
University of Duisburg-Essen, Computer Networking Group

Security Evaluation of SCTP

Submitted by

Michael Nordhoff

Essen, September 2006

Bachelor Thesis





Abstract
The  Stream  Control  Transmission  Protocol  (SCTP)  is  a  new reliable  transport  protocol. 
Although first  developed  to  transport  telephone  signalling  messages  over  IP networks,  it 
could be used as a general purpose transport protocol in future networks. Integration of data, 
speech  and  multimedia  services  into  modern  network  topologies  is  a  strength  of  SCTP 
compared to the traditional protocols. But crucial for the success of SCTP will be its robust-
ness and security. Robustness versus malicious denial-of-service (DoS) attacks is essential to 
guarantee a high reliability and quality of service. In addition cryptographic services like au-
thentication and confidentiality are required and must be provided for SCTP traffic in the 
future. There are already three important approaches, which all have their own advantages 
and drawbacks. 

This work briefly explains SCTP and the security solutions. Further conceivable harmful 
DoS attacks are derived by analysing the SCTP standard. Tests were performed to evaluate 
SCTP's robustness in respect of different attack scenarios. Further on this work summarises 
the functional and performance-related drawbacks of the three security solutions. Then per-
formed  tests  to  evaluate  the  performance-related  drawbacks  –  which  are  up  to  now 
theoretically deducted but not comprehensively confirmed and benchmarked with real  test 
scenarios – are described and the results are discussed.

i



Contents
Introduction.................................................................................................................................3
Overview of SCTP...................................................................................................................... 4

1 General overview ................................................................................................................4
2 Comparison to TCP.............................................................................................................6
3 Security solutions for SCTP................................................................................................ 9

3.1 SCTP over IPsec.......................................................................................................... 9
3.2 TLS over SCTP..........................................................................................................11
3.3 Secure-SCTP..............................................................................................................12

Denial-of-Service attacks..........................................................................................................14
1 Motivation and introduction..............................................................................................14
2 Theoretical background.....................................................................................................15
3 Measurements....................................................................................................................18

3.1 Basic DoS attacks...................................................................................................... 18
3.2 Established data transfer under attack.......................................................................24

4 Measurement conclusion...................................................................................................35
Performance of security solutions.............................................................................................37

1 Motivation and introduction..............................................................................................37
2 Theoretical Background.................................................................................................... 37
3 Measurements....................................................................................................................39

3.1 Comparing throughput with different segment size.................................................. 40
3.2 TLS handshake costs concerning the amount of streams.......................................... 45
3.3 Throughput with an erroneous link........................................................................... 46

4 Measurement conclusion...................................................................................................47
Conclusion................................................................................................................................ 49
References.................................................................................................................................51
List of Abbreviations.................................................................................................................53
Appendix................................................................................................................................... 55

ii



1 Introduction
The Computer Networking Technology Group at the University of Duisburg-Essen deals with 
the development of new and future communication technologies needed for computer and 
other  modern  communication  networks.  One field  of  study is  the  new transport  protocol 
Stream Control Transmission Protocol (SCTP) with its applications and implementations. To 
establish SCTP as a multi-purpose transport protocol, the key criteria robustness, security and 
performance need to be taken into account. 

SCTP features like the 4-way handshake mechanism without state retention at the server's 
side  theoretically  eliminate  weaknesses  of  the  traditional  protocols  like  the  Transmission 
Control Protocol (TCP). Quantitative tests may allow conclusions about the actual robustness 
and efficiency, when measuring the behaviour of an SCTP implementation under high load 
and denial-of-service (DoS) attacks.

A major problem of acceptance of the common SCTP is the lack of security. There are 
already different  possibilities  to  provide  authentication  and data  confidentiality for  SCTP 
traffic. The standard security protocols IPsec and TLS in combination with SCTP are subject 
to functional and performance related limitations. To identify these limitations the standard 
security solutions are compared to an optimal solution, called Secure-SCTP (S-SCTP). This 
solution is assumed to be optimal, because the security functions are directly integrated into 
SCTP. There are two ways to compare the different solutions: on the one hand there are qual-
itative criteria. Security features, flexibility of usage, ease of usage, compatibility and other 
functional features can be compared in a qualitative way. On the other hand there are quantit-
ative criteria: performance is one of the most important criteria to decide if a solution will be 
accepted or not. 

To evaluate the performance and robustness of transport protocols in a realistic way, meas-
urements should be performed in a real environment. But the conditions in a real network are 
constantly changing (e.g. cross traffic); hence it is not possible to compare data measured at 
different times. This work deals with measurements and results of measurements that have 
been performed in a testbed environment where control over all essential parameters – re-
garding the hosts and the network – is given.

3



2 Overview of SCTP

2.1 General overview 

The Stream Control Transmission Protocol is a unicast transport protocol for IP networks that 
is standardized in RFC 2960 [1] by the Internet Engineering Task Force (IETF). It is located 
at the fourth OSI [2] layer like TCP and UDP and also uses IP as the underlying network pro-
tocol.  It  was  developed  because  the  existing  protocols  TCP and  UDP could  not  provide 
functionality and features which are needed for current and future applications of IP networks 
(see  chapter  1.3  of  [3]).  The  initial  development  of  the  standard  was  performed  by the 
SIGTRAN working  group of  the  IETF to  transport  signalling  data  of  telecommunication 
systems via IP-based networks. The task was to find a better protocol than UDP or TCP due 
to the needs of a better quality of service and more reliability. The result was a standard of a 
multi-purpose transport protocol which is defined in the RFC 2960 and is renewed by addi-
tional functions described in some RFCs and Internet-Drafts ([4], [5], [6], [7]). 
Before shortly introducing SCTP, some SCTP-related technical terms have to be explained 
because their meanings differ from meanings in other contexts. 

In SCTP communication  parties  are  called  endpoints.  The  communication  relationship 
between these parties is called association and an SCTP transport address is a combination 
of an IP address and an SCTP port (see chapter 2 in [3]). SCTP has – like UDP and TCP – its 
own port number space. One endpoint can have more than one network interface, thus it can 
have  more  than  one  IP  address,  called  multi-homing.  An  association  with  multi-homed 
endpoints can have multiple paths. A path is a determined, unidirectional network connection 
between two network interfaces of an association. One message is a coherent data unit with 
fixed boundaries that has to be sent from one endpoint to the other endpoint. A chunk is a 
formatted data block which is embedded in an SCTP packet. SCTP transfers data in one or 
more streams. A stream is a coherent sequence of messages or chunks respectively. 

The rough format of a SCTP packet is as follows: it contains an SCTP common header and 
one or more chunks grouped behind the header. The common header consists of the source 
port number and the destination port number. These SCTP port numbers can – with the help 
of the IP addresses of the IP header – identify the association the packet belongs to. The next 
4 bytes (32-bit word) contain the verification tag. It is allocated to the current association and 
prevents from confusion with old packages of former associations and also prevents blind 
attacks. A checksum builds the last  32-bit  word of the common header.  The checksum is 
calculated over the SCTP common header and all chunks. It guaranties data integrity. In the 

4



original RFC it was defined as an ADLER-32 checksum algorithm, but nowadays it turned 
out to be a week algorithm and it was changed to a CRC32 algorithm [4].

Chunks are designed in a way that they are fully self-descriptive having a uniform format. 
There are two major types of chunks: data and control chunks. Control chunks are used to 
manage and control the association; to send SCTP-communication-related control informa-
tion to the peer. DATA chunks carry the payload, i.e. the messages received from the upper 
layer protocol (ULP). SCTP can bundle control chunks and data chunks in one SCTP packet. 
In this case the control chunks must be located at the beginning of the packet before DATA 
chunks. 

SCTP has got a set of essential features. Some of them have not been available in general-
purpose data transmission protocols yet. Others are already well-known features of traditional 
protocols like TCP or UDP. SCTP is characterised by the complete set of provided features. 
Its main and most important features are briefly mentioned here:
• SCTP endpoints are able to have several network interfaces with one IP address each. It is 

called multi-homing (see chapter 2.2). 
• Usually the messages within a stream have to keep the right order. An SCTP association 

can consist of several message streams; there is no dependency between messages of differ-
ent streams. This feature is called multi-streaming and is also described in detail in the next 
chapter.

• Small Chunks can be put together in one SCTP packet. This reduces the overhead since the 
SCTP common header is just sent once. CONTROL and DATA chunks can be combined. 
Bundling is optional, the MTU has to be taken into account and some combinations are not 
allowed due to the logic of the association state machine. For further details have a look at 
chapter 6.10 of [1].

• User data fragmentation: SCTP takes the user data  message-wise from the ULP. If the 
message is too big to fit  into a single DATA chunk and SCTP packet with keeping the 
SCTP packet size below the MTU, SCTP fragments the message and puts it into more than 
one DATA chunk in different SCTP packets. With the help of the TSNs and the B and E 
('begin' and 'end') flags of the DATA chunk parameters the peer is able to reassemble the 
message and pass it to the ULP like it was passed to SCTP from the sender’s ULP. 

• Retransmission of lost  packets: SCTP is – like TCP – a reliable  transport  protocol  and 
ensures that the transmitted data is really received by the peer. The Selective Acknowledge 
Chunk (SACK chunk) informs the sender about the TSN of the last DATA chunk that was 
received without any earlier missing chunks. This is called the ‘cumulative ACK point’. 
Additionally complete sequences of received DATA chunks which were sent later than the 
cumulative ACK point are reported. Each sequence is defined by the TSN of the first and 
the last chunk. This SACK chunk information enables a very effective acknowledgement 
and retransmission algorithm. 

