r = 1 show that we have a solution. Note that the solution is

unique only up to a constant.

1.12 Suppose u is a solution of the wave equation, and that at time t = 0,

u is zero outside of a bounded set. Show that the energy∫
Rd

[u2
t + c2(gradu)2] dx (1.19)

is constant.

Hint: Write the wave equation in the symmetric form

ut = cdiv v,

vt = c gradu,
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and represent the time derivative of the integrand in (1.19) as the divergence

of an appropriate expression.

Solution. We take the derivative of the integrand and use the differential

equations

∂

∂t

∫
Rd

[u2
t + c2(gradu)2] dx

=
∂

∂t

∫
Rd

c2[(div v)2 + (gradu)2] dx

= c2
∫
Rd

[2 div v div
∂

∂t
v + 2 gradu grad

∂

∂t
u dx

= 2c3
∫
Rd

[div v div gradu+ gradu grad div v] dx

= 2c3
∫
Rd

div[div v gradu] dx.

The integrand vanishes outside the interior of a bounded set Ω. By Gauss’

integral theorem the integral above equals

2c3
∫
∂Ω

div v gradu · nds = 0.

Chapter II

1.10 Let Ω be a bounded domain. With the help of Friedrichs’ inequality,

show that the constant function u = 1 is not contained in H1
0 (Ω), and thus

H1
0 (Ω) is a proper subspace of H1(Ω).

Solution. If the function u = 1 would belong toH1
0 , then Friedrichs’ inequal-

ity would imply ‖u‖0 ≤ c|u|1 = 0. This contradicts ‖u‖0 = µ(Ω)1/2 > 0.

1.12 A variant of Friedrichs’ inequality. Let Ω be a domain which

satisfies the hypothesis of Theorem 1.9. Then there is a constant c = c(Ω)

such that

‖v‖0 ≤ c
(
|v̄|+ |v|1

)
for all v ∈ H1(Ω) (1.11)

with v̄ =
1

µ(Ω)

∫
Ω

v(x)dx.

Hint: This variant of Friedrichs’ inequality can be established using the tech-

nique from the proof of the inequality 1.5 only under restrictive conditions
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on the domain. Use the compactness of H1(Ω) ↪→ L2(Ω) in the same way

as in the proof of Lemma 6.2 below.

Solution. Suppose that (1.11) does not hold. Then there is a sequence {vn}
such that

‖vn‖ = 1 and |v̄n|+ |vn|1 ≤ n for all n = 1, 2, . . . .

Since H1(Ω) ↪→ L2(Ω) is compact, a subsequence converges in L2(Ω). After

going to a subsequence if necessary, we assume that the sequence itself

converges. It is a Cauchy sequence in L2(Ω). The triangle inequality yields

|vn − vm|1 ≤ |vn|1 + |vm|1, and {vn} is a Cauchy sequence in H1(Ω).

Let u = limn→∞ vn. From |u|1 = limn→∞ |vn|1 = 0 it follows that u is a

constant function, and from ū = 0 we conclude that u = 0. This contradicts

‖u‖0 = limn→∞ ‖vn‖0 = 1.

1.14 Exhibit a function in C[0, 1] which is not contained in H1[0, 1]. –

To illustrate that H0
0 (Ω) = H0(Ω), exhibit a sequence in C∞0 (0, 1) which

converges to the constant function v = 1 in the L2[0, 1] sense.

Solution. Let 0 < α < 1/2. The function v := xα is continuous on [0, 1], but

v′ = αxα−1 is not square integrable, i.e., v′ 6∈ L2[0, 1]. Hence, v ∈ C[0, 1]

and v 6∈ H1[0, 1].

Consider the sequence

vn := 1 + e−n − e−nx − e−n(1−x), n = 1, 2, 3, . . .

Note that the deviation of vn from 1 is very small for e−
√
n < x < 1−e−

√
n,

and that there is the obvious uniform bound |vn(x)| ≤ 2 in [0, 1]. Therefore,

{vn} provides a sequence as requested.

1.15 Let `p denote the space of infinite sequences (x1, x2, . . .) satisfying

the condition
∑
k |xk|p <∞. It is a Banach space with the norm

‖x‖p := ‖x‖`p :=
(∑

k

|xk|p
)1/p

, 1 ≤ p <∞.

Since ‖·‖2 ≤ ‖·‖1, the imbedding `1 ↪→ `2 is continuous. Is it also compact?

Solution. For completeness we note that
∑
i |xi|2 ≤

(∑
i |xi|

)2
, and ‖x‖2 ≤

‖x‖1 is indeed true.

Next consider the sequence {xj}∞j=1, where the j− th component of xj

equals 1 and all other components vanish. Obviously, the sequence belongs

to the unit ball in `1, but there is no subsequence that converges in `2. The

imbedding is not compact.
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1.16 Consider

(a) the Fourier series
∑+∞
k=−∞ cke

ikx on [0, 2π],

(b) the Fourier series
∑+∞
k,`=−∞ ck`e

ikx+i`y on [0, 2π]2.

Express the condition u ∈ Hm in terms of the coefficients. In particular,

show the equivalence of the assertions u ∈ L2 and c ∈ `2.

