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Abstract

We describe a practical identity-based encryption scheme that is secure in the standard model
against chosen-ciphertext attacks. Our construction applies “direct chosen-ciphertext techniques” to
Waters’ chosen-plaintext secure scheme and is not based on hierarchical identity-based encryption.
Furthermore, we give an improved concrete security analysis for Waters’ scheme. As a result, one
can instantiate the scheme in smaller groups, resulting in efficiency improvements.

1 Introduction

An Identity-Based Encryption (IBE) scheme is a public-key encryption scheme where any string is a valid
public key. In particular, email addresses and dates can be public keys. The ability to use identities as
public keys minimizes the need to distribute public key certificates. The concept of IBE was proposed
by Shamir [54] in the early eighties, but coming up with a satisfactory instantiation of it remained an
open problem for almost two decades. It was not until 2001 that IBE systems were constructed by using
bilinear maps [50, 12, 13]. In particular, Boneh and Franklin [12, 13] proposed formal security notions
for IBE systems and designed a fully functional secure IBE scheme using bilinear maps. This scheme
and the tools developed in its design have been successfully applied in numerous cryptographic settings,
transcending by far the identity-based cryptography framework. An alternative but less efficient IBE
construction based on quadratic residues was proposed by Cocks [20]. IBE is currently in the process of
getting standardized — the new IEEE P1363.3 standard for “Identity-Based Cryptographic Techniques
using Pairings” is currently in preparation [33], as well as the IETF memos RFC 5091, RFC 5408 and
RFC 5409 [35].

All the above IBE schemes provide security against chosen-ciphertext attacks through the Fujisaki-
Okamoto [24] transformation. In a chosen ciphertext attack [48], the adversary is given access to a
decryption oracle that allows him to obtain the decryptions of ciphertexts of his choosing. Intuitively,
security in this setting means that an adversary obtains effectively no information about encrypted
messages, provided the corresponding ciphertexts are never submitted to the decryption oracle. For
different reasons, the notion of chosen-ciphertext security has emerged as the “right” notion of security
for encryption schemes. We stress that, in general, chosen-ciphertext security is a much stronger security
requirement than chosen-plaintext attacks [2], where in the latter an attacker is not given access to the
decryption oracle.

The drawback of the IBE scheme from Boneh-Franklin and Cocks is that security can only be guar-
anteed in the random oracle model [5], i.e., in an idealized world where all parties get black-box access to
a truly random function. Unfortunately a proof in the random oracle model can only serve as a heuristic
argument and has proved to possibly lead to insecure schemes in the standard model (see, e.g., [16]).
More importantly, there exist results [22] indicating that even certain natural cryptographic schemes



(such as full-domain hash signatures [6]) will always remain in the grey area of schemes having a proof
in the random oracle yet are “provably unprovable” in the standard model.

WaTERS’ IBE. To fill this gap Waters [58] presents the first practical Identity-Based Encryption scheme
that is chosen-plaintext secure without random oracles. The proof of his scheme makes use of an algebraic
method first used by Boneh and Boyen [8, 9] and security of the scheme is based on the Bilinear Decisional
Diffie-Hellman (BDDH) assumption. However, Waters’ plain IBE scheme is insecure against chosen-
ciphertext attacks.

FroM 2-LEVEL HIERARCHICAL IBE TO CHOSEN-CHIPERTEXT SECURE IBE. Hierarchical identity-based
encryption (HIBE) [32, 27] is a generalization of IBE allowing for hierarchical delegation of decryption
keys. Recent results from Boneh, Canetti, Halevi, and Katz [17, 14, 11] show a generic transformation
from any chosen-plaintext secure 2-level HIBE scheme to a chosen-ciphertext secure IBE scheme. We
will refer to it as the BCHK transformation. Since Waters’ IBE scheme can naturally be extended to a
2-level HIBE this implies a chosen-ciphertext secure IBE in the standard model. Key size, as well as the
security reduction of the resulting scheme are comparable to the ones from Waters’ IBE. However, the
transformation involves some symmetric overhead to the ciphertext in form of a one-time signature or a
MAC/commitment scheme with their respective keys.

DIRECT CHOSEN-CIPHERTEXT TECHNIQUES FOR PUBLIC-KEY ENCRYPTION. In [15, 38] “direct chosen-
ciphertext” techniques were developed to improve efficiency of certain concrete public-key encryption
schemes obtained from the BCHK transformation (applied to the IBE-schemes from [8]). Their methods
are no longer generic but for particular encryption schemes [15, 38, 39] the overhead of the one-time
signature or MAC can be completely avoided.

IDENTITY-BASED KEY ENCAPSULATION. Instead of providing the full functionality of an IBE scheme, in
many applications it is sufficient to let sender and receiver agree on a common random session key. This
can be accomplished with an identity-based key encapsulation mechanism (IB-KEM) as formalized in [21,
7). Any IB-KEM can be bootstrapped to a full IBE scheme by adding a symmetric encryption scheme
(also called data encapsulation scheme — DEM) with appropriate security properties [21]. There are a
numerous practical reasons to prefer a IB-KEM over an IBE scheme, which is why for traditional public-
key encryption the modular KEM/DEM approach is incorporated in many recent standards (e.g., [55, 1,
34]).

1.1 Owur Contributions

Our contributions can be summarized as follows.

A DIRECT CHOSEN-CIPHERTEXT SECURE IB-KEM BASED ON WATERS’ IBE. Our main idea is to extend
the “direct chosen-ciphertext” techniques from [15, 38] to the the identity-based setting. We enhance the
IB-KEM version of Waters chosen-plaintext secure IBE by adding some redundant information to the
ciphertext, consisting of a single group element, to make it chosen-ciphertext secure. This information is
used to check whether a given IB-KEM ciphertext was “properly generated” by the encryption algorithm
or not; if so decryption is done as before, otherwise the ciphertext is simply rejected. Intuitively, this
“consistency check” is what gives us the necessary leverage to deal with the stronger chosen-ciphertext
attacks. Unfortunately, implementing the consistency check is relatively expensive and an equivalent
“implicit rejection” method is used to improve efficiency. This provides a direct construction of a chosen-
ciphertext secure IB-KEM that is not explicitly derived from hierarchical techniques [11]. Like Waters’
scheme, our scheme can be proved secure under the BDDH assumption in pairing groups. Furthermore,
our IB-KEM scheme can be extended in a natural way to obtain a chosen-ciphertext secure HIB-KEM.

A TIGHTER SECURITY REDUCTION. In terms of concrete security, our security reduction is significantly
tighter than the one given by Waters [58]. (Our new analysis can be applied to both Water’s original
scheme and our chosen-ciphertext secure IB-KEM.) More precisely, let A be an adversary against Waters’
IBE scheme that runs in time at most T 4, makes at most ¢ queries to its key-derivation oracle and has
advantage € 4. Then [58, Theorem 1] presents a BDDH adversary B that runs in time at most T and
has advantage eg such that e = Q(c4/nq) and Tg = T4 + Tsim + Tabort, Where: n is the bit-length
of the identities; Tgim = ¢ - Tpg and Tpg is the time for one exponentiation/pairing computation in PG;



Ty is the time for one addition over integers smaller than 2¢; and ignoring log-terms
Tabort (k) = @) (q2n2 . 5;‘2(]6)) - Ty

Here T.port denotes the time B needs to compute the probability whether it has to do an “artificial
abort.” Actually, Tapore as computed in [58] only shows a gn factor, but this was corrected in [4] to a
¢*n? factor. By an improved analysis we can reduce the running time of Tapore to

Tabort (k) = O(n® - e %(k)) - Tz ,

while the success probability stays the same. For concreteness, realistic values for k = 80 bit security
are ¢ = 230 and n = 160, so our reduction is significantly tighter than the one by Waters. As a result,
one can securely use smaller groups, resulting in significant efficiency improvements. At a technical level
our improved reduction makes use of a lower and an upper bound on the abortion probability during
the execution of B (cf. Lemmas 6.2 and 6.3), whereas Waters only provides a lower bound. This makes
it possible to substantially decrease the number of samples the simulator has to compute in order to
approximate the proability it has to perform an artificial abort. We stress that our proof inherits the
“artificial abort” technique by Waters.

A RIGOROUS GAME-BASED PROOF. The proof of Waters’ IBE is already quite complex and has many
technical parts that we found hard to verify. Additionally, many other results (e.g., [15, 18, 43]) already
use ingredients of Waters’ IBE, some more or less in a “black-box” manner which makes verification
nearly impossible without having completely understood the original work. Motivated by this we give a
rigorous, games-based proof of our result that can be easily understood and verified.

1.2 Comparison and Related Work

We carefully review all known chosen-ciphertext secure IBE constructions and make an extensive com-
parison with our scheme. It turns out that, to the best of our knowledge, our scheme is the most efficient
chosen-ciphertext secure IBE scheme in the standard model based on the the BDDH assumption.