5



• The  flow and congestion control of SCTP is very similar to the TCP ones ([8], [9]). For 
flow control initially the values of ‘receiver advertised window size’ (a_rwnd) need to be 
exchanged. The sender keeps a parameter called ‘receiver window’ (rwnd) up-to-date. At 
the beginning of a session the rwnd value is set to the recently obtained a_rwnd. Sent data 
decreases the value, acknowledged data increases it.  When rwnd goes towards zero, the 
sender  stops  sending.  For  congestion  control  SCTP  uses  mainly  parameters  called 
‘congestion window’ (cwnd) and ‘slow-start  threshold’  (ssthresh).  These parameters are 
maintained for each path separately because different paths can be in completely different 
networks with very different behaviour. A transmission starts with a slow start phase. The 
capacity of the network is unknown and the transmission rate starts slowly; it increases – 
like the cwnd value – exponentially. The slow start phase ends when the cwnd value is 
greater than the ssthresh. The congestion avoidance phase follows; cwnd is increased by 1 
packet per RTT. In case congestion is detected, it swaps to the congestion control phase, 
i.e. when packet loss is detected by the sender, cwnd is cut in half. This combination of the 
main rules is called Additive Increase Multiplicative Decrease (AIMD). In case the retrans-
mission timer T3-rtx has expired, the cwnd value is set to one MTU and the transmission 
continues at the lowest level with the slow start phase. The same congestion control mech-
anisms for TCP and SCTP guaranties fairness for both protocols when they work together 
in the same IP networks and the Internet.

• SCTP  association management: SCTP is a connection-oriented protocol;  the association 
must be set up, maintained and shut down. For these purposes the procedures are exactly 
defined. It is also described in [1]; a concise state diagram can be found e.g. in [10].

Further introductions of SCTP can be found in the informational RFCs 3286 [11] and 3257 
[12] and on our institute-maintained web site “SCTP for Beginners” [13].

2.2 Comparison to TCP

Basic features of SCTP have already be mentioned shortly in the chapter above. Now we are 
focussing on features constituting the difference between SCTP and the traditional transport 
protocol TCP:
• Message stream versus byte stream: A mayor difference between TCP and SCTP is that 

TCP transports a byte stream while SCTP transports messages in a stream. If a number of 
bytes are sent (via TCP) in one step and later some more bytes are sent, the receiver can not 
distinguish which bytes were sent in which step. The ULP of TCP must have a mechanism 
to recover the message boundaries. SCTP, in contrast,  conserves message boundaries by 
operating on whole messages instead of single bytes. That means if one message of several 

6



related bytes of information is sent in one step, exactly that message is received in one step. 
The traditional protocol UDP has already sent data message-wise, but it is not a reliable 
protocol;  UDP sends every single message independent  of the others and does not care 
about the sequence or if the datagram has reached the receiver. SCTP's manner of sending 
data – message-wise in a reliable association – leads also to other features and possibilities 
that have not been provided by TCP or UDP.

• Multi-homing versus single-homing: SCTP and TCP are both reliable transport protocols 
and use IP as the underlying network protocol. Both protocols need to initiate a kind of 
connection between the peer instances by performing a so-called handshake mechanism 
before transferring user data. Each TCP peer is linked with exactly one IP address. SCTP 
endpoints are able to have several network interfaces with one IP address each. During ini-
tiation of an association the SCTP peers exchange lists with their additional IP addresses. 
In case of correct implementation and configuration of two SCTP endpoints with X and Y 
numbers of IP interfaces, the associations can have X*Y different paths (pp. 26/27 in [14]). 
This feature makes it possible to obtain a high reliability and robustness against single in-
terface and network failures.  TCP connections have only a single path and break down 
when this path is not working any more. This has often direct consequences to the applica-
tion layer: e.g. user sessions become invalid, application programs get interrupted or even 
terminated. An SCTP association has one primary path in each direction. The main load is 
transmitted over this primary path. In case of packet loss a backup path is used for retrans-
mission. This avoids additional and unnecessary congestion at the primary path. Through 
the backup paths HEARTBEAT chunks are transmitted regularly to check the availability 
of these paths. During an association lifetime the endpoints always have a status of all 
paths. This is needed in case the primary path has a failure. In this case another available 
path can be chosen as the new primary path. The old path becomes unavailable but it is 
checked with HEARTBEAT chunks for reachability. Unlike TCP the SCTP protocol is able 
to keep the association alive in case of network failures. Load balancing is not yet available 
with SCTP multi-homing.

• Multi-streaming  versus  single-streaming:  An  SCTP  association  can  consist  of  several 
message streams. Usually the messages within a stream have to keep the right order. If a 
message is missing or some messages arrive in another order at the SCTP peer, the peer has 
to wait until it can reorder the messages without missing any message before passing them 
to the ULP. There are many application scenarios where not all messages depend on other 
messages. They could be put into groups and only in these groups they are dependent and 
need to be in the right order. There is no need of an order between messages of different 
groups. Messages of different groups can be sent via different streams; all messages of a 
stream are ordered before they are passed to the ULP; but if a message is missing and the 
peer is waiting for it  or for its retransmission, it  doesn’t block the delivery of the other 

7



streams' messages. They can be passed to the ULP, if they are in order. SCTP avoids the so-
called head-of-line blocking, which occurs at TCP connections: here every association has 
a single stream of bytes. In case of a loss of an IP packet or an out-of-sequence delivery, 
TCP waits for the missing one and holds all 'younger' bytes in a resequencing buffer.

• Flexible/unordered delivery versus strict ordered delivery: If TCP segments arrive at the 
destination peer in the wrong order – i.e. the next segment of the sequence is missing so far 
– the other already arrived bytes need to be stored in the resequencing buffer. Because TCP 
is  byte-orientated,  there  is  no way to  solve this  head-of-line  blocking.  If SCTP DATA 
chunks of a single stream arrive at a peer in the wrong order and the ULP needs the mes-
sages in an ordered sequence, the other chunks – analogue to TCP – need to be stored in the 
resequencing buffer (see p. 38 in [14]). But in case a message does not need to be in the 
order of a sequence, a so-called U flag (unordered flag) can be set. In this case the peer 
passes this message directly to the ULP without putting it into the resequencing buffer. This 
avoids unnecessary blocking.

• Cumulative  acknowledgement  versus  selective  acknowledgement:  The  original  TCP 
standard and implementation performs only a cumulative acknowledgement. The receiver 
does  not  acknowledge  any actually  received  segments,  which  have  a  higher  sequence 
number than a segment that is missing so far. This causes unnecessary retransmits and – in 
case of multiple packet losses – retransmission time-outs and significant throughput reduc-
tion caused by the congestion control. To avoid this lack of effectiveness, additional TCP 
options were introduced: TCP Selective Acknowledgement Options [15]. It provides the 
opportunity to acknowledge up to four isolated, but complete segment blocks that have a 
higher sequence number than the segment, which was acknowledged by the cumulative ac-
knowledgement. SCTP provides actually the same feature, which is mandatory unlike the 
TCP option. Beyond this, it has not the restriction of only 4 segment blocks and thus may 
have better  performance than the retrofitted and limited TCP implementations (Chapter 
12.2.5 in [3]). Another problem of the TCP solution may occur when the connection was 
established while the server was under SYN flooding. Further details about this issue can 
be found in chapter 3.2.

• 4-way handshake versus 3-way handshake: Both protocols specify a so-called “handshake” 
procedure where control messages have to be exchanged to setup the reliable communica-
tion. TCP uses a 3-way handshake with the SYN – SYN/ACK – ACK packet exchange. 
SCTP  performs  four  steps  to  establish  an  association.  The  first  three  packets  INIT – 
INIT/ACK – COOKIE/ECHO have very similar functions compared to the TCP handshake. 
The fourth packet COOKIE/ACK to acknowledge the reception and the correctness of the 
cookie is not provided by TCP although TCP options may also use state cookies. Further 
details about the state cookie can be found in the next paragraph. At first sight it seems that 
SCTP needs to send more control data during the initiation before user data can flow. But 

8



SCTP actually can exchange data upon the delivery of the third packet. TCP also provides 
this 'piggy-packing' feature where user data can be sent with the third and all other ACK-
flagged packets; but this is optional and not supported by all implementations and their 
APIs. 

• Another difference, which occurs at the initiation of connections, is the state cookie which 
allows  an  SCTP  server  remain  stateless  during  the  beginning  of  the  handshake.  This 
protects against blind denial-of-service (DoS) attacks. Although current TCP implementa-
tions also have an additional option providing state cookies, it is not a mandatory function; 
some operating systems still do not provide it or have switched it off by default. From a 
cryptographic point of view the TCP state cookie is weaker (see p. 281 of [3]), and in case 
it is active, some TCP options and parameters are not supported any more. More details 
about this problem can be found in chapter 3.2. 