Show that in case (b), uxx + uyy ∈ L2 implies uxy ∈ L2.

Solution. Let v(x, y) =
∑+∞
k=−∞ cke

ikx. The equivalence of v ∈ L2 and

c ∈ `2 is a standard result of Fourier analysis. In particular,

vx ∈ L2 ⇔
∑
k`

|kck`|2 <∞,

vy ∈ L2 ⇔
∑
k`

|`ck`|2 <∞,

vxx ∈ L2 ⇔
∑
k`

|k2ck`|2 <∞,

vxy ∈ L2 ⇔
∑
k`

|k`ck`|2 <∞,

vyy ∈ L2 ⇔
∑
k`

|`2ck`|2 <∞.

If vxx + vyy ∈ L2, then
∑
k` |(k2 + `2)ck`|2 < ∞. It follows immediately

that vxx and vyy belong to L2. Young’s inequality 2|kl| ≤ k2 + `2 yields∑
k` |k`ck`|2 <∞ and vxy ∈ L2.

A simple regularity result for the solution of the Poisson equation on

[0, π]2 is obtained from these considerations. Let f ∈ L2([0, π]2). We extend

the domain to [−π, π]2 by setting

f(−x, y) = −f(x, y), f(x,−y) = −f(x, y),

and have an expansion

f(x, y) =

∞∑
k,`=1

ck` sin kx sin `y.

Since all the involved sums are absolutely convergent,

u(x, y) =
∞∑

k,`=1

ck`
k2 + `2

sin kx sin `y

is a solution of −∆u = f with homogeneous Dirichlet boundary conditions.

The preceding equivalences yield u ∈ H2([0, π]2).
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2.11 Let Ω be bounded with Γ := ∂Ω, and let g : Γ → R be a given func-

tion. Find the function u ∈ H1(Ω) with minimal H1-norm which coincides

with g on Γ. Under what conditions on g can this problem be handled in

the framework of this section?

Solution. Let g be the restriction of a function u1 ∈ C1(Ω̄). We look for

u ∈ H1
0 (Ω) such that ‖u1 + u‖1 is minimal. This variational problems is

solved by

(∇u,∇v)0 + (u, v)0 = 〈`, v〉 ∀v ∈ H1
0

with 〈`, v〉 := −(∇u1,∇v)0 − (u1, v)0.

It is the topic of the next § to relax the conditions on the boundary

values.

2.12 Consider the elliptic, but not uniformly elliptic, bilinear form

a(u, v) :=

∫ 1

0

x2u′v′ dx

on the interval [0, 1]. Show that the problem J(u) := 1
2a(u, u) −

∫ 1

0
udx →

min ! does not have a solution in H1
0 (0, 1). – What is the associated (ordi-

nary) differential equation?

Solution. We start with the solution of the associated differential equation

− d

dx
x2 d

dx
u = 1.

First we require only the boundary condition at the right end, i.e., u(1) = 0,

and obtain with the free parameter A:

u(x) = − log x+A(
1

x
− 1).

When we restrict ourselves to the subinterval [δ, 1] with δ > 0 and require

uδ(δ) = 0, the (approximate) solution is

uδ(x) = − log x+
δ log δ

1− δ
(
1

x
− 1)

for x > δ and uδ(x) = 0 for 0 ≤ x ≤ δ. Note that limδ→0 uδ(x) = − log x

for each x > 0.

Elementary calculations show that limδ→0 J(uδ) = J(− log x) and that

‖uδ‖1 is unbounded for δ → 0. There is no solution in H1
0 (0, 1) although

the functional J is bounded from below.

We emphasize another consequence. Due to Remark II.1.8 H1[a, b] is

embedded into C[a, b], but
∫ 1

0
x2v′(x)2dx <∞ does not imply the continuity

of v.
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2.14 In connection with Example 2.7, consider the continuous linear

mapping
L : `2 → `2,

(Lx)k = 2−kxk.

Show that the range of L is not closed.

Hint: The closure contains the point y ∈ `2 with yk = 2−k/2, k = 1, 2, . . ..

Solution. Following the hint define the sequence {xj} in `2 by

xjk =

{
2+k/2 if j ≤ k,
0 otherwise.

From y = limj→∞ Lxj it follows that y belongs to the closure of the range,

but there is no x ∈ `2 with Lx = y.

3.7 Suppose the domain Ω has a piecewise smooth boundary, and let

u ∈ H1(Ω) ∩ C(Ω̄). Show that u ∈ H1
0 (Ω) is equivalent to u = 0 on ∂Ω.

Solution. Instead of performing a calculation as in the proof of the trace

theorem, we will apply the trace theorem directly.

Let u ∈ H1
0 (Ω) ∩ C(Ω̄) and suppose that u(x0) 6= 0 for some x0 ∈ Γ.

There is a smooth part Γ1 ⊂ Γ with x0 ∈ Γ1 and |u(x)| ≥ 1
2 |u(x0)| for

x ∈ Γ1. In particular, ‖u‖0,Γ1
6= 0. By definition of H1

0 (Ω) there is a sequence

{vn} in C∞0 (Ω) that converges to u. Clearly, ‖vn‖0,Γ1 = 0 holds for all n,

and limn→∞ ‖vn‖0,Γ1
= 0 6= ‖u‖0,Γ1

. This contradicts the continuity of the

trace operator. We conclude from the contradiction that u(x0) = 0.