In (the full version of) [15] a technique is sketched how to avoid the BCHK transformation to get
a direct chosen-ciphertext secure IB-KEM construction based on Waters’ 2-level HIBE. Compared to
our IBE, however, this construction has a weaker security reduction and nearly doubles the public key
size. We mention other chosen-ciphertext secure IBE scheme that were proposed concurrently or after
the publication of the extended abstract of this article [40]. The one by Gentry [26] relies on a much
stronger security assumption, the ¢-ABDHE assumption, where the strength of the assumption degrades
on the number of established user secret keys. Even though it has relatively short public-keys, the
ciphertext size of Gentry’s scheme is much larger, resulting in a bigger disadvantage. The scheme by
Kiltz and Vahlis [37, 41] combines our direct chosen-ciphertext security techniques with the HIBE scheme
from [10] to reduce the ciphertext size of the IBE scheme. The disadvantage is a slightly stronger security
assumption. Similar results were obtained by Chatterjee and Sarkar [19, 52], who also propose a HIBE
scheme from the BDDH assumption which is related to our proposal in Section 5.

Concurrently to the preparation of this article, Bellare and Ristenpart [4] present a new security
analysis of Waters’ IBE that completely avoids the artificial abort and therefore implies a tighter security
reduction to the BDDH assumption.

1.3 Publication info

An extended abstract of this paper was published in the proceedings of ACISP 2006 [40]. This is the full
version, containing improved concrete security bounds, missing proofs as well as a detailed comparison
of our scheme with previous IB-KEM constructions.



2 Definitions

2.1 Notation

If z is a string, then |z| denotes its length, while if S is a set then |S| denotes its size. If k& € N then
1% denotes the string of k ones. If S is a set then s &S denotes the operation of picking an element s
of S uniformly at random. We write A(z,y,...) to indicate that A is an algorithm with inputs z,y, . ..
and by z <& A(z,y,...) we denote the operation of running A with inputs (x,y,...) and letting z be the
output. We write A91:©2(z,y,...) to indicate that A is an algorithm with inputs z,y, ... and access
to oracles 01,0, ... and by z & A91:2(z y,...) we denote the operation of running A with inputs
(z,v,...) and access to oracles O1,Oa, ..., and letting z be the output.

2.2 Identity Based Key Encapsulation

An identity-based key-encapsulation mechanism (IB-KEM) scheme [54, 13] IBKEM = (Kg, Extract,
Encaps, Decaps) consists of four polynomial-time algorithms. Via (pk, sk) & Kg(1*) the randomized key-
generation algorithm produces master keys for security parameter & € N; via usk[id] & Extract(sk, id)
the master computes the secret key for identity id; via (C, K) & Encaps(pk, id) a sender creates
a random session key K and a corresponding ciphertext C' with respect to identity id; via K «
Decaps(pk, id, usk[id], C') the possessor of secret key sk decapsulates ciphertext C' to get back a ses-
sion key K. Associated to the scheme is a key space K. For consistency, we require that for all k € N|
all identities 4d, and all (C, K) & Encaps(pk, id), we have Pr[Decaps(pk, id, Extract(sk, id), C) = K| = 1,
where the probability is taken over the choice of (pk, sk) <~ Kg(1¥), and the coins of all the algorithms
in the expression above.

The strongest and commonly accepted notion of security for an indentity-based key encapsulation
scheme is that of indistinguishability against an adaptive chosen ciphertext attack. This notion, denoted
IND-CCA, is defined using the following game between a challenger and an adversary A. Let IBKEM =
(Kg, Extract, Encaps, Decaps) be an IB-KEM with associated key space K.

The security we require the IBKEM is IND-CCA security [48]. For an adversary A we define the
advantage function

AdVigsis( A (F) = |PriBxpipinf (k) = 1] = Pr{Explgia s (k) = 1]

ibkem~-cca-~y

where, for v € {0,1}, EXP parar 4

is defined by the following experiment.

Experiment Expi[g;zgm}cj_'y(k)

(ph, sk) < Kg(1")

(id*, St) < APXO-DECC) (find, pk)

Ki &K (C*,K?) < Encaps(pk, id”)
" & ABXC)DECC) (guess, K3,C*, St)
Return ~/

The oracle Ex(id) returns usk[id] < Extract(sk, id) with the restriction that A is not allowed to query

oracle EX(-) for the target identity id*. The oracle DEc(id,C) first computes usk[id] < EX(sk, id)
and then returns K « Decaps(pk, id, usk[id], C') with the restriction that in the guess stage A is not
allowed to query oracle DEC(-, ) for the tuple (id*, C*). Here the output of EX(id) is stored internally
by the experiment and multiple queries to DEC(id, -) are answered with respect to the same user secret
key wusk[id]. The variable St represents some internal state information of adversary A and can be any
polynomially-bounded string.

Exp%%ﬁﬁ_l is called the real CCA experiment (with the real challenge key K7), and Exp%ﬁ%’%‘j’o
is called the random CCA experiment (with a random challenge key K{).

An IB-KEM IBXKEM is said to be secure against chosen-ciphertext attacks (CCA secure) if the

advantage functions Adv%%nﬂzf(k) is a negligible function in & for all polynomial-time adversaries A.



We remark that our security definition is given with respect to “full-identity” attacks, as opposed to
the much weaker variant of “selective-identity” attacks where the adversary has to commit to its target
identity id* in advance, even before seeing the public key.

2.3 Target Collision Resistant Hash Functions

TCR. = (TCRy)ken is a family of keyed hash function TCR}, : G — Z, for each ¢(k)-bit key s, where
£(-) is a non-negative integer-valued polynomially-bounded function and p is a prime with polynomially-
bounded bit-length. Tt is assumed target collision resistant (TCR) [21], which is captured by defining the
ter-advantage of an adversary H as

AdviEg (k) = Pr[TCR*(c") = TCR*(c) Ac £ ¢* ¢ s < {0,1}'F) s ¢ & G5 ¢ & H(s,¢")]

Note TCR is a weaker requirement than collision-resistance, so that, in particular, any practical collision-
resistant function can be used. Also note that our notion of TCR is related to the stronger notion of
universal one-way hashing [46], where in the security experiment of the latter the target value ¢* is chosen
by the adversary (but before seeing the hash key s).

Commonly [21, 42] this function is implemented using a dedicated cryptographic hash function like
MD5 or SHA, which is assumed to be target collision resistant. Alternatively, target collision resistant
hashing can be constructed from any one-way function [46, 49]. However, these generic constructions are
somewhat inefficient. Since in our case |G| = |Z,| = p, we can alternatively also use a non-keyed bijective
encoding function TCR* : G — Z,. In that case we have a perfect collision resistant hash function, i.e.
Advi¢g- 3(k) = 0. Boyen, Mei and Waters [15] note that for bilinear maps defined on supersingular
elliptic curves there exists a very efficient way to implement such injective mappings. We refer to [15] for
more details.

3 Assumptions

3.1 Parameter generation algorithms for Bilinear Groups.

All pairing-based schemes will be parameterized by a pairing parameter generator. This is a randomized
polynomial-time algorithm G that on input 1* returns the description of an multiplicative cyclic group
G of prime order p, where 22* < p, the description of a multiplicative cyclic group G of the same order,
and a non-degenerate bilinear pairing é : G; x G; — Gr. See [13] for a description of the properties of
such pairings. We use G} to denote G; \ {0}, i.e. the set of all group elements except the neutral element.
Throughout the paper we use PG = (G1, G, p, é) as shorthand for the description of bilinear groups.

3.2 The BDDH assumption

Let PG be the description of a pairing group. Consider the following problem first put forward by
Joux [36] and later formalized by Boneh and Franklin [13]: Given (g, g%, ¢° ¢g¢, W) € G} x G as input,
output yes if W = é(g, ¢)?*° and no otherwise. More formally, to a parameter generation algorithm for
pairing-groups G and an adversary B we define the following advantage function

Advgs" (k) = |Pr[B(g, 9, ¢", 9%, W) = 1] — Pr[B(g,9", ¢", ¢°, é(g, 9)**) = 1]

)

where g, W & Ganda,b,c,r — L.

We say that the Bilinear Decision Diffie-Hellman (BDDH) assumption relative to generator G holds
if Advg"igh is a negligible function in k for all polynomial time adversaries B. The BDDH assumption
was shown to hold in the generic group model in [10] and can be shown to be random self reducible by
using similar techniques to those in [44].

4 A chosen-ciphertext secure IB-KEM based on BDDH

In this section we present our new chosen-ciphertext secure IB-KEM. From now on let PG = (G1,Gr,p, é, 9)
be public system parameters obtained by running the group parameter algorithm G(1%).