2.3 Security solutions for SCTP

2.3.1 SCTP over IPsec
IPsec is an architecture to secure communication at the network layer, i.e. the IP layer. It is a 
suite of protocols described by the IETF in several RFCs. Defined are the architecture, base 
protocols,  algorithms and the key management.  The Authentication Header protocol  (AH) 
offers authentication and integrity to all fields of an IP packet which do not change during 
transportation.  The Encapsulated Security Payload protocol (ESP) offers confidentiality by 
encryption and authentication of the payload. Both protocols can be used in two different 
modes: the  transport  and the  tunnel  mode.  In transport  mode usually two communicating 
hosts are endpoints of the security associations at the same time. The IP header with source 
and destination address remains unchanged and unencrypted.  In tunnel  mode usually two 
networks are communicating in a secure manner. Endpoints of the security association are 
gateways. The inter-network communication is secure; the intra-network communication in 
each network is insecure. IP packets are completely encapsulated and even the original header 
can be encrypted between the networks. Each packet gets an outer IP header by the gateway. 
Security associations (SAs) are set unidirectionally, that is why usually IPsec communication 
needs at  least  two associations. Each SA consists of a security parameter index (SPI), the 
source and the destination address and is defined in the security association database (SAD) 
at both endpoints. A second database is called security policy database (SPD) and is used to 
map traffic to the different SAs. 

The  Internet  Security Association  and Key Management  Protocol  (ISAKMP) defines  a 
framework for interaction between authentication, key management, and security associations 

9



protocols. The Internet Key Exchange (IKE) protocol is in charge of negotiation between the 
endpoints to exchange symmetric keys needed by AH and ESP. Figure 1 shows a block dia-
gram with the most important IPsec-related RFCs. 

Figure 1: IPsec protocol and document overview [16]

It is possible to combine IPsec with SCTP. At first sight it seems to be straightforward to 
use IPsec instead of IP because IPsec is strictly limited to the network layer. The behaviour 
and interface to the upper layer – which is SCTP in our case – seems to be equal compared to 
plain IP. After setting up the SADs and SPDs at each endpoint SCTP runs with IPsec as it 
would run with IP. Problems occur with some features of SCTP: As a multi-homing protocol, 
SCTP holds a list with (one or more) IP addresses for each association endpoint. IPsec associ-
ations are defined with exactly one IP address at each endpoint. That is why key management 
for a SCTP association can become much more problematic compared to TCP over IPsec. 
The proposed SCTP feature of Dynamic Address Reconfiguration is not possible with IPsec. 
The document RFC3554 [17] defines the usage of SCTP with IPsec. It faces these problems 
with a proposed list of IP addresses for each SA’s endpoint in the SAD. But at the moment 
there is no known implementation of this RFC. To run SCTP over IPsec with the convention-
al  implementations,  we  need  to  manage  the  SAs  individually  for  each  path  of  a  SCTP 
association. 

10

Architecture
RFC 2401 – Security Architecture for IP

Domain of Interpretation (DOI)
RFC 2407 – Internet Security DOI

Key Management
RFC 2408 – ISAKMP (key management framework)

RFC 2409 – IKE (key exchange protocol)

ESP Protocol
RFC 2406

Encryption 
Algorithms

RFC 2405 – DES CBC
RFC 2451 - others

AH Protocol
RFC 2402

Authentication 
Algorithms

RFC 2403 – MD5
RFC 2404 - SHA



2.3.2 TLS over SCTP
Transport Layer Security (TLS) is a protocol suite to add security features to the Transmission 
Control Protocol (TCP). It works at the upper boundary of the transport layer above TCP. 
TLS is the current name of the original labelled Secure Socket Layer (SSL). It was mainly de-
veloped to secure HTTP transmission over TCP. Later, several  other application protocols 
(like SecureSHell, SecureFileTransmissionProtocol) were developed. As the interface of TLS 
to the application protocol is slightly different to the plain TCP’s one, application protocols 
need to be adapted. The TLS suite consists of several protocols: the Handshake protocol, the 
Record Layer protocol, the Alert protocol and the Change Cipher Spec protocol (see figure 2).

The Record Layer protocol encapsulates all data send by TLS and takes care of fragmenta-
tion and reassembling of messages, encryption and decryption, authentication and verification 
using a Message Authentication Code (MAC). 

The Handshake protocol is in charge of setting up a connection. It negotiates the crypto-
graphic keys and algorithms for MAC and encryption. Its messages are also encapsulated and 
processed by the Record layer. Key management runs quite automatically although certific-
ates (usually for the server) must be generated, authenticated and users need to be able to 
check  them.  The  Alert  protocol  is  used  to  send error  or  caution  condition  signals.  Error 
signals can cause termination of the connection.  The Change Cipher protocol informs the 
peer  that  the  following  packets  are  treated  with  newly  negotiated  ciphers  and  keys. 
‘Rekeying’ needs to be performed.

Figure 2: SSL protocol overview [14]

For using TLS with SCTP there is already a standard specified (RFC3436 [18]). Because 
TLS and SSL were developed for TCP, it  requires a reliable, sequenced transport protocol 
beneath it. SCTP can provide this although features like unordered delivery or partial reliable 

11



transport cannot be used. An advantage of SCTP is that many applications can use one SCTP 
association which reduces overhead of the network layer. Figure 3 shows a scenario where 3 
applications use the same SCTP association. Each application uses one stream. Application 
number 2 uses standard SCTP. Application 1 and 2 use secured transmission by setting up a 
TLS  session  in  their  streams.  The  advantage  is  the  possibility  of  mixing  secured  and 
unsecured  data  in  one  SCTP  session  in  a  flexible  way.  A  disadvantage  is  a  possible 
performance problem, in case a very high number of streams of an SCTP association need to 
be secured. In this case handshake and rekeying procedures, which need to be performed for 
each stream, can degrade the performance of the system. A single TLS session over more than 
one stream cannot be set up – due to the sequenced in-order requirement of TLS.

Figure 3: Secured and unsecured transmission using TLS over SCTP [14]

2.3.3 Secure-SCTP
The combinations of standard security protocols like TLS or IPsec with SCTP are subject to 
limitations, i.e. some essential SCTP features are not supported. That is why S-SCTP as an in-
tegrated security extension was proposed ([14], [19]). It is downward compatible to standard 
SCTP, has features to ensure authentication, integrity and confidentiality on a high security 
level,  and  should  avoid  performance  problems.  It  is  flexible  e.g.  with  respect  to  mixing 
secured and unsecured data transmission. 

12



The secure session is initialized after the normal SCTP association has been established. If 
it is not possible – due to one endpoint does not support S-SCTP or the setup of the secure 
session fails – the application can decide if it wants to use the unsecured association or if it 
shuts down the association. One S-SCTP association has only one secure session for all data 
streams in a multi-streaming case and for all addresses in a multi-homing scenario. In order to 
achieve this,  the  security mechanism is  integrated  between the  upper  functional  block  of 
SCTP which performs grouping of SCTP chunks to SCTP packets (bundling) and the lower 
functional  block which performs the selection of network paths by choosing a destination 
address to send the SCTP packet as shown in figure 4.

Figure 4: Secured and unsecured transmission using S-SCTP [14]

S-SCTP offers a set of security levels, which can be changed during a secure session life-
time. An S-SCTP’s performance disadvantage compared to TLS over SCTP may occur when 
long messages have to be fragmented at the SCTP layer. In this case S-SCTP has to secure 
each packet separately, so the overhead is bigger compared to TLS where the message is first 
secured and then fragmented. With respect to all other criteria S-SCTP should perform as 
well as or even better than the other two security solutions.

13



3 Denial-of-Service attacks
After the basic introduction of SCTP, we compared SCTP to the TCP and gave an overview 
of  security  approaches  to  improve  SCTP.  This  chapter  now deals  with  denial-of-service 
attacks. History has shown vulnerabilities of transport protocols, so we have a look at SCTP's 
behaviour related to this kind of attacks. In the following sections the motivation for this 
work is explained, subsequently the theoretical background is described, the measurements 
are presented and a conclusion is drawn.

3.1 Motivation and introduction

The SYN flooding weakness of TCP was first described in July 1996 in Phrack Magazine 
[20] and an exploit tool was given. In September of the same year first SYN flooding attacks 
were observed; an attack against mail  servers of an Internet service provider (ISP) named 
Panix caused well-publicized outages [21]. This kind of attack was quite serious in comparis-
on to other denial-of-service attacks – like exhausting network resources because with a SYN 
flooding attack the attacker needs less packets to get the same results. 
Since that time countermeasures for limiting the impact of SYN flooding attacks were de-
veloped. On the one hand – which should only be mentioned for the sake of completeness – 
intervening routers were developed to filter these flooding packets; on the other hand TCP 
implementations  were  modified  or  extended  to  grant  robustness  for  the  communicating 
endpoints versus those attacks. SCTP as a new transport protocol and probable successor of 
TCP has to face these problems, too. The handshake mechanism is similar in a way that INIT 
flooding attacks could be performed analogue to SYN flooding attacks at  TCP endpoints. 
SCTP was developed in the late 1990s when the protocol engineers were aware of attacks like 
SYN flooding. That is why countermeasures have been taken into account already in the early 
concept of the protocol. This should be an advantage compared to subsequent modifications 
and additional options of the TCP protocol. After pointing out existing and relevant protec-
tion mechanisms of TCP and the standardised mechanism of SCTP in a theoretical manner, 
this work will  measure,  show and compare the actual behaviour of the different protocols 
under attack with the help of measurements in a testbed environment. Because SCTP uses a 
state cookie mechanism to avoid state retention, also COOKIE/ECHO flooding attacks are 
imaginable.  Parameters  of  the  flooding  packets  (INIT  and  COOKIE/ECHO)  should  be 
changed to evaluate all  possible attacks a malicious attacker would use. In the next para-
graphs we will derive relevant test scenarios by analysing the theoretical background.