4.4 As usual, let u and uh be the functions which minimize J over V and

Sh, respectively. Show that uh is also a solution of the minimum problem

a(u− v, u− v) −→ min
v∈Sh

!

Because of this, the mapping

Rh : V −→ Sh

u 7−→ uh

is called the Ritz projector.

Solution. Given vh ∈ Sh, set wh := vh−uh. From the Galerkin orthogonality

(4.7) and the symmetry of the bilinear form we conclude with the Binomial

formula that

a(u− vh, u− vh) = a(u− uh, u− uh) + 2a(u− uh, wh) + a(wh, wh)

= a(u− uh, u− uh) + a(wh, wh)

≥ a(u− uh, u− uh).

This proves that the minimum is attained at uh.
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4.6 Suppose in Example 4.3 that on the bottom side of the square we

replace the Dirichlet boundary condition by the natural boundary condition

∂u/∂ν = 0. Verify that this leads to the stencil[
−1

−1/2 2 −1/2

]
∗

at these boundary points.

NW N

@ @
@ IV @ II

III@@ I @@
W @ C @ E

Neumann boundary

Fig. Numbering of the elements next to the center C on the Neumann boundary.

Solution. Let C be a point on the Neumann boundary. The boundary con-

dition ∂u/∂ν = 0 is a natural boundary condition for the Poisson equation,

and it is incorporated by testing u with the finite element functions in H1

and not only in H1
0 . Specifically, it is tested with the nodal function ψC that

lives on the triangles I–IV in the figure above. Recalling the computations

in Example 4.3 we get

a(ψC , ψC) =

∫
I−IV

(∇ψC)2dxdy

=

∫
I+III+IV

[(∂1ψC)2 + (∂2ψC)2]dxdy

=

∫
I+III

(∂1ψC)2dxdy +

∫
I+IV

(∂2ψC)2dxdy

= h−2

∫
I+III

dxdy + h−2

∫
I+IV

dxdy = 2,

There is no change in the evaluation of the bilinear form for the nodal

function associated to the point north of C, i.e., a(ψC , ψN ) = −1. Next we

have

a(ψC , ψE) =

∫
I

∇ψC · ∇ψEdxdy

=

∫
I

∂1ψC∂1ψEdxdy =

∫
I

(−h−1)h−1dxdy = −1/2.

Since the same number is obtained for a(ψC , ψW ), the stencil is as given in

the problem.
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5.14 The completion of the space of vector-valued functions C∞(Ω)n

w.r.t. the norm

‖v‖2 := ‖v‖20,Ω + ‖ div v‖20,Ω
is denoted by H(div,Ω). Obviously, H1(Ω)n ⊂ H(div,Ω) ⊂ L2(Ω)n. Show

that a piecewise polynomial v is contained in H(div,Ω) if and only if the

components v ·ν in the direction of the normals are continuous on the inter-

element boundaries.

Hint: Apply Theorem 5.2 and use (2.22). — Similarly piecewise polynomials

in the space H(rot,Ω) are characterized by the continuity of the tangential

components; see Problem VI.4.8.

Solution. By definition, w = div v holds in the weak sense if∫
Ω

wφdx = −
∫
Ω

v · ∇φdx ∀φ ∈ C∞0 (Ω). (1)

Assume that Ω = Ω1 ∪ Ω2 and that v|Ωi
∈ C1(Ωi) for i = 1, 2. Set Γ12 =

∂Ω1 ∩ ∂Ω2. By applying Green’s formula to the subdomains we obtain

−
∫
Ω

v · ∇φdx = −
2∑
i=1

∫
Ωi

v · ∇φdx

=
2∑
i=1

[∫
Ωi

div vφdx+

∫
∂Ωi

v · φνdx
]

=

∫
Ω

div vφdx+

∫
Γ12

[v · ν]φdx. (2)

Here [ · ] denotes the jump of a function. The right-hand side of (2) can

coincide with the left-hand side of (1) for all φ ∈ C∞0 only if the jump of

the normal component vanishes.

Conversely, if the jumps of the normal component vanish, then (1) holds

if we set pointwise w(x) := div v(x), and this function is the divergence in

the weak sense.

6.12 Let Th be a family of uniform partitions of Ω, and suppose Sh belong

to an affine family of finite elements. Suppose the nodes of the basis are

z1, z2, . . . , zN with N = Nh = dimSh. Verify that for some constant c

independent of h, the following inequality holds:

c−1‖v‖20,Ω ≤ h2
N∑
i=1

|v(zi)|2 ≤ c‖v‖20,Ω for all v ∈ Sh.
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Solution. Let ẑ1, ẑ2, . . . , ẑs be the nodes of a basis of the s-dimensional

space Π on the reference triangle Tref. The norm

|||v||| :=
( s∑
i=1

|v(ẑi)|2
)1/2

is equivalent to ‖ · ‖0,Tref
on Π since Π is a finite dimensional space. Let Th

be an element of Th with diameter h. A scaling argument in the spirit of

the transformation formula 6.6 shows that

‖v‖0,Th
and h2

∑
zi∈Th

|v(zi)|2

differ only by a factor that is independent of h. By summing over all elements

of the triangulation we obtain the required formula.

