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Abstract: Temperature changes caused by latenephassformation heats are an integral part ob#tevior of
shape memory alloys. Among the models capable adrporating the according thermomechanical coupling
between the mechanical and thermal constitutiveatiops is the one named after Miller, Achenbach and
Seelecke. Its versatility when implemented as adsttone program has already been documented fgtesin
crystals under uniaxial loading. This code was gmbiinto the 'user material' interface in the conuiaéffinite
element package ABAQUS and results validated bypaoison with reference solutions. Further, a meent
extension of the model to uniaxially stretched pojgtalline materials was tackled as these arereétgr
relevance. The approach roots in the method oamaterization' which interprets a polycrystal defation as
being equivalent to the one of a single crystalosegl to constantly varying energy barriers. Themaational
effort of the single crystal version therefore @iés: Thermal gradients can be spatially resolweshén a small

volume.
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1 Introduction

Shape memory alloys (SMA) are increasingly beingleyed as sensors and actuators. To
assign them a function their behavior should bessible to physical interpretation to utmost
precision, hence reliable modeling techniques aaadatory. Depending on temperature, the
constitutive behavior of SMAs is characterized liliegg pseudoplasticity (at low temperature)

or by pseudoelasticity (at high temperature). lige#the constitutive model for a SMA should



be so versatile as to be able to capture both pgasticity and pseudoelasticity; hence
accessing the entire range of SMA behavior. Whamase, it is required to model the
complex, non-linear hysteretic and thermomechalyic@upled material behavior of SMAs.
Thermomechanical coupling is inherent to SMA amilans as phase changes are inevitably
accompanied by temperature effects caused by l&test Consequently, mechanical and
thermal equations need to be solved simultaneouslymodel capable of this truly
thermomechanically coupled approach is the one daafeer Miuller, Achenbach and
Seelecke (Ref 1, henceforth ‘MAS model’) which eets all the salient characteristics of
SMA. The majority of the study considers singlestays as their stress-strain curve features a
theoretically constant transformation stress, algwto assess the stress evolution by
comparison to the case of an ideally elastic-plastaterial. The present publication
summarizes results of the implementation of thislehan the FEM (Finite-Element-method)
environment ABAQUS (ABAQUS, Inc., Dassault Systémes, Providence, Rhtsdand,
USA), indicating harmony to reference solutions etak either from alternative

implementations of the model or from basic mechanic

2 MAS model

Crystallographic observations have revealed th&MA under uniaxial loading forms a
layered structure, each mesoscopic layer beinghen ghases austenite or variants of
martensite. The derivation of the MAS model adhetastly to thermodynamics and roots in
the idea of a three-well potential energy with mmaiindicating the stable locations of these
three phases, austenite (A) and two martensition tphases (M+, M-). The preferred
modification of martensite is dictated by the diree of stress. Thermodynamical
considerations allow to establish a coupled sysiéthree ODE rate equations for the three

phase fractions. The temperature evolution witte specimen, taking proper account of



latent heat emission and absorption by phase ckarggaccompanied by heat convection on
external surfaces. Joule heating by an electrisakat may be incorporated. The temperature
is calculated from the energy balance which remtssa fourth differential equation. The
resulting 4d-ODE system can be solved numeric@liyonline version of the model applied
to a SMA wire is available for illustrative purpaes@Ref 2). As of now, the model has been

worked out exclusively for uniaxial states of stres

3 Numerical implementation

An implementation of the MAS model as a standalpnegram has been developed and
thoroughly tested over several years (Ref 3, RefTjs program code was interfaced with
the ABAQUS subroutine UMAT (User Material) but i®w called for every 'integration
point' within the volume individually. Thus, thegsent version features the following major
advantages as opposed to the previous programddfeemation is no longer limited to
tension, the geometry and spatial discretizatioa arbitrary, internal heat conduction
generates thermal gradients, mechanical and thenteahction with other parts of the model
and the ambiance can be incorporated. The phasgofia and the temperature enter as
solution-dependent state variables (SDV). Unlesgifip instructions are incorporated within
the UMAT, these quantities remain without physicsignificance to ABAQUS.
Thermomechanical coupling is achieved upon asdiltive fourth SDV to the ABAQUS
variable RPL within UMAT. Note that not all of thregular ABAQUS element types are
capable of this coupling; some elements used swoirk are strictly mechanical. In this case
the temperature is held constant. At the currevellef sophistication, verification of FEM
results is restricted to close reproduction of décome of the stand-alone program and an

implementation in FEMLAB (COMSOL AB, Stockholm, Sweden, Ref 5).