Kg(1F) Extract(pk, sk, id)

’LL17U2,O[<EG1; ZHé(g,CV) Sin
H & HGen(n) usk[id] — (o - H(id)*, ¢°) € G?
pk — (ui,u2,2z,H); sk — « Return usk[id]

Return (pk, sk)

Encaps(pk, id) Decaps(pk, id, usk[id], C)
& 7 Parse C as (c1,co,c3)
1 g t— TCR(c1) Parse usk[id] as (d1, d2)
cg — H(id)" t — TCR(c1)
c3 — (ubug)" If (g, c1,ulug,c3) is not a DH tuple
K — 2" € Gy or (g,c1,H(id), c2) is not a DH tuple
C « (c1,¢2,¢c3) € G} then return K < Grp
Return (K, C) else return K «— é(c1,dy)/é(ca,ds)

Figure 1: Our chosen-ciphertext secure IB-KEM IBKEM = (Kg, Extract, Encaps, Decaps).

4.1 Waters’ Hash

We review the hash function H : {0,1}" — Gy used in Waters’ identity based encryption scheme [58]. On
input of an integer n, the randomized hash key generator HGen(n) chooses n+ 1 random groups elements
ho, ..., h, € Gy and returns h = (hg, hq, ..., hy,) as the public description of the hash function. The hash
function H : {0,1}" — G7 is evaluated on a string id = (idy, ..., id,) € {0,1}" as the product

H(id) = ho [ [ hi% .
i=1

4.2 The IB-KEM Construction

Let TCR : G; — Z, be a target collision resistant hash function. Our IB-KEM with identity space
IDSp ={0,1}"™ (n = n(k)) and key space K = Gr is depicted in Figure 1. For simplicity we assume that
TCR is a fixed hash function such as an injective encoding or SHA-1. Otherwise, if TCR is a keyed TCR
function, a random key s has to be included in the scheme’s public key.

A tuple (h,h® k% h¢) € Gf is said to be a Diffie-Hellman tuple if ab = ¢ mod p. Thanks to the
properties of the bilinear pairing, a tuple (g, u, v, w) € G{ is Diffie-Hellman if and only if é(g, w) = é(v, u).
Therefore the check in the decapsulation algorithm Decaps can be implemented by evaluating the bilinear
map four times.

We now show correctness of the scheme, i.e., that the session key K computed in the encapsulation
algorithm matches the K computed in the decapsulation algorithm. A correctly generated ciphertext
for identity id has the form C' = (c1,c2,¢3) = (9", H(id)", (u}uz)") and therefore (g,c1,ulug,c3) =
(g,9", ulug, (ubug)") is always a DH tuple. A correctly generated secret key for identity id has the form
usklid] = (dy,da) = (o - H(id)*®, g%). Therefore the decapsulation algorithm computes the session key K
as

K = é(c1,d1)/é(ca,d2)

= é(g",a-H(id)*)/é(H(id)", g°)
é(g", @) - é(g", H(id)*) /é(H(id)", g°)

= 2" -é(g° H(ud)")/e(H(id)", g°)

= z 5

as the key computed in the encapsulation algorithm. This shows correctness.



Let C = (c1,c2,c3) € G be a (possibly malformed) ciphertext. Ciphertext C' is called consistent
w.r.t the public key pk and identity id if (g, c1,ulus,c3) and (g, c1, H(id), co) are Diffie-Hellman tuples,
where t = TCR(¢1). Note that any ciphertext properly generated by the encapsulation algorithm is always
consistent. The decapsulation algorithm tests for consistency of the ciphertext. Note that this consistency
test can be performed by anybody knowing the public-key. We call this property “public verifiability”
of the ciphertext. It is the key feature that allows building an efficient IB-KEM with non-interactive
threshold decryption as it was proposed in [25].

4.3 More Efficient Decapsulation from Implicit Rejection

We now describe an alternative decapsulation algorithm which is more efficient but slightly more tech-
nically involved. The idea is to make the Diffie-Hellman consistency check implicit in the computation
of the key K and it has already been used in [38]. This is done by choosing random integers 1,72 € Zj
and computing the session key as

é(c1,dy - (ufug)™ - H(id)"™) _

K — — p
6(027d2 : gTZ) ! e(ng’CB)

We claim that this is equivalent to first checking for consistency and returning a random key if not, and
otherwise computing the key as K « é(c1,d1)/é(ca,d2) as in the original decapsulation algorithm.

To prove this claim we define the functions A1 (C) = é(c1, ulug)/é(g, c3) and Ay(C) = é(H(id),c1)/é(g, ca).
Then A(C) = Ay(C) = 1 if and only if C is consistent. Consequently, for random 71,72 € Zj,
K =é(c1,dv)/é(ca,d2)- (A1(C))™ - (Ag(C))™ € Gk evaluates to é(c1,d1)/é(cz, d2) € Gp if C is consistent
and to a random group element otherwise. The claim then follows by

K = é(ci,dy)/eé(ca,d2) - A (C)™ - (A(C))™

é(
= é(c1,dv)/e(ca,d2) - (é(cr,ufug)/e(g, c3))™ - (e(H(id), c1)/é(g, c2))™
e(e1, dy (ubug)™ H(id)™)
é(ca,dy - gm2) - é(g™,c3)

We remark that the alternative decapsulation algorithm saves four pairing operations in a naive imple-
mentation (at the cost of four exponentiations).

4.4 Relation to existing schemes

RELATION TO WATERS’ IBE SCHEME. The ciphertext in our scheme is basically identical to the ci-
phertext from Waters’ IBE scheme plus the redundant element c3 used to check for consistency of the
ciphertext. Hence Waters’ IBE scheme is obtained by ignoring the computation of c3 in encapsulation as
well as the consistency check in decapsulation.

RELATION TO THE ENCRYPTION SCHEME FROM BMW. Clearly, IB-KEM implies traditional public-
key encapsulation by simply ignoring all operations related to the identity. We remark that viewed in
this light (i.e., ignoring the element c¢s in encapsulation/decapsulation and ignoring the key derivation
algorithm) our IB-KEM is simplified to the chosen-ciphertext secure encryption scheme recently proposed
in [15, 38].

4.5 Security

Theorem 4.1 Assume 7CR_ is a family of target collision resistant hash functions. Under the Bilinear
Decisional Diffie-Hellman (BDDH) assumption relative to generator G, the IB-KEM from Section 4.2 is
secure against chosen-ciphertext attacks.

In particular, given an adversary A attacking the chosen-ciphertext security of the IB-KEM with

ibkem~-cca

advantage € (k) = Adviggras 4 (k) and running time T 4(k), we construct an adversary B breaking the



BDDH assumption with advantage eg(k) = Adv}éfigdh(k) and running time Tp(k), and an adversary H

breaking TCR. with advantage ey (k) = AdvtTCCrRﬁ(k) and running time Ty (k) = T 4(k) with

calk) —enlk) q.

>
es(k) 2 10ngq p’

Ts(k) < Ta+0®* (k) -n((ngea(k))™") - Tz + q- Tec(k)),

where ¢ < p/(2(n + 1)) is an upper bound on the number of key derivation/decryption queries made by
adversary A, Tpg is the time for one exponentiation/pairing computation in PG, and Ty is the time for
one addition over integers smaller than 2q.

The proof of Theorem 4.1 is deferred to Section 6.

5 Extensions

5.1 Chosen-ciphertext secure Hierarchical Identity-Based Key Encapsulation

Hierarchical identity-based key encapsulation (HIB-KEM) is a generalization of IB-KEM to identities
supporting hierarchical structures [32, 27]. By the relation to Waters HIBE scheme it is easy to see that
our technique can also be used to make chosen-ciphertext secure the KEM variant of Waters HIBE. To be
more precise, we modify Waters’ HIB-KEM and add one more element (ufujus)” to the the ciphertext,
where t was computed by applying a target-collision hash function to ¢” (here r is the randomness used
to create the ciphertext). The additional element is used for a consistency check at decryption, with the
novelty that the hierarchy’s depth \ is encoded via u3. The security reduction is exponential in the depth
A of the hierarchy, i.e. it introduces, roughly, a multiplicative factor of (ng)*. Hence the scheme can only
be securely instantiated for small hierarchies, say A < 4.

More precisely, the new HIB-KEM setup algorithm chooses d different and independent hash functions
H; & HGen(Gq) for 1 < j < d and uq,us, us < Gy. The private key for the identity ﬁ = (idq,...,idy) of
depth 1 < X\ < d is defined as usk[ﬁ] = (do,d1,...,dy), where d; = ¢" and r; & Zy, for 1 <14 < A, while
do = o ([ H,;(id;)"). Encapsulation with respect to id is defined as C' = (coy---yCxn,Cat1), Where

j=1

co = ¢" and ¢; = H;(id;)" for r & Z,, 1 < j < A, while cx1 = (vudus)”, with t = TCR(g"). Finally,
—

decapsulation K of a ciphertext C' = (cg,c1,...,Cx,cx+1) With respect to id is obtained by choosing

S0y -« -y S\ & Z,, and computing

é(co,do - (ubudus)® - Tj_, H;(id;)>)
é(g%, exr) - T=y é(cs d; - g°)

Here we used our “implicit rejection” technique from Section 4.3 to decrease the number of pairings
needed for decapsulation to A\ + 2.