14



3.2 Theoretical background

Unprotected TCP endpoints are vulnerable related to DoS attacks. Systems providing services 
for the public Internet – like web servers and others – are listening for any connection setup 
acquired from any host with a valid (even spoofed) IP address. After the server has received a 
SYN packet, it allocates resources assuming that a connection will be established soon. The 
information  about  the  future  connection  is  stored  in  a  data  structure  called  Transmission 
Control  Block  (TCB).  To  avoid  server's  memory  from  being  exhausted  by  connection 
requests, TCP implementations only allow a limited number of TCBs, a so-called backlog. If 
there is no response to the server's SYN/ACK by a client's ACK in a certain time, the connec-
tion information is deleted and the related memory is freed. During a DoS attack the backlog 
limit is reached. As the concept of the backlog is not standardised, the behaviour of different 
implementations vary. Systems could drop all additionally arriving SYN packets immediately 
as long as the backlog is filled up, discarding them silently or returning a reset packet (RST) 
is possible. Another way is to free an old TCB that is in the ACK-WAIT state and use the re-
source for the new connection. However, this behaviour harms the reliability of the server. 
Clients,  that  try  to  connect  when  an  attacker  performs  a  SYN  flooding,  do  not  get  a 
SYN/ACK response and cannot establish a connection to the server. The attacker has just to 
send frequently a quick barrage of SYN packets with spoofed source addresses. The barrage 
must be large enough to reach the backlog. The source IP addresses must be unresponsive to 
make sure that no host answers with an RST to the victims SYN/ACK. This would free the 
related TCB immediately. If the source addresses of the SYNs are unrelated (especially not 
only the attacker's one), it is hard to detect a SYN flooding and furthermore hard to detect if a 
particular SYN packet is an attacker's one or a usual request. To keep the backlog filled-up, 
the frequency of the barrages must be chosen wisely by the attacker. The barrage must be sent 
when the lifetime of the former half-open connections exceeds and the TCBs get freed. As the 
timing might be hard, it is also possible to flood permanently although this kind of attack can 
be observed easily and network devises could limit or block it.

First ideas of mitigating the effects of SYN flooding were rising the backlog limit and re-
ducing the TCBs' lifetime  interval.  Rising the backlog limit  led to performance  problems 
since the handling of the TCBs are not performance-optimised. Furthermore a change of the 
backlog size is only linear proportional to the amount of SYN packets an attacker has to send 
each barrage. Reducing the time-out duration of half-open connections improves the robust-
ness only in a limited way, but causes unwanted time-outs for proper connection requests. 
Some implementations today additionally have SYN caches in use. In case the backlog limit 
exceeds, additional SYN packets are stored in a SYN cache. In this cache a half-open connec-
tion allocates significantly less memory. The SYN cache is developed for high performance 
even if the size is much bigger compared to the backlog. The SYN information is stored like 

15



in a hash table. When there is memory free in the backlog, SYN data is read out of the SYN 
cache into memory. In case the SYN cache limit also exceeds, randomly chosen SYN data 
gets  overwritten  by  the  new  connection  details.  Overwritten  details  of  the  half-open 
connection get lost, the connection cannot be established any more. A more common way to 
face SYN flooding is the SYN cookie mechanism. It avoids allocating state information at all 
for connections which are in SYN-RECEIVED 'state'. The state information is encoded in the 
initial sequence number (ISN) of the SYN/ACK packet. No information has to be kept in a 
TCB or SYN cache.  In case  the  SYN was not  spoofed,  the  client  answers with an ACK 
packet.  Its  acknowledgement  number  –  which  is  derived  from  the  server's  ISN  (i.e. 
incremented by one) – is used to reconstruct the state information. Further on this information 
is stored in a TCB and the connection is established. The exact mechanism of encoding the 
state information into the ISN is implementation dependent. IP address and Port number pairs 
must be included as well as a kind of time stamp. The maximum segment size (MSS), which 
was given by the client, has to be integrated, too. Due to the limits of encoding into a 32 bit 
field (which has still to meet the TCP standards), not all possible MSS types can be encoded. 
Furthermore,  additional  TCP options  can  not  be  encoded.  Although these  options  might 
become negotiated successfully by a SYN and SYN/ACK packet, the server does not save 
these items of information. Partly, negotiated options can be retrieved during a session – like 
a SACK option when a SACK comes from the peer. But in a common one-way data flow 
(from the  server to  the  client)  the  server does not  usually receive a  SACK and therefore 
cannot use it. Like the SYN cache mechanism also SYN cookies do not allow piggy-packing 
with payload data [21]. Because of these disadvantages SYN cookies are often switched off 
by  default  (Linux  2.6.5  and  earlier).  Other  implementations  have  hybrid  solutions  and 
combine the techniques of SYN cache and SYN cookies. FreeBSD 6.1 for example first uses 
a SYN cache when the backlog limit has exceeded. In case the SYN cache limit also gets 
exceeded, the SYN cookie mechanism is activated. More details about state cookies can also 
be found in [22] and [23].

Aware of the history of TCP SYN flood attacks and the approaches to mitigate them, the 
protocol  engineers  developed SCTP and provided it  with  a  mandatory cookie  mechanism 
(unlike TCP with its optional SYN cookies). The fields of an INIT/ACK chunk (figure 5) are 
equal to the INIT chunk apart from the additional state cookie, which is a variable-length, but 
mandatory TLV (type-length-value) parameter. 

16



Figure 5: Minimal INIT/ACK chunk

 In the strict sense the state cookie mechanism is optional and the state cookie could be empty 
(size=0) or unused. This would mean a total lack of INIT flooding protection and is therefore 
no issue. In RFC 2960 [1] the generation of the cookie is specified as follows:

The following steps SHOULD be taken to generate the State Cookie:

1) Create an association TCB using information from both the received INIT and 
the outgoing INIT ACK chunk,

2) In the TCB, set the creation time to the current time of day, and the lifespan to 
the protocol parameter 'Valid.Cookie.Life',

3) From the TCB, identify and collect the minimal subset of information needed 
to re-create the TCB, and generate a MAC using this subset of information and a 
secret key (see [RFC2104] for an example of generating a MAC), and 

4) Generate the State Cookie by combining this subset of information and the 
resultant MAC.

After sending the INIT ACK with the State Cookie parameter, the sender 
SHOULD delete the TCB and any other local resource related to the new 
association, so as to prevent resource attacks.

17

Type = 0x02 Chunk flags = 0 Chunk length = variable

Initiation tag

Advertised receive window credit (a_rwdn)

Max. inbound streams (MIS)Outbound streams (OS)

Initial TSN

Parameter length = variableParameter type = 0x0007

State cookie~~ ~~



These instructions are SHOULD declarations; the actual implementation is the developer's de-
cision and not dependent on other implementations of the peers' SCTP instance because the 
content of the state cookie is exclusively meant for its own sender. Different kinds of MAC 
mechanisms – which have different cryptographic strength and different complexity – can be 
chosen. 

To measure the robustness of SCTP and to compare it to TCP, the service quality of a 
server should be measured under attack. Issue of interest is the SCTP server response to INIT 
packets with the expected INIT/ACKs during INIT flooding attacks. These INIT floods could 
be performed by sending barrages with different amounts of INIT packets. A relevant value to 
measure is the rate of unanswered INIT packets. It is an important quantity of reliability as 
well  as the response delay of the actually answered INITs, i.e.  the round trip time (RTT) 
which can be measured at the client's side between the sending of the INIT and the reception 
of the corresponding INIT/ACK. Chapter 3.3.1 (“Basic DoS attacks”) deals with this kind of 
scenarios.

Another indicator of the service quality is the behaviour of an SCTP instance related to an 
already established association with user data transfer.  When an INIT attack is performed 
towards the sending server, the remaining payload transmission rate  should be monitored. 
These tests are described in Chapter 3.3.2 (“Established data transfer under attacker”).

3.3 Measurements

To evaluate the performance of transport protocols in a realistic way, measurements should 
be  performed in  a  real  environment.  But  the  conditions  in  a  real  network  are  constantly 
changing (e.g. cross traffic); hence it is not possible to compare data measured at different 
times. To be able to compare the performance of the different scenarios and solutions, we 
need an environment where we have control over all parameters regarding the hosts and the 
network.  This  is  the  reason why we designed and implemented  a  testbed.  In general  the 
testbed developed in my foregoing work was used. Detailed information about it can be found 
in the documentation [24]. Especially for the tests described in chapter 3.3.2 the testbed has 
to be extended. Technical details can also be found in the appendix. All measurement results 
can be found on the enclosed compact disc. 