6.13 Under appropriate assumptions on the boundary of Ω, we showed

that

inf
v∈Sh

‖u− vh‖1,Ω ≤ c h‖u‖2,Ω ,

where for every h > 0, Sh is a finite-dimensional finite element space. Show

that this implies the compactness of the imbeddingH2(Ω) ↪→ H1(Ω). [Thus,

the use of the compactness in the proof of the approximation theorem was

not just a coincidence.]

Solution. Let B be the unit ball in H2(Ω).

Let ε > 0. Choose h such that ch < ε/4, and for any u ∈ B we

find vh ∈ Sh with ‖u − vn‖1 ≤ ε/4. Since dimSh is finite, the bounded

set {v ∈ Sh; ‖v‖1 ≤ 1} can be covered by a finite number of balls with

diameter ε/2. If the diameter of these balls are doubled, they cover the

set B. Hence, B is precompact, and the completeness of the Sobolev space

implies compactness.

6.14 Let Th be a κ-regular partition of Ω into parallelograms, and let

uh be an associated bilinear element. Divide each parallelogram into two

triangles, and let ‖ · ‖m,h be defined as in (6.1). Show that

inf ‖uh − vh‖m,Ω ≤ c(κ)h2−m‖uh‖2,Ω , m = 0, 1,

where the infimum is taken over all piecewise linear functions on the trian-

gles in M1.
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Solution. The combination of the idea of the Bramble–Hilbert–Lemma and

a scaling argument is typical for a priori error estimates.

Given a parallelogram Tj ∈ Th the interpolation operator

I : H2(TJ)→M1|Tj

(Iu)(zi) = u(zi) ∀ nodes zi of Tj

is bounded

‖Iu‖1,Tj
≤ c(κ)‖u‖2,Tj

.

Since Iu = u if u is a linear polynomial, we conclude from Lemma 6.2 that

‖u− Iu‖1,Tj ≤ c(κ)|u|2,Tj .

The standard scaling argument shows that

‖u− Iu‖m,Tj ≤ c(κ)h2−m|u|2,Tj m = 0, 1.

The extension to the domain Ω is straight forward. After setting vh = Iuh
and summing the squares over all parallelograms in Th the proof is complete.

7.11 Let Ω = (0, 2π)2 be a square, and suppose u ∈ H1
0 (Ω) is a weak

solution of −∆u = f with f ∈ L2(Ω). Using Problem 1.16, show that

∆u ∈ L2(Ω), and then use the Cauchy–Schwarz inequality to show that all

second derivatives lie in L2, and thus u is an H2 function.

Solution. We rather let Ω = (0, π)2 since this does not change the character

of the problem.

We extend f to Ωsym := (−π, π)2 by the (anti-) symmetry requirements

f(−x, y) = −f(x, y), f(x,−y) = −f(x, y),

without changing the symbol. Since f ∈ L2(Ωsym), f can be represented as

a Fourier series with sine functions only

f(x, y) =

∞∑
k,`=1

ak` sin kx sin `y.

Parseval’s inequality yields∑
k,`

|ak`|2 = π2‖f‖2,Ω .
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Obviously, the solution has the representation

u(x, y) =
∑
k`

ak`
k2 + `2

sin kx sin `y.

The coefficients in the representation

uxx = −
∑
k,`

k2

k+`2
ak` sin kx sin `y

are obviously square summable, and uxx ∈ L2(Ω). The same is true for uyy.

More interesting is

uxy =
∑
k,`

k`

k2 + `2
ak` cos kx cos `y.

From Young’s inequality 2k` ≤ k2 + `2 we conclude that we have square

summability also here. Hence, uxy ∈ L2(Ω), and the proof of u ∈ H2(Ω) is

complete.

Chapter III

1.11 If the stiffness matrices are computed by using numerical quadrature,

then only approximations ah of the bilinear form are obtained. This holds

also for conforming elements. Estimate the influence on the error of the

finite element solution, given the estimate

|a(u, v)− ah(u, v)| ≤ ε(h) ‖u‖1‖v‖1 for all v ∈ Sh.
Moreover, assume that the two bilinear forms are coercive with the constant

α > 0.

Note that the original assumption in the book has to be replaced by

the more restrictive assumption above, since the difference a(., .) − ah(., .)

need not be coercive.

Solution. Let uh and wh be the solutions of

a(uh, v) = (f, v) ∀v ∈ Sh,
ah(wh, v) = (f, v) ∀v ∈ Sh,

Hence, a(uh − wh, v) = ah(wh, v) − a(wh, v), and by setting v := uh − wh
we obtain

α‖uh − wh‖21 ≤ a(uh − wh, uh − wh) ≤ ε(h) ‖wh‖1‖uh − wh‖1.
Now we divide by α‖uh − wh‖1, note that a(wh, wh) = (f, wh), and recall

the coercivity of the bilinear forms to obtain

‖uh − wh‖1 ≤ ε(h) α−2‖f‖.
We have to add this term to the standard error estimate for ‖u− uh‖1.
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1.12 The Crouzeix–Raviart element has locally the same degrees of free-

dom as the conforming P1 element M1
0, i. e. the Courant triangle. Show

that the (global) dimension of the finite element spaces differ by a factor

that is close to 3 if a rectangular domain as in Fig. 9 is partitioned.