We note that the HIB-KEM construction mentioned in the proceedings version of this paper [40] was
incorrect and hence not secure against chosen-ciphertext attacks. This was also independently discovered
and fixed in [51], where details of the proof were worked out.

5.2 Identity-based Encryption

Given a IB-KEM and a symmetric encryption scheme, a hybrid identity-based encryption scheme can be
obtained by using the IB-KEM to securely transport a random session key that is fed into the symmetric
encryption scheme to encrypt the plaintext message. It is known that if both the IB-KEM and the
symmetric encryption scheme are chosen-ciphertext secure, then the resulting hybrid encryption is also
chosen-ciphertext secure [21, 7]. The security reduction is tight.

Using the “encrypt-then-mac” paradigm [3], a symmetric encryption scheme secure against chosen-
ciphertext attacks can be built from relatively weak primitives, i.e. from any one-time symmetric en-
cryption scheme, such as the one-time pad [57], by adding a message authentication code (MAC). Fur-
thermore, Phan and Pointcheval [47] showed that super pseudorandomn permutations directly imply



redundancy-free chosen-ciphertext secure symmetric encryption that avoid the use of the MAC. Such
strong pseudorandom permutations can in turn be generated by applying a 2-round Feistel network to
a pseudorandom function (and furthermore two pairwise independent permutations) [45]. However, it
practice it seems reasonable to assume that modern block-ciphers such as AES are already strong pseudo-
random permutations. Provided that the underlying block-cipher is a strong pseudorandom permutation,
the modes of operation CMC [29], EME [30], and EME* [28] can be used to encrypt large messages. Hence
a chosen-ciphertext secure IBE scheme can be built from our IB-KEM construction without any addi-
tional overhead: the ciphertext overhead of our IBE scheme, that is the difference between ciphertext
and message size, is the asymmetric IB-KEM part, i.e. three group elements.

We note that for the natural task of securely generating a joint random session key, a IB-KEM is
sufficient and a fully-fledged identity-based encryption scheme is not needed.

5.3 A Tradeoff between public key size and security reduction

As independently discovered in [18, 43], there exists an interesting trade-off between key-size of Waters’
hash H and the security reduction of the IBE scheme.

The construction modifies Waters hash H as follows: Let the integer [ = I(k) be a new parameter
of the scheme. In particular, we represent an identity id € {0,1}"™ as an n/l-dimensional vector id =
(idy,...,idy ), where each id; is an [ bit string. Waters hash is then redefined to H : {0,1}" — G, with

H(id) = ho H?:/ll hfd"' for random public elements hg, k1, ..., h,;; € Gi. Waters’ original hash function
is obtained as the special case | = 1. It is easy to see that using this modification in our IBE scheme
(i) reduces the size of the public key from n + 4 to n/l 4+ 4 group elements, whereas (ii) it adds another

multiplicative factor of 2! to the security reduction of the IBE scheme (Theorem 4.1).!

5.4 Selective-identity chosen-ciphertext secure IB-KEM

For the definition of a selective-identity chosen-ciphertext secure IB-KEM we change the security experi-
ment such that the adversary has to commit to the target idenity id* before seeing the public key. Clearly,
this is a weaker security requirement. We quickly note that (using an algebraic technique from [8]) by
replacing Waters’ hash H with H(id) = ho-hi¢ (for id € Z,) we get a selective-id chosen-ciphertext secure
IB-KEM. Note that the size of the public-key of this scheme drops to 3 elements.

6 Security analysis

We give a game-based proof of Theorem 4.1. Our proof is mainly based on the one given by Waters [58],
where we make some important modifications to be able to deal with chosen-ciphertext attacks. Moreover,
we are able to substantially improve the bound on the running time of the BDDH adversary B compared
to [58].
Intuitively, security can be best understood by observing that our scheme is a generalization of Waters’
IBE scheme, as well as of the chosen-ciphertext secure public-key encapsulation scheme from [15, 38].
Before we give the proof we recall the “Difference Lemma” [56].

Lemma 6.1 Let X;,X5, B be events defined in some probability distribution, and suppose that X; A
B & X3 A-B. Then |Pr[X;]—Pr[X:]| < Pr[B].

6.1 Proof of Theorem 4.1

Let A be an adversary on the CCA security of the IB-KEM. We will consider a sequence of games, Game
0, Game 2, ..., Game 10, each game involving A. At the end of each game there is a well-defined output
bit 5’ € {0,1}. Let X; be the event that in Game ¢, it holds that 5 = 1.

Game 0. (Real CCA experiment) Let Game 0 be IB-KEM security experiment of Section 2.2 with v =1
(the real CCA experiment). While describing the experiment we will make a couple of conventions on how

1On the technical side our proof basically stays the same, only the bound from Lemma 6.2 needs to be adapted to take
the modified Waters’ hash into account.



the experiment chooses the values appearing in the game. These conventions will be purely conceptual
and, compared to the original experiment, do not change the distribution of any value appearing during
the experiment. We will also make a couple of definitions of values appearing during the experiment.

We assume that in the beginning the experiment chooses some values a, b, and ¢, uniformly distributed
over Z,. The experiment will depend on these values (i.e., the key generation will depend on g%, q°,
user secret key generation on g% and the challenge ciphertext will depend on ¢). In sequel games the
experiment will “forget” the values ¢?, and ¢ and instead only use the values g%, g%, and g°. The
dependencies of the different experiment phases “Challenge”, “Extract”, and “Decaps” on those values
in Games 0-10 are depicted in the following table.

Game 0 1 2 3 4 5 6 7 8 9 10
Challenge ¢ c c c c c c c c  €(g,9) —
Extract g g g g g —_ = — — —

Decaps  ¢g*° g¢g*° g¢*° g% g% g¢* g¢g* ¢* —  — —

KEY GENERATION. Initially the experiment generates public-key pk = (uj,us,z,H) and secret-key
sk = o using the IB-KEM key generation algorithm Kg(1*). We make the convention that the public key
is generated as

ulggav UQ‘iGh ZHé(gaagb% hO(ile'-ahn(iGla (1)

depending on the elements a,b. Note that the way the value z = é(g%, g°) = é(g, g**) from the public key
is generated implies o = g®®. The public key is given to the adversary A to start its find phase.

FIND PHASE. During its execution adversary A makes a number of key derivation and decapsulation
requests. If the adversary makes a key derivation query EX(id) then the experiment computes the secret
key sk[id] by using the master secret key «, and returns sk[id] to the adversary. If the adversary makes
a decapsulation query DEcC(id,C) the experiment (using «) decrypts the ciphertext and returns the
corresponding key to the adversary.

Eventually, the adversary returns a target identity id*. The experiment runs the encapsulation
algorithm to create a real challenge key K7 together with the the challenge ciphertext C* = (¢}, ¢, c5).
We make the convention that challenge key/ciphertext are computed using randomness ¢ € Z,, as follows

=gt G H(id"), o5 (uf )t KT 2t (2)

where t* — TCR(c}).
The experiment returns the challenge ciphertext C* together with the real key K7 to adversary A.

GUESs PHASE. The adversary continues to make its oracle queries, subsequent key derivation requests
must be different from the target identity id* and decapsulation requests must be different from (id™, C*).
Finally, adversary A returns a bit 7' € {0,1} and the experiment returns 5’ = /.

Note that the experiment behaves exactly as in the original real CCA IB-KEM security experiment
with v =1, i.e., we have

Pr(Xo] = Pr[Expyimes =1].

Now a few important definitions are in place. During its execution A may query the key derivation
oracle for some identity id or the decapsulation oracle for the identity/ciphertext pair (id,C). We collect
all those identities used to make queries to the key derivation and decapsulation oracle in the set ID.
Note that /D may contain the target identity id™ or one identity more than once. Let ID be the subset
of queried identities obtained by removing from ID all multiples and the target identity. We write
ID = {z’d(l), ce id(q")} (without any particular order) for some gy < ¢ such that id™ * idY) for each
1<i+#j<gqoand id" ¢ ID. Furthermore, we define ID* = ID U {id"} = {id(l), o id () id*}.