3.3.1 Basic DoS attacks
In this test we want to find out the behaviour of SCTP during a DoS attack. Interesting para-
meters to get conclusions about the reliability of this protocol  are the rate of unanswered 

18



INITs (i.e. when there is no reception of the related INIT/ACKs) and the delay of the suc-
ceeded answers. With the same testbed TCP reference tests should be performed. For the ba-
sic DoS attacks the general hardware and network configuration of the developed testbed (see 
2.3 of [24]) can be used without modifications. To get results that can be compared to the 
TCP measurements, multi-homing needs to be avoided. Hence, the second interface of each 
endpoint was shut down to avoid multi-homing. The sender should send single barrages of 
different size as fast a possible without bandwidth limitation. Traffic shaping at the router's 
system is  not needed.  One barrage has a  size between one and 35000 packets.  The INIT 
chunks were small and without any optional parameters (20 bytes). The flooding packets from 
the attacker have usual (i.e. not spoofed) IP addresses because it would not have any effect 
due to the stateless nature of half-open SCTP connections (from the server's point of view). It 
is important to suppress any COOKIE/ECHO or ABORT chunk that may return from the at-
tacker  to  the  server.  As operating  system  FreeBSD was  chosen  because  the  release  6.1 
provides a stable, well-supported and bug-fixed kernel implementation of SCTP. INITs were 
considered as not answered when no INIT/ACK arrived during the first  second beginning 
with sending the INIT. Network audits  have shown that  there  was actually no significant 
amount of INIT/ACKs responding later than one second. Each measurement with the particu-
lar barrage size was repeated ten times, and the (arithmetic) mean was determined. The com-
parable measurements with TCP were performed with Linux as operating system of the hosts. 
This guaranties a legitimate comparison of the cookie mechanisms. FreeBSD would perform 
its SYN cache mechanism or at least a combination of SYN cache and cookie mechanism. 
Unlike the cookie mechanism the cache cannot be switched off (Special tests with cache and 
cookie mechanisms of FreeBSD's TCP implementation can be found in [25]). Here the TCP 
tests were performed using the Linux (kernel 2.6.5) implementation of TCP with and without 
cookie  mechanism.  RST  packets  needed  to  be  blocked  by  the  attacker's  own  firewall 
'iptables'. 

In figure 6 and 7 the absolute unanswered INITs and SYNs are depicted. You can see that 
the loss of SCTP connections increases strongly between a barrage size of 100 and 1000 
packets  (please mind the logarithmic  scale  of the x-axis  of figure  6,  8 and  10). With the 
further increasing of the barrage size the loss increases only very slightly, the curve is almost 
parallel to the x-axis in figure 7. The lack of the TCP answers with cookie mechanism is com-
paratively much lower,  at  all  barrage sizes there  were less than  one hundred unanswered 
SYNs. By contrast the TCP endpoint without cookie mechanism ignores roughly proportion-
ally the incoming SYN packets. Interestingly not more than 770 packets were answered in 
any of the tests. 

19



Figure 6: Absolute unanswered packets during INIT and SYN flooding – focus on small barrages

Figure 7: Absolute unanswered packets during INIT and SYN flooding – focus on large barrages

20



In figure  8 and  9 the relative rates of unanswered connection requests are plotted.  The 
curve of TCP without cookies remains at 0% till a barrage of 700 packages and continues like 
an asymptote of the 100% limit. The loss rate of TCP with cookies is vanishingly low. The 
SCTP curve  increases  relatively early (first  losses  even at  barrage  sizes  of  less  than  100 
packets) and very fast even towards 50% at a barrage size of about 1000 packets. But with the 
subsequent increasing of the barrage size the loss rate lowers again and remains under 10 % 
since the barrage size is 12000 packets and higher. 

Figure 8: Rate of unanswered packets during INIT and SYN flooding – focus on small barrages

21



Figure 9: Rate of unanswered packets during INIT and SYN flooding – focus on large barrages

The round trip times were also measured at the attacker's host. The sent-times of the INITs or 
SYNs were subtracted from the arrived-times of the related INIT/ACKs or SYN/ACKs. 

SCTP's RTTs increase fast  at  the lower barrage sizes (see figure  10). For example the 
average RTT at 1000 packets is about ten times as high (namely 3451 microseconds) as the 
average RTT of a single packet (328 microseconds). But further on the RTT decreases again 
and settles  roughly around 2000 microseconds even at  the  barrage size of 35000 packets 
(figure  11). The RTTs of the TCP tests are much shorter. It does not increase significantly 
when rising the packet size and remains most times under 500 microseconds, i.e. the delay of 
SCTP's INIT/ACK is more than four times as large as TCP's SYN/ACK delay – both with 
their own cookie mechanisms. It has to be mentioned that the curve of TCP without cookie is 
not very meaningful; we have to keep in mind that only a vanishing low rate of packets were 
answered at all. 

22



Figure 10: RTT of answered packets during INIT and SYN flooding – focus on small barrages

Figure 11: RTT of answered packets during INIT and SYN flooding – focus on large barrages

23



3.3.2 Established data transfer under attack
The next measurements also deal with the robustness of the SCTP implementation during 
DoS attacks. But now the quality of service should be evaluated by analysing the behaviour of 
a communicating endpoint that sends data using an already established association. During 
the constant data transfer malicious DoS attacks should be sent to the data-sending host and 
the remaining throughput to the client should be measured.

For this scenario the known testbed (used for the tests described in 3.3.1) can be used 
although it has to be modified, i.e. it must be extended. Additionally to the  server and the 
router, we need two different endpoints that can communicate with the server: the client has 
to  establish  an  association  and  receive  data  from the  server;  the  attacker performs  DoS 
attacks. Both, client and attacker, are connected at different router interfaces in different net-
works. (See figure 12.) The server is (apart from the router) the only multi-homed host: it has 
two interfaces connected by two different networks with the router. The routing tables can be 
adapted for using a multi-homed or a single-homed server. During SCTP tests we can choose 
wether the server is connected to the client and the attacker using the same interface (thus 
usual  traffic  and  malicious  traffic  use  the  same  interface  of  the  server)  or  wether  the 
connection  to  the  attacker  is  given by a  completely separate  (backup)  path  with  its  own 
interface. 

Figure 12: Testbed configuration with different routing for single-homed and multi-homed server

24

single-home routing

multi-home routing

Server Router Client Attacker

NIC

primary path

backup path

10.1.1.x/24

10.1.2.x/24

10.1.3.x/24

10.1.4.x/24

NICNIC NIC NIC NIC



With the help of this testbed we try to simulate a realistic scenario. The Internet is an open 
network where the access is public and malicious attackers can cause troubles. Especially 
servers that are accessible via Internet must face undesirable traffic. Typically for the Internet 
are links with very different bandwidth limitations. For example a home user might have an 
Internet access of a very small bandwidth; others might have broadband access. Also the links 
inside the Internet vary widely. Consideration these facts we use a traffic-shaping software 
installed at the router. The software dummynet [26] meets all the requirements; it can pipe the 
routes separately and applies bandwidth limitations, delay and loss to it, i.e. in our testbed we 
can  shape  the  inoffensive  traffic  (between  server  and  client)  and  the  malicious  traffic 
(between server and attacker) separately. Further details about the configuration of dummynet 
in this testbed can be found in [24]. 

Due to the stateless nature of SCTP's half-open connections DoS attacks can only try to 
exhaust the limits of CPU performance and – mentioned here for the sake of completeness – 
network performance. To gain the best results – from the attacker's point of view – we have to 
find the most effective way to exhaust the victim's resources with limited means, especially 
with limited bandwidth towards the victim. We have to consider different opportunities to 
exploit  possible  vulnerabilities  of  the  handshake  mechanism.  First  we can  send common 
INITs  (analogue  to  the  tests  in  3.3.1).  In  this  case  the  victim  has  to  response  with  an 
INIT/ACK to the origin (or assumed origin) of the INIT. Additionally we can try to exhaust 
the victim's resources by sending INITs with unusually long parameters. There is no strict 
limit of the INIT chunk size, in general any kind of parameter of the TLV is possible (even 
the type is not known by the recipient). The victim has to react to extra-long INITs (LONG-
INIT) in a proper and defined way – without getting exploited. The response of an INIT must 
always be an INIT/ACK with a cookie that contains all data to reconstruct the received INIT 
chunk – including the large parameters.

Another  possibility  to  examine  the  robustness  of  SCTP  is  to  send  floods  of 
COOKIE/ECHO packets to the server. The attacker-generated (and therefore invalid) cookie 
inside the chunk can have random data. Every time the victim receives such a packet, it has to 
check if  the cookie is originally generated by itself.  After realising that  the the cookie is 
invalid, the receiver has to discard it silently. 

A more sophisticated attack could be sending a COOKIE/ECHO with a valid cookie. This 
can be done by starting the attack with the first three parts of a usual 4-way-handshake and 
further on replaying the COOKIE/ECHO with the real cookie earlier obtained by the victim. 
In this case the victim first verifies the validity of the cookie. If the lifetime check is also 
positive, it has to realize that another association is already established. With the help of the 
tie tags it has to exclude all possibilities of other reasons of the replay (peer restart, setup col-
lision,  lost  chunk)  and finally has to  discard  it  silently, too.  (See  more  details  in  chapter 
4.7.2.3 of [3]). A disadvantage of this kind of attack from the attacker's point of view is the 

25



mandatory revealing of his actual  IP address.  The attacker  has to send the INIT with his 
correct source address to enable a subsequent receipt of a valid cookie. This fact could be 
used to detect attackers by intrusion detection systems (IDS).