Solution. The nodal variables of the conforming P1 element are associated

to the nodes of a mesh (as in Fig. 9) with mesh size h.

The nodal points of the corresponding nonconforming P1 element are

associated to the mesh with meshsize h/2, but with those of the h-mesh

excluded. Since halving the meshsize induces a factor of about 4 in the

number of points, the elimination of the original points gives rise to a factor

of about 3.

3.8 Let a : V ×V → R be a positive symmetric bilinear form satisfying the

hypotheses of Theorem 3.6. Show that a is elliptic, i.e., a(v, v) ≥ α1‖v‖2V
for some α1 > 0.

Solution. Given u, by the inf-sup condition there is a v 6= 0 such that
1
2α‖u‖V ≤ a(u, v)/‖v‖V . The Cauchy inequality and (3.6) yield

1

4
α2‖uh‖2V ≤

a(u, v)2

‖v‖2V
≤ a(u, u)

a(v, v)

‖v‖2V
≤ Ca(u, u).

Therefore, we have ellipticity with α1 ≥ α2/(4C).

3.9 [Nitsche, private communication] Show the following converse of Lem-

ma 3.7: Suppose that for every f ∈ V ′, the solution of (3.5) satisfies

lim
h→0

uh = u := L−1f.

Then

inf
h

inf
uh∈Uh

sup
vh∈Vh

a(uh, vh)

‖uh‖U‖vh‖V
> 0.

Hint: Use (3.10) and apply the principle of uniform boundedness.

Solution. Given f ∈ V ′, denote the solution of (3.5) by uh. Let Kh : V ′ →
Uh ⊂ U be the mapping that sends f to uh. Obviously, Kh is linear. To

be precise, we assume that uh is always well defined. Since ‖f |V ′
h
‖V ′ ≤

‖f‖V ′ , each Kh is a bounded linear mapping. From limh→0Khf = L−1f we

conclude that suph ‖Khf‖ < ∞ for each f ∈ V ′. The principle of uniform

boundedness assures that

α−1 := sup
h
‖Kh‖ <∞.

Hence, ‖Khuh‖ ≥ α‖uh‖ holds for each uh ∈ V ′. Finally, the equivalence of

(3.7) and (3.10) yields the inf-sup condition with the uniform bound α > 0.
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3.10 Show that

‖v‖20 ≤ ‖v‖m‖v‖−m for all v ∈ Hm
0 (Ω),

‖v‖21 ≤ ‖v‖0‖v‖2 for all v ∈ H2(Ω) ∩H1
0 (Ω).

Hint: To prove the second relation, use the Helmholtz equation−∆u+u = f .

Solution. By definition II.3.1 we have

(u, v)0 ≤ ‖u‖−m‖v‖m.

Setting u := v we obtain ‖v‖20 ≤ ‖v‖−m‖v‖m, i.e., the first statement.

Since zero boundary conditions are assumed, Green’s formula yields∫
Ω

wi∂ivds = −
∫
Ω

∂iwivdx.

Setting wi := ∂iv and summing over i we obtain∫
Ω

∇v · ∇vdx = −
∫
Ω

∆v vdx.

With the Cauchy inequality and ‖∇v‖0 ≤ ‖v‖2 the inequality for s = 1 is

complete.

3.12 (Fredholm Alternative) Let H be a Hilbert space. Assume that the

linear mapping A : H → H ′ can be decomposed in the form A = A0 + K,

where A0 is H-elliptic, and K is compact. Show that either A satisfies the

inf-sup condition, or there exists an element x ∈ H, x 6= 0, with Ax = 0.

Solution. If A does not satisfy an inf-sup condition, there is a sequence {xn}
with ‖xn‖ = 1 and Axn → 0. Since K is compact, a subsequence of {Kxn}
converges. Without loss of generality we may assume that limn→∞Kxn = q,

q ∈ H ′. It follows that

lim
n→∞

A0xn = lim
n→∞

Axn − lim
n→∞

Kxn = 0− q = −q.

Since A0 is invertible, the sequence {xn} converges to z := −A−1
0 q, and

Az = limn→∞A0xn + limn→∞Kxn = 0. Moreover, ‖z‖ = 1.
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4.16 Show that the inf-sup condition (4.8) is equivalent to the following

decomposition property: For every u ∈ X there exists a decomposition

u = v + w

with v ∈ V and w ∈ V ⊥ such that

‖w‖X ≤ β−1‖Bu‖M ′ ,

where β > 0 is a constant independent of u.

Solution. This problem is strongly related to Lemma 4.2(ii). Assume that

(4.8) holds. Given u ∈ X, since V and V ⊥ are closed, there exists an or-

thogonal decomposition

u = v + w, v ∈ V,w ∈ V ⊥. (1)

From Lemma 4.2(ii) it follows that ‖Bw‖M ′ ≥ β‖w‖X . Since v in the de-

composition (1) lies in the kernel of B, we have ‖w‖X ≤ β−1‖Bw‖M ′ =

β−1‖Bu‖M ′ .