Game 1. (Eliminate hash collisions) Note that the values ¢f = C and t* = TCR(C) from the challenge
ciphertext Equation (2) are completely independent of the view of adversary A until A is in guess phase.
This holds since C' is simply not touched by the experiment before generating the challenge ciphertext.
Therefore we may assume that the value ¢} is already generated by the experiment before the key
generation (and then before the seed s for TCR = TCR; is chosen).
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In this game the experiment changes its answers to all decapsulation queries DEC(id, C') made by A
as follows: Let C' = (¢1,¢a,¢3) and t = TCR(¢y). If ¢ = ¢* and ¢; # ¢, the experiment aborts and returns
(" = 1. Otherwise it continues as in the last game. Let HASHABORT be the event that this new abortion
rule applies. Until HASHABORT happens Game 0 and Game 1 are identical. Therefore by Lemma 6.1 we
have

| Pr[X;] — Pr[Xy]| < Pr[HASHABORT] .

Furthermore, there exists an adversary H against the target collision resistance of TCR running in time
T (k) = T (k) that succeeds with probability at least Pr[HASHABORT], i.e.,

PrHASHABORT] < Adv{(g 5 (k) -

This adversary H inputs a random ¢f = ¢ and runs the real CCA experiment. Note that H can simulate
the whole Game 0 depending only on ¢ = ¢¢ by knowing a,b. Furthermore, H sets up the public-key
such that it knows log,(u2) and log, (h;) and hence can create the challenge ciphertext from Equation (2).
When HASHABORT happens, ‘H simply outputs ¢; and terminates.

Game 2. (Change of public key) This is the same as Game 1 except that the experiment changes the
generation of the public key pk from Equation (1) as follows.

Set m = 2q (the choice of m will become clear later). Instead of generating the hash keys as in
Equation (1) the experiment now chooses

Lo, L1+, Tn ‘i {077]971}

Yooty {0,...,m—1}
¢ & {o,...,n} (3)
and sets
Yo — yyo—4Ltm.
The public keys h = (hg, ..., hy) of the hash function H are then defined as h; = g®u¥*, for 0 < i < n.

By definition the public hash function evaluated in identity id € {0,1}" is given as H(id) = ho [ [, hidi,
From the experiments’s point of view, however, the hash function evaluated in id € {0,1}"™ looks like

H(id) = g"(Dui ™, (4)

with z(id) = zo + Y1, id;x; and y(id) = yo + > ., id;y; only known to the experiment. On the
other hand, note that this change does not affect the distribution of the hash keys h = (ho, h1,...,hy,).
Therefore we have

PI‘[XQ] = PI‘[Xl] .

Game 3. (Abort at the end of the game) Fix all the random variables adversary A gets to see during
its execution, including its random coin tosses: fix pk, and the randomness used in answering the key
derivation and decapsulation queries. Now adversary A can be seen as a deterministic algorithm, in
particular the set of all queried (distinct) identities ID* = {id™", ... id(%) id*} can be seen as fixed. By
view 4 we denote all these fixed variables.

Define Y = {v{,y1,---,Yn, £}, where the random variables {y,y1,.-.,yn, ¢} are distributed as in
Equation (3). It is clear that once view 4 is fixed, the random variable Y still has its original distribution
(due to the random masks z; € Z,). Define the event

g0
FORCEDABORT : \/ (y(id(i)) = 0 mod p) Vy(id*) # 0 mod p .
i=1
We call this abort forced since in sequel games the experiment is modified such that it always has to abort
once this event happens. For fixed view 4 we define

n(view 1) = I;_r[ﬁFORCEDABORT] . (5)

The following lemma bounds n(view 4).
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Lemma 6.2 For every fixed view 4, we have

1
Alow 1= < n(viewA) <

1
n+1)g = < g e
This lemma is as an extension of a lemma by Waters [58] who only proved the lower bound on n(view 4).
Its proof is quite technical and is postponed to Section 6.2.
Compared to Game 2 we will make two modifications to the experiment in Game 3. The experiment
is exactly the same as in Game 2 until adversary A outputs his guess bit 4'. Since adversary A already
terminated we can assume view 4 to be fixed from now on.

FIRST MODIFICATION: ADD FORCED ABORT. After adversary A outputs his guess bit 4/, the experiment
checks if the event FORCEDABORT occurs. If yes, the experiment returns 3 = 0 and aborts. Otherwise,
it continues as before, i.e., it returns 8’ = v/.

Let us first make two unsuccessful attempts to meaningfully relate the two events X3 and Xs. First,
by the Difference Lemma (Lemma 6.1) we have that |Pr[X3] — Pr[X;]| < Pr[FORCEDABORT]| which
is not meaningful since Pr [ FORCEDABORT | = 1 — n(view 4) is close to 1 (Lemma 6.2).

Second, since Pr[ 3’ = 1 | FORCEDABORT | = O we have Pr[X35] =Pr[# = 1] = Pr[+y = 1| " FORCEDABORT |-
Pr[-FORCEDABORT |. Now we would like to continue with Pr[+’ = 1| =FORCEDABORT | = Pr[y' =1] =
Pr[X5]. However, this is not correct since the experiment aborts with a probability n(view 4) which is
a function in view 4, in particular in the choices of the identities ID* = {id(l), T A id*} queried by
adversary A. Hence the two events X and “FORCEDABORT cannot be considered as independent. In
the worst case it may happen that Pr[+' = 1| -FORCEDABORT | =~ 0 even though Pr[+’ =1] is non-
negligible. Let Ao := m be the lower bound on the abortion probability computed in Lemma 6.2.
To get rid of this unwanted dependence the experiment adds some artificial abort such that in total it
always aborts with probability around 1 — Ay, independent of the view of the adversary view 4.

SECOND MODIFICATION: ADD ARTIFICIAL ABORT. After adversary A outputs his guess bit 7/, the
experiment checks if the event FORCEDABORT occurs. If yes, the experiment returns 3’ = 0 and aborts.
Otherwise, it continues as follows: first it samples (using sufficiently many samples) an estimate ' (view 4)
of the probability n(view 4) (over Y) that the event ~FORCEDABORT happens.? We want to stress that
view 4 is fixed at this point so sampling does not involve running adversary A again. By definition, this
estimate 7' (view 4) is a random variable that only depends on the queried identities idV, . id ) g
(and the randomness used to sample).
Depending on the estimate 7/ (view 4) the experiment distinguishes two cases:
Case 7/ (view 4) < Aow: the experiment does not abort and continues as before, outputting 8’ = +'.
Case 7/ (view 4) > Aow: With probability 1 — \jow /7' (view 4) the experiment aborts and outputs 8 = 0.
With probability Ajow /7’ (view 4) the experiment does not abort and continues as before, outputting
,6’ — ,7/.
This concludes the description of Game 3.

The following lemma relating the events X5 and X3 will be proved in Section 6.3. Compared to the
corresponding lemma by Waters [58] it also makes use of the upper bound on n(view 4) from Lemma 6.2
to show that a fewer number of samples is sufficient to compute the estimate n’(view 4).

Lemma 6.3 Let p(k) > 0 be a function in k. If the experiment takes
(k) 1= O(n~2(k) In ((ngp(k)) "))
samples when computing the estimate n’(view ), then
[PE{Xa] — 4(n + 1)q - Pr[Xs]| < p(k)

Furthermore, the s(k) samples can be computed in O(ns(k) - Tz) time.

2Unfortunately, there seems not to be an efficient way to compute the exact value n(view 1), we can only bound it using
Lemma 6.2. If there was one we could greatly simplify our analysis.
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The parameter p(k) will be determined at the end of the proof.

Game 4. (Forced abort during the game I) Compared to the last game we make the following changes
to the experiment: When identity ¢d € ID is queried to the key derivation oracle, the experiment
immediately aborts and returns 3’ = 0 if y(id) = 0 mod p. When receiving the challenge identity id",
the experiment immediately aborts and returns 8’ = 0 if y(id*) # 0 mod p. The artificial abort at the
end of the experiment is the same as in the last game.

Clearly, this modification does not affect the adversary if there is no forced abort. In case there is a
new forced abort the experiment outputs 3’ = 0 as in Game 3. Therefore we have

PI‘[X4] :PI‘[Xg] .

Game 5. (Change key derivation oracle) The experiment changes its answers to all key derivation queries
ExX(id) made by the adversary A as follows: By Eqn. (4) we have H(id) = gm(id)ugf(id) for some values
z(id) and y(id) known to the experiment.

Case y(id) = 0 mod p: The experiment aborts and returns 3’ = 0 (as in the last game).

Case y(id) # 0 mod p: The derived key sk[id] = (d1, dz) is computed as follows:

For a random ' € Z,, the experiment implicitly defines r = —b/y(id) + r’ mod p and computes

dy — (gb)—m(id)/y(id)gx(id)r’uyl;(id)r 7
dy — (gh)~Mutid) g

Note that the randomness r is not known to the experiment. Furthermore, the generation of the derived
keys sk[id] = (dy,ds) only depends on ¢g® and does not involve the knowledge of the secret key o = g%
anymore. (However, the experiment still needs « to answer decapsulation queries.)