Another scenario could be that all the above mentioned attacks are run towards an SCTP 
port which is actually closed. In this case the server has to generate an ABORT chunk and 
send it back to the (assumed) origin. 

Now we have a set of scenario parameters for the following tests. The aim is to evaluate at 
which circumstances the SCTP implementation is more robust and which scenario configura-
tions might reveal vulnerabilities. 

Table 1 shows all parameters of the test scenario that can be changed. With the help of 
low-precision pre-tests the dimensions of the results could be roughly estimated, it was espe-
cially helpful for choosing appropriate bandwidth limits. Additionally, we realized that some 
bandwidth limits (marked with a '*' ) could not be utilised completely by the attacker in some 
cases, due to the attacker's performance limitations. The actual bandwidths in these special 
cases are mentioned later. In general, the tests were done with all combinations of the para-
meters, which are theoretically about more than two hundred. Actually the amount is a little 
bit lower due to some tests which cannot be performed: the REAL-COOKIE attack can not be 
performed at all towards closed ports because the attacker does not get a valid cookie from 
the victim.

parameter options
link bandwidth of 'good' data – 100 Mbps

– 50 Mbps

link bandwidth of attacker's connection – 1 Mbps
– 2 Mbps
– 4 Mbps
– 8 Mbps
– 16 Mbps *

– 32 Mbps *

– 64 Mbps *

kind of attack – INIT flooding (20 byte chunk)
– LONG-INIT flooding (1064 byte chunk)
– RND-COOKIE/ACK flooding (104 byte chunk)
– REAL-COOKIE/ACK flooding (104 byte chunk)

server's connectivity – single-homed (attack on primary interface)
– multi-homed (attack on secondary interface)

attack's destination port (server-side) – same as inoffensive data association
– closed port

Table 1: Test scenario configuration parameters

26



The server was running on FreeBSD (release 6.1) with the current SCTP kernel patches 
obtained by R. Steward. A simple SCTP server – using the SCTP-API – was written: it listens 
to a single port, after the connection to the client has been established it starts sending an un-
limited amount of 1000-Byte data chunks as fast as possible (apart from congestion and flow 
control). As payload data, a fixed byte stream (like one thousand times 'a') was used to save 
CPU time. The client – using the same operating system and SCTP stack – started initializing 
an association to the given SCTP peer. The buffer was read out without delay, the received 
data was counted, after every second the result was printed (or written into a file) and the 
counter was set to zero again. The attacker needed a more sophisticated program which was 
able to generate exact packets independent of any association state, protocol standard or API. 
With the help of SCTP testtool (STT) [27] it was possible to generate and send the needed 
packets. 

The procedure of each test was as follows: First the network (interface configuration and 
routing table) and dummynet had to be set up. While the server was running, the client star-
ted. It initialised the association, the server started sending the data chunks and the client star-
ted monitoring the throughput. The next 30 seconds this data transfer was performed without 
any attack, to make sure the connection is in steady state. Exactly after 30 seconds the flood-
ing attack was started by the attacker host, which lasts exactly 60 seconds. To find out the be-
haviour of the communicating endpoints after the attack, the connection was kept another 30 
seconds while monitoring the throughput as well. After altogether 120 seconds this single test 
was finished, the monitoring client and the server were terminated, a certain time was waited 
before starting the next test to make sure all resources were freed again, the dummynet pipes 
were empty and the network was completely calm. Every single test was performed ten times 
to check the reliability and significance of the outcomes. 

In this work I will display only a small amount of results. Only the meaningful outcomes 
are shown in the selected figures. To gain meaningful curves which represent the result of the 
measurements, I decided to display the median of the series of measurements in all charts of 
this chapter. It is more robust in the presence of outliers than the mean. Due to a few unpre-
dictable and inevitable values which were close to zero even before starting the attack, the 
mean would show confusing dents by values that are far away from any actually measured 
values.

Figure  13 shows the  results  of  the  following configuration  set:  the  server  was single-
homed, the flooding attack was run towards the same interface, that was also used for the data 
transfer to the client. (See again figure 12.) Client and attacker used the same open port of the 
server. Dummynet limited the link bandwidth between server and client to 100 Mbps (mega-
bit per second) – like a Fast Ethernet link – and 50 Mbps link to simulate a network path with 
more congestion leading to a lower utilisation of the server. All denoted links and their band-
widths  are  meant  as  full-duplex.  In  this  figure  INIT flooding  attacks  with  20-byte  INIT 

27



chunks are compared to so-called LONG-INIT attacks with their STT-generated chunks of 
1064 bytes. You can see that the curve of “INIT 100/8Mbps” denotes a short slow start during 
the first two seconds. Further on the transfer rate continues in a steady state at 91 Mbps; the 
link utilisation seems to be maximized. After starting the attack at 30 seconds, the transfer 
rate goes immediately down towards 13 Mbps and continues at that level until the attack quits 
at 90 seconds. Here, the transfer rate again goes immediately up to the former level of 91 
Mbps. The results of the same test with 50 Mbps as inoffensive data transfer (“INIT 50/8M-
bps”) are comparable. The payload throughput is cut in half (46 Mbps instead of 91 Mbps) 
like the link limitation (50 Mbps instead of 100 Mbps). During this attack (which is com-
pletely the same) also the remaining user data transfer rate is the same (13 Mbps). Here, the 
data transfer rate is not an objective of the link limitation towards the client any more, rather 
it is a result of the server's utilisation caused by the attacker. We have to keep in mind that the 
attacker's INIT floods and corresponding server's INIT/ACKs do use the same physical link 
between server and router but are  at no time object of the link (or better: path) limitation 
between  server  and  client  controlled  by the  router  with  dummynet.  The  end-to-end  link 
between server and router is a Gigabit Ethernet link and therefore no bottleneck, even for the 
sum inoffensive and offensive traffic. Both LONG-INIT curves settle roughly at 40 Mbps dur-
ing the attack with a small,  but not meaningful difference.  Compared to the INIT curves 
which are at 13 Mbps the LONG-INIT flooding attacks have less effect than the usual INIT 
flooding attacks in case the attacker's bandwidth is fixed. 

28



Figure 13: INIT versus LONG-INIT flooding attacks

After  analysing the  INIT and  LONG-INIT flooding  attacks,  the  RND-COOKIE attack 
should  be  focused.  During  this  attack  the  attacker  sends  floods  of  SCTP  packets  with 
COOKIE/ACK chunks – which seem to be responses of a reputed but actually not received 
INIT/ACK –  towards  the  server.  The  mandatory  cookie  in  this  chunk  is  just  a  random-
generated field of data. The chunk size is 104 byte – like an authentic COOKIE/ACK chunk. 
All other configurations are exactly the same as mentioned earlier in this chapter. But the 
results  are  different: there was no measurable  reduction of payload throughput during the 
attack. The server system was stressed so less that it could transmit the client data fast enough 
to fill up the links. The attacker could manage to send RND-COOKIE flooding attacks of 30 
Mbps when there was no bandwidth limitation. Even during these attacks the server could not 
be forced to reduce the payload transmission to the client. Figure 14 shows this result com-
pared to the former described INIT attack.

29



Figure 14: RND-COOKIE attacks compared to INIT attacks

The more sophisticated way to attack with COOKIE/ACK chunks is to use a valid cookie. 
Before starting this kind of attack, the attacker sends a non-spoofed INIT to the victim and 
uses the obtained cookie of the INIT/ACK chunk. Like all attacks described in this chapter 
the REAL-COOKIE flooding attack was performed by using STT, too. The results are dis-
played  in  figure  15:  the  REAL-COOKIE  attack  does  not  harm  the  victim  either  if  the 
attacker's bandwidth is limited to 8 Mbps. Otherwise when the bandwidth is not limited and 
the attacker can flood as fast as possible – and this was up to 32 Mbps – the victim is less 
robust than during the RND-COOKIE attack. Nevertheless the REAL-COOKIE attack is still 
significantly less harmful than the INIT attack which is mapped again in this chart as refer-
ence. 

30



Figure 15: REAL-COOKIE attack compared to INIT attack

We  have  compared  attacker's  strategies  with  different  bandwidth  limits  but  constant 
testbed configuration. A further step is to change the testbed configuration. It is imaginable 
that an attacker directs flooding attacks towards a server's interface which is actually not used 
as the primary path of the user data transmission. If the server is multi-homed, the attack 
could impinge at the backup interface. For this reason we set up the second interface of the 
server, which is also connected with the router, although it runs in a completely different 
network. The routing tables need to make sure that the attacker reaches the server via this 
backup interface and also the server responses (in case it  has to) to the attacker using the 
same one. The inoffensive data still uses the same path as before. The SCTP endpoint of the 
server is now listening also at the second interface with the open port. Figure 16 shows the 
comparison between an attack towards a single and therefore primary interface and an attack 
run towards the server's backup interface. This example displays the INIT flooding attacks 
with the certain bandwidth limitations used before. Obviously, the SCTP server is in this case 
more robust against  INIT attacks arriving at  the backup interface: the payload throughput 
does not fall under 35 Mbps unlike the single-homed case we have not more than 13 Mbps. I 
also ran the other kinds of attacks (LONG-INIT, RND-COOKIE, REAL-COOKIE) against the 
backup interface, the results were according to the measurements with a single interface, but 
over all the throughput level during the attacks remained higher.