Conversely, assume that the decomposition satisfies the conditions as

formulated in the problem. If u ∈ V ⊥, then v = 0 and ‖u‖X ≤ β−1‖Bu‖M ′

or ‖Bu‖M ′ ≥ β‖u‖X . Hence, the statement in Lemma 4.2(ii) is verified.

4.21 The pure Neumann Problem (II.3.8)

−∆u = f in Ω,

∂u

∂ν
= g on ∂Ω

is only solvable if
∫
Ω
f dx+

∫
Γ
g ds = 0. This compatibility condition follows

by applying Gauss’ integral theorem to the vector field ∇u. Since u+const

is a solution whenever u is, we can enforce the constraint∫
Ω

udx = 0.

Formulate the associated saddle point problem, and use the trace theorem

and the second Poincaré inequality to show that the hypotheses of Theo-

rem 4.3 are satisfied.

Solution. Consider the saddle-point problem with X = H1(Ω), M = R,

and the bilinear forms

a(u, v) =

∫
Ω

∇u∇vdx,

b(u, λ) = λ

∫
Ω

vdx = λv̄µ(Ω).
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Adopt the notation of Problem II.1.12. With the variant of Friedrich’s in-

equality there we obtain

‖v‖21 = |v|21 + ‖v‖20 ≤ |v|21 + 2c2
(
|v̄|2 + |v|21

)
≤ c1[a(v, v) + |v̄|]2

= c1a(v, v) if v̄ = 0.

This proves ellipticity of a(·, ·) on the kernel.

The inf-sup condition is verified by taking the constant test function

v0 = 1:

b(λ, v0) = λ

∫
Ω

dx = λµ(Ω) = λ‖v0‖0µ(Ω)1/2 = λ‖v0‖1µ(Ω)1/2.

The condition holds with the constant µ(Ω)1/2.

4.22 Let a, b, and c be positive numbers. Show that a ≤ b+ c implies that

a ≤ b2/a+ 2c.

Solution.

a ≤ b(b+ c)/(b+ c) + c = b2/(b+ c) + c(1 + b/(b+ c)) ≤ b2/a+ 2c.

6.8 [6.7 in 2nd ed.] Find a Stokes problem with a suitable right-hand side

to show the following: Given g ∈ L2,0(Ω), there exists u ∈ H1
0 (Ω) with

div u = g and ‖u‖1 ≤ c‖g‖0 ,

where as usual, c is a constant independent of q. [This means that the

statement in Theorem 6.3 is also necessary for the stability of the Stokes

problem.]

Solution. We consider the saddle.point with the same bilinear forms as in

(6.5), but with different right -hand sides,

a(u, v) + b(v, p) = 0 for all v ∈ X,
(div u, q)0 = (g, q)0 for all q ∈M.

The inf-sup condition guarantees the existence of a solution u ∈ H1
0 (Ω) with

‖u‖1 ≤ c‖g‖0 . The zero boundary conditions imply
∫
∂Ω

u ν ds = 0, and it

follows from the divergence theorem that
∫
Ω
g dx = 0. Hence, both div u

and g live in M = L2,0. Now, the second variational equality implies that

the two functions are equal.

Note. The consistency condition
∫
Ω
g dx = 0 was missing in the second

English edition, and there is only a solution u ∈ H1(Ω). The addition of a

multiple of the linear function u1 = x1 yields here the solution. – We have

changed the symbol for the right-hand side in order to have a consistent

notation with (6.5).
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6.8 [7.4 in 2nd ed.] If Ω is convex or sufficiently smooth, then one has for

the Stokes problem the regularity result

‖u‖2 + ‖p‖1 ≤ c‖f‖0; (7.18)

see Girault and Raviart [1986]. Show by a duality argument the L2 error

estimate

‖u− uh‖0 ≤ ch(‖u− uh‖1 + ‖p− ph‖0). (7.19)

Solution. As usually in duality arguments consider an auxiliary problem.

Find ϕ ∈ X, r ∈M such that

a(w,ϕ) + b(w, r) = (u− u0, w)0 for all w ∈ X,
b(ϕ, q) = 0 for all q ∈M.

(1)

The regularity assumption yields ‖ϕ‖2 + ‖r‖1 ≤ C‖u − u0‖0 , and by the

usual approximation argument there are ϕh ∈ Xh, rh ∈Mh such that

‖ϕ− ϕh‖1 + ‖r − rh‖0 ≤ Ch‖u− u0‖0.

The subtraction of (4.4) and (4.5) with the test function ϕh, rh yields the

analogon to Galerkin orthogonality

a(u− uh, ϕh) + b(ϕh, p− ph) = 0,

b(u− uh, rh) = 0.

Now we set w := u− uh, q := p− ph in (1) and obtain

(u− uh, u− uh)0 = a(u− uh, ϕ) + b(u− uh, r) + b(ϕ, p− ph)

= a(u− uh, ϕ− ϕh) + b(u− uh, r − rh) + b(ϕ− ϕh, p− ph)

≤ C(‖u− uh‖1‖ϕ− ϕh‖1 + ‖u− uh‖1‖r − rh‖1 + ‖ϕ− ϕh‖1‖p− ph‖0)

≤ C(‖u− uh‖1 + ‖u− uh‖1 + ‖p− ph‖0)h‖u− uh‖0 .