Lemma 6.4 Pr[X5] = Pr[Xy].

Proof: We have to verify that each derived key sk[id] = (di,d2) is identically distributed as in the last
game. Let us abbreviate x = z(id), and y = y(id) # 0 mod p. Clearly, if +’ is uniform in Z, so is r. Then
by Equation (1) and since ' = r + b/y,

dl — (gb)—m/ygzr’ugl/r d2 _ gb)—l/y ,grl

= —bw/ygwr/ullﬁ' g by L grbly
g

r
b

7bm/ygm(r+b/y)u21J(7"+b/y) —

)
= 9
gfbm/yga:qubx/yullﬂ“-‘rb
u

gl
o gy
— a-(H(id)"

are distributed as in the last game (the original experiment). |

Game 6. (Change of the public key) In this game the experiment will modify the generation of the
value uy from the public key pk. The experiment picks a random d € Z, and computes the value us as
uy = (g*)~* g%, where t* = TCR(c}). To summarize, the public key pk = (u1,us, z, H) is now computed
as

up— g% up—(g°) " gt 2 —e(ghg), (6)
the hash keys as in Equation (3), and the secret key sk as a = g% = u} that is still known to the
experiment. The simulation of A’s queries is done as before, using the secret key «. Note that the public
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key is identically distributed as in the last game. Therefore we have

PI‘[X(;] = PI‘[X5] .

Game 7. (Forced abort during the game IT) Compared to the last game we make the following changes
to the experiment: When the tuple (id, C') is queried to the decapsulation oracle for id € ID U {id*} and
C = (c1,¢2,c3) the experiment computes ¢ = TCR(¢;1) and immediately aborts if y(id) = 0 mod p, C is
consistent, and ¢t = t*. In case of abort the experiment returns 3’ = 0.

Lemma 6.5 |Pr[X7] — Pr[Xg]| < 1.

Proof: Clearly, this modification does not affect the adversary if there is no new forced abort. Note that
any new forced abort implies ¢; = ¢} since otherwise by ¢ = t* the experiment already aborted in the last
game (having found a collision in the hash function TCR). In case of a new forced abort we distinguish
between two cases:

Case 1: the new forced abort happens during the guess stage. Recall that we call a ciphertext C =

(1, ¢, c3) consistent if (g, c1, ufug, c3) is a Diffie-Hellman tuple (where ¢t = TCR(c1)), i.e., if (g, c1, ulug, c3) =

(9,9", ulug, (uluz)") for some value r € Z,. Note that the way the public-key pk is generated by Eqn. (6)
and since ¢; = ¢j, and t = t*, for a consistent ciphertext C' we have

cg = (whuz)" = ((9") " 9" = () e = () =5, (7)

where d € Z, is only known to the experiment. If id = id”™ (i.e., if A queries the decapsulation oracle with
the target identity) then ¢ = co. Consequently C' = C* and so the experiment rejects as in the original
IB-KEM security experiment. If id # id" then, by definition, id € ID and the experiment outputs 3’ = 0
as in Game 6 where the abort was still done at the end of the experiment. Therefore, conditioned on
case 1 this does not change the distribution of 5" and we have Pr[X7] = Pr[Xg].

Case 2: the new forced abort happens during A’s find stage. Since in the find stage the adversary has no
information (in a statistical sense) about ¢ from the challenge ciphertext C*, and the adversary makes
at most g decapsulation queries in its find stage, this implies

| PrX7] — Pr[Xg]| <

hSEES]

and concludes the proof. |

Game 8. (Change the answers to the decapsulation queries.) In the last game decapsulation queries
were either aborted or answered using the secret key «, as in the original experiment. In this game
the experiment changes its answers to its decapsulation queries DEC(id, C') made by A as follows: By
Eqn. (4) we have H(id) = ¢g®(iDu?" for some values z(id) and y(id) known to the experiment.

Case y(id) # 0 mod p: the query is answered using sk[id] obtained from the key derivation oracle.
Case y(id) = 0 mod p: the experiment simulates the decapsulation queries as follows: Let C' = (¢q, ¢o, ¢3)
be the queried ciphertext and let ¢ = TCR(c;).

If the ciphertext is not consistent then return reject
If ¢ = ¢* then the experiment aborts and returns 3’ = 0 (as in the last game)

if ¢t # t* then return K « é(cg/c?, g®) (=t 7",
Note that from this point on the experiment does not depend on the knowledge of sk = ¢®* anymore.

Lemma 6.6 Pr[Xg] = Pr[X~].

Proof: Let C' = (c1, o, c3) be an arbitrary ciphertext submitted to the decapsulation oracle with respect
to identity id. If y(id) # 0 mod p then decapsulation is done using the simulation of the key derivation
oracle which we already showed to be correct so we may now assume y(id) = 0 mod p. Furthermore we
may assume C' is consistent because otherwise it gets rejected, as in the last game.
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Case la: t = t* and ¢ # ¢}. In this case the experiment has found a collision in the hash function TCR
and returns 8 = 0 (as in the last game).

Case 1b: t = t* and ¢; = ¢f. In this case the experiment returns 8’ = 0 as in the forced abort introduced
in the last game.

Case 2: t # t*. Similar to Eqn. (7) consistency of C' implies
cs = (ufuz)” = ((¢")""g")" = ()" - of (8)
and we obtain
ey —1 aNt—t* _g*y—1 @
(e3/eH 0 = (D) el /e = (9)

In the original IB-KEM decapsulation algorithm first the secret key for identity id is computed as sk[id] =
(d1,d2) = (a- H(id)*, g*) for random s = s(id), and then the session key K is reconstructed as

K:é(Cl,dl)/é(Cg,dg) = é(cl,a) -é(Cl7H(id)s)/é(CQ7gs)
= (et g") - (e(er, H(id)) /é(cz, 9))°

= 8((e3 /e gY) - (é(er, H(id)® [é(ca, 9))®
= eeg/cf, gt

with A’(C)

= é(c1,H(id))/é(ca,g) = 1 by consistency. This shows correctness of the new decapsulation
algorithm. |

Game 9. (Modify the challenge) After A’s find stage the experiment inputs the target identity id* from
A. The experiment modifies the computation of the challenge ciphertext C* follows:

Case y(id*) # 0 mod p: The experiment aborts (as in the last game).

Case y(id") = 0 mod p: The experiment creates the challenge ciphertext C* = (¢, ¢}, ¢%) and key K7 as

gt b (g9, oy (¢°)h  Ki —é(g,9)" . (10)

By virtue of Eqns. (4), (8), and since TCR(c¢}) = t* and y(id") = 0 mod p, C* is a correctly distributed
ciphertext of K. Note that the generation of the challenge ciphertext now only depends on ¢g¢ and
é(g, 9)™¢, instead of c as in the last game. Clearly,

PI“[Xg] = PI“[Xg] .

Game 10. (Random CCA experiment) The experiment replaces the value K from the challenge C*
with K, where K & Gyp. This precisely models the IB-KEM CCA experiment with v = 0 (random
game) and hence we have

Pr[Xi0] = Pr[Expjpga 50 = 1] .

Observe that Game 10 does not use the secret key anymore and that the whole simulation only depends on
the values g2, g*, g¢. Game 9 and Game 10 are equal unless adversary A can distinguish K7 = é(g, g)**°

(in Game 9) from K7 (in Game 10), where Ky < Gp. Therefore we have
| Pr[X10] — Pr[Xo]| < Advgis" (k) ,
for any adversary B against the hardness of BDDH running in the same time as the experiment, i.e.,
TB(k) :TA(k)+O(ns(k) 'Tz-l-(J'T]p(g(k)), (11)

where s(k) is the number of samples from Lemma 6.3 the experiment needs in order to compute 1’ (view 4).

Analysis. Cellecting the probabilities relating the different games we have shown that given an adversary
A that runs in time T 4(k) and has advantage €. 4(k) = Adv%%’m}ff, there exists an adversary B with
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advantage ep(k) = Adv bddh(k‘) and an adversary H that runs in time Ty (k) = T 4(k) with advantage
en(k) = Advigg 5 (k) such that

ea(k) = |Pr[Xo] — Pr[Xyo]|
< | Pr[X] = Pr[Xuo]| + | Pr[Xo] — Pr[Xi]|
< | Pr[Xa] — Pr[Xio]| + en(k)
< [4(n+1)g-Pr[X;] — Pr[X;] ’+P(k)+5H(k)
< J4(n+ g - (Pr[X7] +q/p) — Pr[Xio]| + p(k) + en (k)
< [4(n+1)g- (Pr[Xo] +q/p) — Pr[Xio]| + p(k) + en(k)
< A+ 1)g-(es(k) +q/p) + p(k) + en(k) .