31



Figure 16: Attack against primary interface versus attack against backup interface

The only parameter which has not changed up till now (see table 1) is the state of the port to 
which the attacker addresses the floods. The former tests have been run towards the same port 
which was also used for the data transfer to the client. Due to the server program it is open 
and listens to any incoming connection requests. At this point we want to find out the server's 
robustness during attacks  towards closed  ports.  In this  case  the  server has to  generate  an 
ABORT chunk (with the length of 4 bytes) and send it to the attacker. First I reconfigured the 
server to run with only one interface again. The network and routing tables were also recon-
figured.  Then  the  attacker  simply used  another  destination  port  number  for  the  flooding 
attacks. Again all kinds of attacks were performed. For representing all results again the INIT 
attack is chosen. Figure  17 shows the throughput under attack; the configuration was again 
the single-homed server (i.e. the attack at the only and primary interface) and the bandwidth 
limitation as used before: 8 Mbps for the attack and 50 and 100 Mbps for the server-client 
link.  The  results  are  clear:  an  8  Mbps  INIT  attack  cannot  harm  the  inoffensive  data 
transmission if it is directed towards a closed port. After removing the link limit, the attacker 
performed a 14 Mbps attack. Under that kind of attack the payload throughput of the 50 Mbps 
link did not change, but at  the 100 Mbps link it  was reduced from 91 to about 78 Mbps. 
Nevertheless this attack has still much less effect according to the same attack towards an 

32



open SCTP port. The measurements with the other kinds of attacks towards the closed ports 
produced comparative results: Flooding attacks towards closed ports are  harmless or even 
without any effect. A further example is displayed in figure 18: 16 Mbps LONG-INIT attacks 
towards  a  closed  port  do  harm the  payload  transmission  to  the  client,  but  this  attack  is 
significant weaker than the corresponding LONG-INIT attack towards the open port. 

Figure 17: INIT attacks towards open ports versus INIT attacks towards closed ports

The last test configuration which should be mentioned here is an attack towards a closed 
port of the backup interface. All three possible kinds of attack were performed. The results 
are not shown in a figure because there are simple enough to describe in words: Non of all 
possible  tests  with  the  maximum strength  (INIT: 8  Mbps;  LONG-INIT: 64  Mbps;  RND-
COOKIE: 30 Mbps) have shown any effect concerning the server's data transmission to the 
client. 

33



Figure 18: LONG-INIT attacks towards open ports versus LONG-INIT attacks towards closed ports

To classify and evaluate  the behaviour of SCTP with the results  shown above in a wider 
context,  reference measurements with TCP implementation are  imaginable.  The aim is to 
compare the most effective attack towards the SCTP handshake mechanism with the corres-
ponding attack towards the TCP handshake mechanism; i.e. the INIT flooding attack should 
be compared with the SYN flooding attack. A comparable configuration set has to be chosen. 
In these tests the server was in the single-home mode (due to the single-home nature of TCP). 
The attack was directed to the same port used for the client-communication. The server and 
the client programs were adapted to use TCP; the Linux operating systems was chosen. To 
generate the TCP SYNs, I used the code of “juno.c” [28] at the attacker host. The TCP SYN 
packet as well as the SYN/ACK packet had a usual length of 26 byte. The procedure of the 
test was the same as described for the SCTP tests. Figure 19 shows the results of the tests: at 
the 50 Mbps link the TCP payload throughput is mostly between 30 and 35 Mbps during an 8 
Mbps SYN flooding attack – with and without cookie mechanism. With the same configura-
tion set the INIT attacks reduced the payload throughput down towards only 13 Mbps. The 
same can be seen in figure  20 with the 100 Mbps server-client connection: While the INIT 
attack lowered the payload throughput again to only 13 Mbps, the TCP server kept sending 
with a rate of about 45 Mbps – no matter if with or without cookie mechanism. 

34



Figure 19: SYN flooding versus INIT flooding during 50 Mbps server-client transmission

Figure 20: SYN flooding versus INIT flooding during 100 Mbps server-client transmission

35



3.4 Measurement conclusion

This part of the work dealt with the evaluation of SCTP's robustness against DoS attacks. For 
checking the robustness we chose measurable values. In chapter 3.3.1 we monitored the reli-
ability of the server's response. We measured the rate of answered and unanswered INITs 
during a flooding attack and clocked the RTTs to evaluate the response delay of the answered 
INITs. We have seen that SCTP's loss rate went up roughly towards 50 % at a medium bar-
rage  size.  The  further  increasing  of  the  barrage  size  caused  a  reduction  of  the  lost  (i.e. 
unanswered) INIT rate. The sensibility of the server at a certain barrage size is caused by 
context swapping, the number of INITs per time slot is particular adverse. In case the barrage 
size is above this point, there are more INITs to answer at each time slot, which leads to relat-
ively less context swaps and to load relieving of the CPU. At larger barrage sizes the loss rate 
remained strictly under 10 %. This can be considered as certain level of reliability and stabil-
ity. By contrast the TCP peer without state cookie mechanism lost de facto all SYNs of the 
barrage which arrived later than the first 770 SYNs; i.e. about 98 % loss rate when the bar-
rage has a  feasible  size of  35.000 packets.  This  effect  is  caused  by the  backlog limit.  It 
remains exhausted during the barrage. Under attack this kind of endpoint can not be con-
sidered  as reliable  nor robust.  The  TCP endpoint  with cookie  mechanism delivered  other 
results: the loss rate was almost zero at all barrage sizes. This marks a very performance-
effective implementation of the cookie mechanism. But we have to keep in mind that every 
implementation  is  a  trade-off  between  cryptographic  security –  that  should  avoid  attacks 
against memory/buffer resources – and economy of CPU time – that avoids CPU resource 
attacks (see chapter 4.2.2.1 of [3] and also pp. 218 of [29]). The TCP state cookie protection 
might be cryptographically weaker. There were already exploits of former TCP implementa-
tions to generate valid cookies and subsequently to run sensitive buffer resource attacks. An-
other fact is that the TCP cookie can encode only a very limited amount of TCP options and 
parameters which leads to the problems already mentioned in chapter 3.2. This limited func-
tionality enables a less complex computation and explains the performance advantages. The 
results of the RTT analysis confirm this: The TCP endpoint answers significantly faster than 
the SCTP endpoint. Nevertheless the RTTs during large INIT barrage attacks are also stable 
and do not increase any more beyond a certain barrage size where the context swapping effect 
has no significance any more. 

In chapter 3.3.2 we focused on other values that are an alternative measurement for the ro-
bustness of SCTP against DoS attacks: the quality of service related to an existing server-
client association was monitored by measuring the decline of the transmission rate  of the 
victim during the attack. All imaginable kinds of flooding attacks for exploiting possible vul-
nerabilities of SCTP's handshake mechanism were performed in different configuration sets. 
One assumption was the limit of the bandwidth that was available for the attacker to stress the 

36



victim. The outcomes are strength classifications of the different attacks and configurations. 
They can be summarised by inequations: 

(1) INIT  >  LONG-INIT  >  REAL-COOKIE  >  RND-COOKIE

(2) primary interface  >  backup interface

(3) open port  >  closed port

Inequation (1) shows that the INIT flooding attack is the strongest kind of attack. An attacker 
with a given link bandwidth cannot gain more effect with using the other fake packets. There 
are  no  unexpected  weaknesses  of  the  SCTP implementation.  The  INIT flood  causes  the 
strongest CPU utilisation. Inequation (2) points the higher effect when flooding towards the 
same (i.e. primary) interface used for inoffensive data transmission. Inequation (3) shows the 
higher vulnerability if the attack is directed to an open port than to a closed port. 

To mitigate the effect of attacks it might be possible to force the more robust configura-
tions during an attack. The kind of attack (seen in inequation (1)) can exclusively be chosen 
by the attacker.  But the other configurations can possibly be influenced by the victim: an 
SCTP server could be run at an unusual port to confuse the attacker and to keep the open port 
secret.  Additionally  several  interfaces  could  deflect  from  the  primary  interface  used  for 
inoffensive  and  established  associations.  However,  these  approaches  will  not  completely 
solve the limited but remaining vulnerabilities. 

The last presented measurements of 3.3.2 allow a comparison with TCP. Also here, TCP 
shows a higher robustness; the data transfer is significantly less influenced by the SYN attack. 
The explanation was already noted above: Generating the INIT/ACK packet with its more 
complex cookie consumes more computing resources than generating the SYN/ACK packet 
with the 'poor' cookie. During the higher utilisation of the SCTP system, data of the estab-
lished association cannot be sent as fast as desired. 

An additional explanation of the higher performance of TCP can be the fact that the TCP 
implementation was developed and improved over decades of years. The code is very optim-
ised; ineffective and disadvantageous parts were substituted in the course of time. SCTP may 
functionally also be well-developed; nevertheless it is still in a relatively early phase of devel-
opment and the implementations are surely improvable concerning the performance. 

37



4 Performance of security solutions

4.1 Motivation and introduction

Standard SCTP does not provide security features like authentication or confidentiality. To 
increase the acceptance of SCTP as a multi-purpose transport protocol, the lack of security 
needs to be eliminated: additional functionality has to be provided to secure SCTP associ-
ations including its payload. 