After dividing by ‖u− uh‖0 the proof is complete.

9.6 Consider the Helmholtz equation

−∆u+ αu = f in Ω,

u = 0 on ∂Ω

with α > 0. Let v ∈ H1
0 (Ω) and σ ∈ H(div,Ω) satisfy div σ + f = αv.
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Show the inequality of Prager–Synge type with a computable bound

|u− v|21 + α‖u− v‖20
+ ‖ gradu− σ‖20 + α‖u− v‖20 = ‖ grad v − σ‖20 .

(9.11)

Recall the energy norm for the Helmholtz equation in order to interpret

(9.13).

Solution. First we apply the Binomial formula

‖ grad v − σ‖20 = ‖ grad(v − u)− (σ − gradu)i‖20
= ‖ grad(v − u)i‖20 + ‖σ − gradui‖20

− 2

∫
Ω

grad(v − u)(σ − gradu)dx

.

Green’s formula yields an expression with vanishing boundary integral

−
∫
Ω

grad(v − u)(σ − gradu)dx =

∫
Ω

(v − u)(div σ −∆u)dx

+

∫
∂Ω

(v − u)
(
σ · n− ∂u

dn

)
ds

=

∫
Ω

(v − u)[−f + αv + f − αv]dx+ 0

=

∫
Ω

α(v − u)2dx = α‖v − u‖20.

By collecting terms we obtain (9.11).

Note that
√
‖ grad(v)i‖20 + α‖v‖20 is here the energy norm of v.

Chapter IV

2.6 By (2.5), αk ≥ α∗ := 1/λmax(A). Show that convergence is guaranteed

for every fixed step size α with 0 < α < 2α∗.

Solution. We perform a spectral decomposition of the error

xk − x∗ =

n∑
j=1

βjzj

with Azj = λjzj for j = 1, . . . , n. The iteration

xk+1 = xk + α(b−Axk)
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leads to

xk+1 − x∗ = (1− αA)(xk − x∗) =

n∑
j=1

(1− αλj)βjzj .

The damping factors satisfy −1 < 1 − αλj < 1 if 0 < α < 2/λmax(A), and

convergence is guaranteed.

4.8 Show that the matrix

A =

 2 1 1
1 2 1
1 1 2


is positive definite, and that its condition number is 4.

Hint: The quadratic form associated with the matrix A is x2 + y2 + z2 +

(x+ y + z)2.

Solution. The formula in the hint shows that A ≥ I. By applying Young’s

inequality to the nondiagonal terms, we see that (x+y+z)2 ≤ 3(x2+y2+z2)

and A ≤ 4I. The quotient of the factors in the upper and the lower bound

is 4.

4.14 Let A ≤ B denote that B − A is positive semidefinite. Show that

A ≤ B implies B−1 ≤ A−1, but it does not imply A2 ≤ B2. — To prove the

first part note that (x,B−1x) = (A−1/2x,A1/2B−1x) and apply Cauchy’s

inequality. Next consider the matrices

A :=

(
1 a
a 2a2

)
and B :=

(
2 0
0 3a2

)
for establishing the negative result. From the latter it follows that we cannot

derive good preconditioners for the biharmonic equation by applying those

for the poisson equation twice.

Note: The converse is more favorable, i.e., A2 ≤ B2 implies A ≤ B. Indeed,

the Rayleigh quotient λ = max{(x,Ax)/(x,Bx) is an eigenvalue, and the

maximum is attained at an eigenvector, i.e., Ax = λBx. On the other hand,

by assumption

0 ≤ (x,B2x)− (x,A2x) = (1− λ2) ‖Bx‖2.

Hence, λ ≤ 1 and the proof of the note is complete.
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Solution. By Cauchy’s inequality and A ≤ B it follows that

(x,B−1x)2 = (A−1/2x,A1/2B−1x)2 ≤ (x,A−1x) (B−1x,AB−1x)

≤ (x,A−1x) (B−1x,BB−1x).

We divide by (x,B−1x) and obtain B−1 ≤ A−1.

Consider the given matrices. The relation (x,Ax) ≤ (x,Bx) is estab-

lished by applying Young’s inequality to the nondiagonal terms. Further-

more

A2 =

(
1 + a2 a+ 2a3

a+ 2a3 a2 + 4a4

)
, B2 =

(
4 0
0 9a4

)
.

Obviously B2 −A2 has a negative diagonal entry if a ≥ 2.

4.15 Show that A ≤ B implies B−1AB−1 ≤ B−1.

Solution. If x = B−1z, then (x,Ax) ≤ (x,Bx) reads

(B−1z,AB−1z) ≤ (B−1z,BB−1z), i.e., (z,B−1AB−1z) ≤ (z,B−1z).

4.16 Let A and B be symmetric positive definite matrices with A ≤ B.

Show that

(I −B−1A)mB−1

is positive definite for m = 1, 2, . . .. To this end note that

q(XY )X = Xq(Y X)

holds for any matrices X and Y if q is a polynomial. Which assumption

may be relaxed if m is even?