The above implies

cs(k) > calk) — 857;(;) —pk) g . (12)
Defining
(k) = yealh) (13)
we obtain
esy > Albl—enlb) g

10ng p

where ¢ is an upper bound on all (derivation plus decapsulation) queries made by A. Using Equation (11)
and the bound on s(k) from Lemma 6.3 we bound B’s running time as

Tp(k) = Ta(k)+0O(n-s(k) Tz +q- Tee(k))
= Tu(k)+O(n-n?*p (k) In ((ngp(k))™") - Tz + q - Tee(k))
= Ta(k)+0m*;* In((ngea)™ ) Tz(k) +q- Tee(k)) .

This concludes the proof of Theorem 4.1.

6.2 Proof of Lemma 6.2

Fix view4 and hence the queried identities id(1)7 e id(q°)7 id*. We abbreviate n = n(view_4). For an
integer ¢, define the event

d0
E;: /\(y(z‘d(i)) #0mod t) Ay(id") =0 mod ¢ .
i=1

With this notation recall that n = Pry[E,] and we intend to show that

1 1
< < — 14
4n+1)q — = 2q (14)

(Also recall that Y = {y{,v1,...,Yn, £}, where the random variables {y{,y1,...,Yn, £} are distributed

as in Equation (3).) Over the integers we have by Equation (3) y(id) = y{ + Y., id;y; — ¢m for some
integer 0 < ¢ <n+ 1, where 0 < yy + > idiy; < (n+1)m <p. If £ =0 := [(yy + >y id;y;)/m]
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and y(id*) = 0 mod m, then clearly y(id*) = 0 mod p. On the other hand, if y(id) # 0 mod m then
y(id) # 0 mod p. Hence,

n= I;Y[Ep]

Y

Pr(t = £ PY[E, | £ = ]

1 *
= B, (=0
1

Pr[E,, | £ = ¢¥]
n+1Y

Pr[E,.],
n+1Yy

where the probability space Y’ contains the random variables {y{, y1,...,yn} distributed according to
Equation (3), for fixed ¢. Define Pry/[E,,] =: 7. Since trivially 7,, > 7, we obtain

1
n+1

It remains to compute an upper and lower bound on 7,,.
Let id # id" and a,b € Z. We collect some simple observations on function y(-) which essentially show
that the y(-) mod m are pairwise independent:

51;[y(z'd) =bmodm] = 1/m (16)

E’g[y(zd) =amodm |y(id)=bmodm] = 1/m. (17)

Equation (16) follows since for any choice of y1, ..., y, there is a single choice of y{ that will make the
condition hold. To show Equation (17) assume there exists an index 1 < ¢ < n such that id; = 1 and
id; = 0. Then fix all y;’s for j # i except y; so that y(id") = b. Therefore Pr [y(id) = a|y(id") =b] =
1/m. If there is no such i then we can use Bayes to reverse roles of id and id’.

We continue to bound 7,, with

q0
Mm = 51;[/\ y(id¥) # 0 mod m | y(id*) = 0 mod m] - Pr[y(id*) = 0 mod m)]
i=1
90

. 1 (0) ey _
1;’{1/"[/\y(zd ) # 0mod m | y(id*) = 0 mod m]

=

= — (1- 5%"[\/ y(id®) = 0 mod m | y(id*) = 0 mod m))
> (1= Pry(id”) = 0 mod m | y(id*) = 0 mod m]) (18)

A
15
5
3=
-
5

I
=
| —
O

El= 3=

where the last equation follows by our choice of m = 2¢ which minimizes the term. Furthermore, we
obtain 7, < 1/m = 1/(2q) by replacing the union bound from Equation (18) by the trivial bound
(1 =Pry/[---]) <1. Together with Equation (15) this proves Equation (14).
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6.3 Proof of Lemma 6.3

For the proof we can assume p < 1 since otherwise the lemma is trivially true.
Let ARTABORT be the event that the experiment artificially aborts at the end of the simulation. Let
ABORT = ARTABORT V FORCEDABORT be the event that it aborts artificially or forced. First we claim

Claim 6.7 For any fixed view 4, | Pr[7ABORT] — Ajow| < Alowp-

The proof of the claim is postponed until later. Since the claim holds for any fixed wview 4 it also
remains true conditioned on v/ =1 :

|Pr[=ABORT |7 = 1] — Now| < Aowp - (19)

In case of abort the experiment outputs 5’ = 0, otherwise it outputs ' = v/. We continue computing
Pr{Xs]:
Pr[X;] = Pr[f =1AABORT|+Pr[3 =1A—-ABORT]

= 0+Pr[3 =1A-ABORT]|

= Pr[y =1A-ABORT]|

= Pr[-ABORT |y =1]-Pr[y =1]

= Pr[-ABORT |y =1] -Pr[X;]
where the last equation holds since Pr[Xs] = Pr[y/ =1], i.e., in Game 2 the experiment outputs

whatever adversary A outputs.
Combining this with Equation (19) we get

[Pr{X3] — ANow - Pr[X2]| = Pr[Xa]-|Pr[—=ABORT |7 =1]— Aow]
< PT[X2] . /\lowp
S /\lowp .

It remains to prove Claim 6.7 which requires the following bound from [31].

Lemma 6.8 [Hoeffding’s bound] Let X7, ..., X be independent random variables with a < X; < b and
define X = % -3¢, X;. Then, for any t > 0, we have the inequality

Pr{|X — B[X]| > #] < 2¢2(%)",
where E[X] denotes the expected values of X.

Proof of Claim 6.7. We abbreviate n = n(view 4) and ' = n/(view 4). By construction the two events
ARTABORT and FORCEDABORT are independent and consequently we have

Pr[—~ABORT| = Pr[-FORCEDABORT] - Pr[-ARTABORT| = 1 - Pr [ ~ARTABORT] . (20)
We make )
s(k) == 24" - (owp) * In((GAowp) ™) = O(n*p* (k) In ((ngp(k)) ")) (21)

samples to compute an approximation 1’ of n, where Ao = 1/(4(n 4+ 1)q). For each sample we pick
Y6s Y1, - - - » Yn, £ independently according to the distribution Y from Equation (3) which defines the func-
tion y(+). Depending on y(-), each indicator variable X; is defined as

. 90 i@ TF) —
X, = 1: ) (y(zd ) # 0 mod p) Ay(id*) =0 mod p (22)
0: otherwise.
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By construction, Ajow < Pr{X; = 1] < Ayp. Finally, we make a majority decision over all X; by computing

n =5 S(lk) . Z:ikl) X;. By construction, E['] =7 > Ajow. Using Lemma 6.8 for the estimate 7’ of 7,

with ¢ :=np/4 and b — a < Ayp — Aow < 1/(2q), we get?

npq )2
2

Prlly —n| > np/4] < 2e7%

> Mow (Mowra )2
n_ﬁl 26_%( =)
2h 1

< 7)\0w~
= 410

Set p' := p/4. We call the approximation 1’ “good” if |’ —n| < np’ and “bad” otherwise. Then the
above establishes

Pr[n’ BAD] < Alowp'. (23)
For every fixed good n' we have n(1 — p’) < max{Aow,n'} < n(1 + p’). Since Pr[—ARTABORT]| =
AMow/ max{ Aow, 1} we have

A ow A ow
17/ < Pr[—=ARTABORT | ' GooD | < 17/ (24)
n(1+ ) n(l—p')
We first give a lower bound on Pr[—ABORT].
(20
Pr[—~ABORT]| = 7 - Pr[-ARTABORT]
> n - Pr[~ARTABORT |’ GooD | Pr[n GooD]
(23),29) Ao

> T (1 — Nowp
= n 77(1+P') ( lo P)

Z /\low : (1 - ,0/)2 Z )\low : (1 - P) .

We now turn to the upper bound on Pr[—-ABORT].

Pr[—~ABORT]| 2 n - (Pr[=ARTABORT |7’ GoOD | Pr[n’ cooD]+ Pr|[ —~ARTABORT |7’ BAD | Pr[n’ BAD])
< n - (Pr[~ARTABORT |7’ GooD ]+ Pr[n’ BAD])
(23),(24) Al
<M1—ﬂ) °
1
< A ow "\ T !
- 1 <1—ﬂ+p)
p<1/4

Aow (1 + 4p/) = AMow ° (1 + p) .

To complete the proof we need to establish the bound on the running time necessary to compute the
samples X1, ..., X (x). To compute one indicator variable X;, one has to sample once from distribution Y

and evaluate the functions y(-) on y(id*) and idV, ..., id'? according to Equation (22). Evaulating cach
of the functions y(-) takes n + 1 additions modulo p. Hence, the samples and hence the approximation
1’ can be computed with O(gns(k)) additions modulo p.