4 Results

4.1 Beam bending

Beam bending is somewhat more sophisticated thmplsitension as the magnitude and the
sign of the uniaxial stress varies through thekiiess. Planar Euler-Bernoulli beam elements
are attractive as they feature a single stressstmath component along and parallel to the
beam axis. However, the ABAQUS element library doatsoffer a beam element for coupled
temperature-displacement procedures. All simulatiaiealing with beam elements are
therefore strictly isothermal, excluding latent fheaternal heat conduction and heat transfer
across the external surfaces. All simulations irs thection incorporate geometrically
nonlinear behavior and model the beam using the @BA Euler-Bernoulli-beam element
B23. The capability of the MAS model in simulatitige behavior of SMA single crystals in

beam bending is demonstrated by the independent@ga in the sequel.

a) The bending of a straight horizontal cantilefedlly restrained at one end and loaded by a
vertical point force at its free end has been awlybefore (Ref 5). The force is defined as a
follower load and the constitutive behavior is pgplastic with initially equal fractions of
M+ and M-. A representative result is depicted ig. & showing the profile of the M+
fraction over the cross-section of the beam in eldienensional space at the instant of
maximum deflection. Upon bending, the solution bxkithe typical compression/tension
profile of stress for Euler-Bernoulli beams in thelastic regime modulated by
pseudoplastic/pseudoelastic behavior in the tramsftbton regime (Ref 6). Accordingly, the
phase fractions of the martensitic variants evall@ng the cantilever. The M+ fraction
increases in the tension regime below the neuilbal iwhereas above it the M- fraction is
growing at the expense of the M+ fraction. The rauiber is indicated by the feet of the

respective data points on the (x,y)-plane, showiing actual deflection in this plane.



Analogous graphs can be constructed for the Mtimacthe stress and the strain. Such load-
induced phase changes and the according formationadensite plates has been verified

experimentally for polycrystalline beams (Ref 7).

b) An analytical solution of the plastic zone candomputed for vertically loaded cantilevers
for the special case of an ideal elastic-plastrestitutive relation (Ref 8). This solution can be
compared to the deformation field of a pseudomaSMA cantilever produced by the FEM-
embedded MAS model as shown in Fig. 2. Both theqgoiedict the same boundary line of
the plastic zone (solid black line in Fig. 2) thwerifying the numerical validity of the

computer model. Note that the analytical solut®icapable of this boundary line only while
the MAS model additionally provides the concentnatiield of the M+ phase. Both solutions

were calculated on the basis of the geometricalhjinear theories.

4.2 Torsion of a pseudoelastic SMA tube

Conveniently, torsion is characterized by a uniagiate of stress and thus accessible to the
MAS model. The free oscillation of a pseudoelaSiMA pendulum at constant temperature
(T=353 K) has been studied in Ref 9 and Ref 10gutie standalone implementation of the
MAS model. We adopt the setting from Ref 9 to studg behavior of the FEM based
computer model where the earlier results servefasance solution. The torsion pendulum is
represented by a thin-walled pseudoelastic NiTet(® mm diameter, 5 cm length, 50 um
wall thickness). Supported at one end, this tubatteched to a weight at the opposite end
which produces the required inertia upon free tamh. The oscillation started from a pre-
twisted state where the according torque inducpsra martensitic state. In the FEM based
computer model the tube is discretized by 10 ABAQhAmM B33 elements along the axis.

The FEM based solution and the reference solutierjuxtaposed in Fig. 3 where the black



dots indicate the reference solution and linessotfthe FEM based torsion at three axial
nodes (located at the tube ends and in the cemspectively) as function of time. The

reference solution coincides with the torsion/tifmection of the node at the tube end. At the
center node the torsion is proportionally less w/iiile fixed node remains at rest. During the
first 50 s the inertia of the weight produces st torque to loop the material through the
pseudoelastic hysteresis. Accordingly, hysteredmted energy dissipation causes the
significant damping visible in Fig. 3. Eventuallyetmaterial behaves purely elastic, affecting

undamped harmonic oscillations.