Remark: We can only show that the matrix is semidefinite since A = B is

submitted by the assumptions.

Solution. First let m be an even number, m = 2n. We compute

(x, (I −B−1A)2nB−1x) = (x, (I −B−1A)nB−1(I −AB−1)nx)

= ((I −AB−1)nx,B−1(I −AB−1)x)

= (z,B−1z) ≥ 0,

where z := (I −AB−1)nx. This proves that the matrix is positive semidefi-

nite. [Here we have only used that B is invertible.]

Similar we get with z as above

(x, (I −B−1A)2n+1B−1x) = (z,B−1(I −AB−1)z)

= (z, (B−1 −B−1AB−1)z).

The preceding problem made clear that B−1 −B−1AB−1 ≥ 0.
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Chapter V

2.11 Show that for the scale of the Sobolev spaces, the analog

‖v‖2s,Ω ≤ ‖v‖s−1,Ω ‖v‖s+1,Ω

of (2.5) holds for s = 0 and s = 1.

For the solution look at Problem III.3.10.

5.7 Let V,W be subspaces of a Hilbert space H. Denote the projectors

onto V and W by PV , PW , respectively. Show that the following properties

are equivalent:

(1) A strengthened Cauchy inequality (5.3) holds with γ < 1.

(2) ‖PW v‖ ≤ γ‖v‖ holds for all v ∈ V .

(3) ‖PV w‖ ≤ γ‖w‖ holds for all w ∈W .

(4) ‖v + w‖ ≥
√

1− γ2 ‖v‖ holds for all v ∈ V,w ∈W .

(5) ‖v + w‖ ≥
√

1
2 (1− γ) (‖v‖+ ‖w‖) holds for all v ∈ V,w ∈W .

Solution. We restrict ourselves on the essential items.

(1)⇒(2). Assume that the strengthened Cauchy inequality holds. Let v ∈ V
and w0 = PW v. It follows from the definition of the projector and the

strengthened Cauchy inequality that

(w0, w0) = (w0) ≤ γ‖v‖ ‖w0‖.

After dividing by ‖w0‖ we obtain the property (2).

(2)⇒(1). Given nonzero vectors v ∈ V and w ∈W , set α = |(v, w)|/‖v‖ ‖w‖.
Denote the closest point on span{w} to v by w0. It follows by the preceding

item that ‖w‖ = α‖v‖. By the orthogonality relations for nearest points we

have
γ2‖v‖2 ≥ ‖Pw‖2 = ‖v‖2 − ‖v − PW v‖2

≥ ‖v‖2 − ‖v − w0‖2 = ‖w0‖2 = α2‖v‖2.

Hence, α ≤ γ, and the strengthened Cauchy inequality is true.

(1)⇒(4). It follows from the strengthened Cauchy inequality that

‖v + w‖2 = ‖v‖2 + 2(v, w) + ‖w‖2

≥ ‖v‖2 − 2γ‖v‖ ‖w‖+ ‖w‖2 = (1− γ2)‖v‖2 + (γ‖v‖ − ‖w‖)2

≥ (1− γ2)‖v‖2,
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and property (4) is true.

(1)⇒(5). The strengthened Cauchy inequality implies

‖v + w‖2 ≥ ‖v‖2 − γ(v, w) + ‖w‖2

=
1

2
(1− γ)(‖v‖+ ‖w‖)2 +

1

2
(1 + γ)(‖v‖ − ‖w‖)2

≥ 1

2
(1− γ)(‖v‖+ ‖w‖)2

This proves property (5).

(5)⇒(1). By assumption

2(v, w) = ‖v‖2 + ‖w‖2 − ‖v − w‖2

≤ ‖v‖2 + ‖w‖2 − 1

2
(1− γ)(‖v‖+ ‖w‖)2

Since the relation is homogeneous, it is sufficient to verify the assertion for

the case ‖v‖ = ‖w‖ = 1. Here the preceding inequality yields

2(v, w) ≤ 1 + 1− 2(1− γ) = 2γ = 2γ‖v‖ ‖w‖,

and the strengthened Cauchy inequality holds.

Chapter VI

6.11 Show that

‖div η‖−1 ≤ const sup
γ

(γ, η)0

‖γ‖H(rot,Ω)
,

and thus that div η ∈ H−1(Ω) for η ∈ (H0(rot,Ω))′. Since H0(rot,Ω) ⊃
H1

0 (Ω) implies (H0(rot,Ω))′ ⊂ H−1(Ω), this completes the proof of (6.9).

Solution. Let v ∈ H1
0 (Ω). Its gradient γ := ∇v satisfies ∇v · τ = 0 on ∂Ω.

Since rot∇v = 0, we have γ ∈ H0(rot,Ω) and ‖γ‖0 = ‖γ‖H0(rot,Ω). Partial

integration yields

‖div η‖−1 = sup
v∈H1

0 (Ω)

(v,div η)0

‖v‖1

= sup
v∈H1

0 (Ω)

(∇v, η)0

(‖∇v‖20 + ‖v‖20)1/2

≤ sup
γ

(γ, η)0

‖γ‖H0(rot,Ω)
.

A standard density argument yields div η ∈ H−1(Ω).