We now sketch how to compute the approximation 7’ with O(ns(k)) additions modulo p. Note
that for most of the X;’s it is sufficient to check y(id*) # 0 mod p in which case one can conclude
X; =0. If y(id*) = 0 mod p then one also has to evaluate y(-) also on id™, ..., id'?. However, since by
Equation (16), Pry[y(id*) = 0 mod p] < Pry[y(id*) = 0 mod m] < 1/2q, this only has to be done on an
expected ¢ fraction of all the samples. We therefore modify the simulation such that it aborts whenever
the total number of additions modulo p used to compute 1’ exceeds c - ns(k), for some fixed constant c.
Since by the Hoeffding bound (Lemma 6.8) this additional abort only happens with negligible probability,
it does not affect the adversary’s overall success probability.

3 At this point Waters [58] used b < 1 instead of our refined upper bound b < Ayp = 1/(2¢) from Lemma 6.2.
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7 Comparison

In this section we compare our scheme with the previous chosen-ciphertext secure IBE schemes in the
literature based on the BDDH assumption.

Previous to this work there were basically two ways of building chosen-ciphertext secure IBE schemes
in the standard model. One way is to combine the IBE schemes [8, 58] with the generic transformation
from [11], the other one stems from a remark from [15]. We will now carefully review both constructions
and compare them to our proposed scheme.

7.1 IB-KEM scheme obtained by the generic BCHK transformation

We begin by reviewing the generic transformations from any chosen-plaintext secure 2-HIBE into a
chosen-ciphertext secure IBE scheme by Boneh, Canetti, Halevi, and Katz [11] (BCHK), We describe the
CHK transformation in terms of key encapsulation and note that this is not possible for the improved
BK transformation.

The one-time signature based BCHK method transforms any two level HIB-KEM into an IB-KEM
scheme as follows: the identity of the first level HIB-KEM becomes the identity of the IB-KEM scheme.
To create a ciphertext of the IB-KEM a random pair of one-time signing/verification keys is chosen. A
HIB-KEM ciphertext for the message is created with respect to the two-level identity consisting of the
HIB-KEM identity at the first level and the verification key at the second level. The resulting HIB-KEM
ciphertext is signed using the signing key. Finally, the IB-KEM ciphertext is then composed by the
HIB-KEM ciphertext, the signature, and the corresponding verification key. For decapsulation first the
validity of the signature is checked and then, conditioned it was correct, the HIB-KEM ciphertext is
decapsulated using the hierarchical key-derivation algorithm for the 2-level “identity” consisting of id
plus the verification key.

It was proved in [11] that any chosen-plaintext secure 2-HIB-KEM with selective-identity security
with respect to the second level of the hierarchy and adaptive security at the first level is sufficient to
obtain a chosen-ciphertext secure IBE. Consequently, as noted in [58], the most efficient instantiation of
this transformation is obtained from the hybrid HIB-KEM using Waters IB-KEM [58] at the first level
and Boneh/Boyen’s IB-KEM [8] at the second level.

Combining the results from [11] with [58, 8] we get a chosen-ciphertext secure IB-KEM under the
BDDH assumption. Similar to our scheme, the security reduction roughly comes with a multiplicative
factor of = ng.

7.2 IB-KEM mentioned in BMW

In contrast to [11], Boyen, Mei, and Waters [15] propose a non black-box technique to obtain a chosen-
ciphertext secure IB-KEM from a 2-level HIB-KEM without relying on additional primitives like sig-
natures or MACs. For concreteness we cite their concrete statement (from Sec. 5.3 of the full version
of [15]), referring to the two HIBE constructions from Boneh-Boyen [8] and Waters [58]:

“It is easy to see that we obtain the desired result [i.e. a construction avoiding a signa-
ture/MAC] very simply, by extending the hierarchy in either HIBE construction by one level,
and setting the “identity” for that last level to be the hash value of the previous ciphertext
components. This gives us (in the Waters case) an adaptive-identity CCA2-secure HIBE, and
(in the Boneh-Boyen case) a selective-identity CCA2-secure HIBE.”

No theorem statement is given but it is clear that security relies on Waters 2-HIBE which has a loss-factor
of roughly (ng)? in the reduction from BDDH. We want to stress that in their construction the “hashing
the previous ciphertext” makes it basically impossible to replace the second level of Waters HIBE with
the more efficient (but only weakly=selective-identity secure) IBE scheme from Boneh-Boyen. This is
since the challenge ciphertext depends on the target identity which is used in the second-level of the
HIBE scheme and the target identity is not known until the adversary outputs it.

Since the construction uses Waters 2-HIBE the public-key has to include two independent sets of hash
public-keys, i.e. the public key contains roughly 2n elements from G;. For the same reason the security
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Scheme CCA?  Ciphertext Encapsulation Decapsulation Keysize  Security

Overhead #pairings + #[multi,regular,fixed-base]-exp+... ~ PK Reduction
Ours (§4) Vv 3¢ 0+[1,3,1] 3+[1,0,2] n+4 ng
Hybrid + CHK (§7.1) +/ 30425k (704) 0+ [1,3,1]+Sig 3+ [1,0,1]4+Viy n+4 nq
BMW (§7.2) Vv 3¢ 0+ [0,5,1] 4+0,1,0] n+3  (ng)?
Waters — 20 0+ [0,3,1] 2+ 1[0,0,0] n+2 ng

Figure 2: Efficiency comparison for CCA-secure IB-KEMs for identity-space IDSp = {0,1}". BMW
is the IB-KEM as proposed in [15], Hybrid + BK is the Waters/BB hybrid HIB-KEM scheme applied
to the CHK transformation as proposed in [58], and Waters is Waters’ original chosen-plaintext secure
IBE scheme [58]. The keysize is measured in terms of the number of group elements of the public key
pk. Ciphertext overhead represents the difference in bits between the ciphertext length and the message
length. /¢ is the length of the representation of an element in G; with respect to the security reduction
O(nq), while ¢’ is the length of a G; group element with respect to the security reduction O(n?¢?),
and thus ¢ < ¢. For comparison we mention that relative timings for the various operations are as
follows: bilinear pairing &~ 5 [53], multi-exponentiation ~ 1.5, regular exponentiation = 1, fixed-base
exponentiation < 0.2.

reduction of the proposed IBE scheme depends on the security of Waters’ 2-HIBE which is quadratic in
q and n.

7.3 A comparison

An efficiency comparison between the above two schemes, plus Waters original scheme, and our IBE is
given in Figure 2. We further discuss it in the following prose. We stress that the performance of the
security reduction is a crucial parameter here. In light of the keysize/security reduction tradeoff from
Section 5.3 we can also compare the BMW scheme to all other schemes by “normalizing” the security
reduction for all schemes to O(n?¢?), i.e. by setting the tradeoff parameter [ to [ = log,(ngq) ~ 20+7 = 27
(for very optimistic < 229 adversary queries and identities of n = 160 bits ) we get a public-key size of
n/27 + 4 =~ 9 group elements compared to the 2n + 3 = 323 group elements of BMW with the same
security.

The symmetric overhead of the BCHK transformation consists of a strong one-time signature plus a
verification key which sums up to ~ 160? = 25600 (“security parameter squared”) bits [23].

Since computing Waters hash requires computing n/2 products in G; on the average, where n = log, p,
it can be seen as a single exponentiation. Therefore we count computing H(id)" for random r as two
exponentiations. In the decapsulation algorithm of our IB-KEM we assume H(id) to be precomputed.
The size of the secret key sk is the same for all three schemes — a single element in G;.

To summarize, compared to the BMW IB-KEM from Section 7.2, our proposed chosen-ciphertext
secure IBE scheme achieves better performance and public key sizes with half of the BMW public key
size. In addition, the fact that our security reduction is more efficient than that of the BMW scheme
means that, for concrete values of the security parameter, our ciphertexts are much shorter even if the
two schemes have the same number of elements in the ciphertext.

In terms of computational efficiency our scheme has one fixed-based exponentiation more than the
the Hybrid + CHK scheme from Section 7.1, but it does not have to resort on any kind of exogenous
consistency check such as a signature or a MAC. Since one fixed-based exponentiation is < 0.2 regular
exponentiations, we conclude that encapsulation/decapsulation in our scheme is as efficient as in the
Hybrid + CHK scheme. The most striking difference, however, is that our scheme comes with shorter
ciphertexts: for current security requirements the ciphertexts difference (a strong one-time signature plus
a verification key) amounts to a couple of thousand bits [23].

We remark that, in order to get a direct full IBE scheme (in contrast to an IB-KEM) we can also apply
the MAC-based BCHK transformation [11] to the construction from Section 7.1 and get a full IBE scheme
with shorter ciphertexts. The latter construction significantly reduces the ciphertext overhead compared
to the CHK-transformation by replacing the signature with a MAC. Compared to our construction,

21



however, there is still a difference in the ciphertext size of a MAC tag plus a “commitment” which sums
up to ~ 576 bits [11].
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