4.3 Tensile test of a polycrystalline SMA wire

Seelecke and Heintze (Ref 11, Ref 12) have conétba polycrystalline formulation of the
MAS model which overcomes some of the physical thtions of the originally single-
crystalline model. The method of ‘parameterizatioehders the model more flexible but
preserves the computational simplicity of the sngrystal implementation with minor
adaptations. The polycrystal model takes into actthe averaged excess stresses occuring in
a domain-structured material (originating from grabrientations, local transformation
stresses and other local effects). It has beereganto the ABAQUS environment and was
used to simulate uniaxial straining of a pseuddiel&MVA wire. The results are compared to
the literature (Ref 11). The FEM model employs ABAQUS element type C3DS8T to
discretize a wire into 8x8x4 (width x thickness end@ith) elements. This element type is
capable of 3D problems, but for the special caae@txial loading the application of the one-
dimensional polycrystalline MAS model is possiblée significant advantage of the C3D8T
element over the formerly used beam-type elementhat this element type permits true
thermomechanical coupling. Fig. 4 and Fig. 5 shbes esult of such a tensile test with a

tetragonal wire geometry. The wire is loaded anldasted in displacement control mode so



as to simulate a complete pseudoelastic loadintpcgee inset in Fig. 4. Temperature effects
occur during yielding (0-6 s) and recovery (100-%0®f the transformation strain (see Fig. 4,
inset), where the release and the absorption ehtdatansformation heat affects self heating
and self cooling, respectively. These effects ammpensated by heat exchange with an
ambient medium at a temperature of 293 K. The teatpee profile resulting from these heat
transfers can be resolved in the simulation: Fighbws a contour plot of the temperature
field at the tip face of the wire for the situatiohthe fully transformed wire at maximum load
(after 6 s). Note the minute thermal conductivitgsnchosen deliberately to create a notable
thermal gradient throughout the tiny volume of thee. Fig. 4 shows the temperature
evolution at three nodes sets localized along tlenve center, a face center and an edge of
the wire. Because the local temperature devia@wasmall in a wire geometry, the resulting

stress-strain curve for all elements matches tleedoitized from the reference (Fig. 6).

Conclusions

Evaluating the results presented, it can be sthwdhe ABAQUS-version of the MAS model

is capable of achieving a good match to digitizethdrom reference solutions or, where
applicable, analytical computations from within HUBIAT interface of ABAQUS. Numerics

is strongly influenced by various settings incligimesh refinement, time incrementation etc.
and it must be borne in mind that the computatiecessitates a number of tolerances that are
not indicated in the reference solutions.

In summary, it can be safely stated that the MASdehas well suited to describe the
constitutive behavior of SMA, be it for single ctgfs or for polycrystals. A prime advantage
is its versatility, including the inherent thermachanical coupling and the extension to

polycrystalline materials.
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Figure captions

Fig. 1: Spatial distribution of the martensite Mhage in a cantilever under vertical loading.
The straight cantilever is clamped at x=0 in theuyg®plastic state and bent by an external
force acting in the y-direction at x = 0.1 m. Péoktis the spatial distribution of the M+ phase
content on and parallel to the beam axis as aibimdf spatial coordinates at the instant of
maximum bending. The spatial resolution throughlibam thickness is provided by section
points equidistant through the thickness. The bldats on the base plane show the beam

curvature. Original beam dimensions: Length = 0,Xmckness = 0.01 m (Ref 5).

Fig. 2: Contour plot of the M+ fraction (plotted ¢ime undeformed configuration; only 30%
of the beam from the clamped end are depicted)nidgf the transformation zone in a
pseudoplastic cantilever at vertical tip loadingtle positive y-direction. The load equals
1.825 times the vyield load as detected for the g#oaally linear case. The black solid line
indicates the analytical solution for the plastfatmation boundary obtained from an ideally

elastic-plastic material (digitized from Ref 8).

Fig. 3: Free oscillation of a pseudoelastic NiTiston pendulum. Comparison of a reference
solution from the literature (black dots, Fig. 3Ref 9) with the FEM-embedded version of
the MAS model (colored lines). Initially the pendul is twisted by 324°. Red lined: Fixed

tube end (no angular displacement), blue line: ratdmid-length, green line: torqued end.



The reference solution refers to the latter; theé a@d blue solutions illustrate the axial

evolution of the torsion.

Fig. 4: Temperature as a function of time for thneele sets located at the volume center
(solid line), face center (dashed line) and edgdtéd line). Inset: imposed strain as function

of time.

Fig. 5: Contour plot of the temperature field (‘NII'lin K) at the tip of the fully transformed
wire at maximum load (after 6 s in Fig. 4), showagronounced temperature gradient which

indicates the internal heat flux.

Fig. 6: Simulated stress/strain curve of a psewdbiel tetragonal SMA wire under uniaxial
straining. Black dots: FEM based simulation, sgsiareference solution taken from the

literature (Fig. 4.11 in Ref 11).
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