There  are  already possibilities  to  provide  authentication  and confidentiality  for  SCTP. 
IPsec as a secure network protocol can be combined with SCTP. Alternatively TLS can be 
used to work on top of SCTP (according to the protocol layer model). Both combinations of 
standard security protocols with SCTP lead to functional and performance related problems. 
To solve these problems Secure-SCTP (S-SCTP) was developed; it is assumed to be optimal 
because the security functions are directly integrated into SCTP. 

These three solutions can be compared by focussing on qualitative and quantitative criter-
ia. While security features, flexibility and ease of usage, compatibility and other functional 
features can be compared in a qualitative way, performance is a very important quantitative 
criteria for the acceptance of a solution and needs to be compared.

Additionally, quantitative tests may allow conclusions to qualitative statements: if an im-
plementation is still working properly during high load, the robustness is high and in case of 
DoS attacks it is more invulnerable and therefore more reliable and secure.

In chapter 4.2 the theoretical background is described shortly, the features of the different 
solutions are compared and especially the limitations are pointed out. Chapter 4.3 presents 
the performance evaluation of these solutions. The comparison of the results leads to the con-
clusion in chapter 4.4.

4.2 Theoretical Background

In chapter 2.2 we already presented the security solutions for SCTP. Because IPsec and TLS 
were not developed for SCTP, these security solutions have limitations and problems. Table 2 
provides  an  overview of  all  three  security  solutions.  They are  theoretically  compared  by 
evaluating how good they support different features. These features are in each case well sup-
ported (indicated with “+”), not very well supported (shown by a “–“) or not supported at all 
(signified by “no”). 

38



Criteria TLS IPsec S-SCTP
Scalability for multiple streams – + +
Support for SCTP multi-homing + (–) +
Overhead for small messages (bundling) – + +
Overhead for long messages (fragmentation) + – –
Protection for unordered delivery service no + +
Protection for SCTP control chunks no + +
Flexible multiplexing of secure/insecure streams + no +
Management of security sessions (handling, automation) + – +
Partial Reliable Transport (SCTP extension) no + +
Dynamic Address Reconfiguration (SCTP extension) + – +

Table 2: Comparison of security solutions [30]

There are  functional limitations due to new features introduced by SCTP, which cannot be 
supported by the standard security solutions. These limitations can be found in table 2 where 
a “no” is written. These features are not supported by the respective protocol set:
• The unordered delivery service of SCTP cannot be used with TLS over SCTP. TLS was de-

veloped for TCP and uses the fact that all packages are delivered reliable and in sequence. 
• Caused by the same reason, the proposed partial reliable delivery extension cannot be sup-

ported  by TLS over  SCTP.  For  TLS –  as  an  extension  of  TCP  –  strict  reliability  is 
mandatory.

• A functional security problem of TLS over SCTP is the lack of  protection of the SCTP 
control chunks. Because TLS only protects the user data – which takes place at a higher 
layer than the SCTP layer, protected content is just injected into the data chunks. All chunk 
headers and control chunks and the common header are not protected at all.

• With SCTP over IPsec  flexible multiplexing of secure and insecure data is not possible, 
because the whole SCTP traffic is encapsulated by IPsec. Separating secure from insecure 
streams is not possible.

Other problems are performance-related. They are marked with a “–“ in table 2:
• Scalability of multiple streams is limited for TLS over SCTP. For each stream a new TLS 

session initiation has to be performed as well as rekeying during already established TLS 
sessions. This can be a performance problem in case there is a large number of streams. 

• Another problem is the  overhead for small messages, because each message is encrypted 
separately by TLS. The other solutions avoid this effect by bundling small messages into 

39



one SCTP packet which is encrypted as a whole. Thus TLS produces more header data 
added to each encrypted block. This header data uses bandwidth, too. TLS also causes a 
higher frequency of cryptographic function calls which leads to more CPU workload.

• The multi-homing feature is not well supported by SCTP over IPsec. Security Association 
(SA) management and key management of IPsec were developed to cope with unique IP 
addresses for each peer. In general key and association management is complex. An SCTP 
association between multi-homed endpoints with X and Y numbers of interfaces has up to 
X * Y different paths. This would lead to 2 * X * Y numbers of IPsec associations – due to 
the one-way nature of IPsec associations – which need to be managed separately. Although 
there is a new standard allowing SAs with more than one IP address per peer, there are no 
adequate implementations available until now (see [14], [17]). 

• The same problem occurs with the dynamic address reconfiguration extension in combina-
tion with IPsec. As an extension of the multi-homing feature it would increase the com-
plexity of managing security associations of IPsec. New IPsec associations would need to 
be established and old ones would need to be terminated even during a single and perman-
ent SCTP association.

• IPsec also has a problem with long messages which are longer than the PMTU and hence 
must be fragmented. This causes additional overhead because each fragment has to be pro-
tected separately. 

• As mentioned before S-SCTP has similar problems with the fragmentation of long mes-
sages. Fragmented S-SCTP payload needs to be encrypted separately. This fact also causes 
overhead and can reduce the performance.

The first mentioned functional problems of the different solutions cannot be solved. At least 
they cannot be solved without essential changes of these protocols. But performance-related 
problems mentioned above are only identified theoretically up to now. To evaluate the actual 
significance of these problems the solutions have to be analysed and real performance tests 
have to be made. The purpose of the following scenarios is to quantify these performance-
related effects of the different security solutions.

4.3 Measurements

To evaluate the performance of these protocol sets in a realistic way, we need a realistic en-
vironment. Like mentioned in chapter 3, we need an environment, where we control all para-
meters regarding the hosts and the network to be able to compare the performance of the dif-
ferent security solutions. This is why we cannot use real networks like the Internet, instead we 
use the self-implemented testbed presented in my project seminar work (see [24]). The same 

40



and unchanged testbed configuration was already used for the measurements in chapter 3.3.1. 
In the following sub-chapters three different kinds of tests are treated.
SuSE Linux 9.3 with kernel 2.6 is installed at the endpoint hosts. As SCTP implementation 
sctplib [31] was used. This userland prototype implementation has its advantages for research 
work. It is easier to install bug-fixes and other updates; there is no need to touch the kernel of 
the operation system. Adaptations can be made easier and the programs could be analysed 
with less effort.  Furthermore the Computer  Networking Group has experience with it  and 
knowledge about it. The most important reason to use sctplib is that the implementations of 
TLS over SCTP and S-SCTP – which should be evaluated – are extensions of sctplib and 
cannot  be  run  with  e.g.  the  kernel  implementation  of  FreeBSD.  These  already available 
sctplib extensions are introduced in [14]. Their implementations include basic server-client-
programs  to  perform  data  generation,  transmission  and  analysis.  Furthermore  the  IPsec 
programs of SuSE (ipsec-tools) were used. All details about setting up the sctp userland im-
plementation, their security solutions and the usage of the test programs are described in my 
earlier project report [24]. The complete results of the following tests are also at the compact 
disc.

4.3.1 Comparing throughput with different segment size
The following tests analyse the payload throughput of the different security solutions. Like in 
a real environment the bandwidth of the link is limited. Dummynet simulates different links: 
first a DSL (digital subscriber line) uplink connection with 192 kbps (kilobit per second) is 
imitated, further tests are also done with the link bandwidths of a T1 (Trunk 1) link (i.e. 1.544 
kbps) and – without dummynet – the actual link bandwidth of Gigabit Ethernet (1.000 Mbps). 
All specifications are meant full-duplex. The test programs (“test-ssctp-serv.cpp”, “test-ssctp-
cli.cpp”, “test-mssl-serv”, “test-mssl-cli.cpp”) are used to run the data transmission between 
server and client. To get comparable configurations of all three security solutions, the same 
cryptographic standards need to be chosen. All three solutions support triple DES (triple data 
encryption standard, 3DES) as data encryption standard to gain data confidentiality and SHA 
(secure hash algorithm) as cryptographic hash function to ensure data integrity, so these al-
gorithms are used. As measurement reference the unchanged sctplib without extra security 
functionality is tested, too.

To gain results about the different security solutions' behaviour, segments with different 
sizes  are  sent  to  the  peer.  Especially the  effect  of  different  overhead  at  small  and  large 
segment sizes should be evaluated. During these tests server and client are multi-homed with 
two interfaces each. The data is sent via a single stream. Every single test is performed in this 
way: the server program starts at the server host, then the client starts at the peer. After the 4-
way-handshake the server begins sending the data as fast as possible, only limited by the flow 

41



and  congestion  control.  The  client  reads  out  the  buffer  without  delay,  calculates  the 
throughput in intervals of one second and after five minutes it issues the mean receive rate. 
All tests are performed five times.

Figure 21: Payload throughput of security solutions at DSL (192 kbps) link simulation

Figure 21 shows the results of the DSL simulation. Each curve represents the mean of the par-
ticular measurements. The maximum bandwidth of this link is exactly 24 kBps. The top-most 
curve shows the standard SCTP results. It starts at 64 byte segment size with a value of 18.7 
kilobytes per second (kBps). Higher segment sizes cause higher payload throughput. A max-
imum of about 22.7 kBps payload throughput is reached at a segment size of 600 bytes. At 
this segment size the overhead caused by the chunk headers is relatively low compared to the 
smaller  segment  sizes.  Additionally the  overhead  caused  by the  SCTP common header  is 
reduced with the help of bundling: more than one data chunk is sent in a single SCTP packet. 
The link bandwidth is used completely, during the test the CPU utilisation is significantly 
under 100%; therefore we can state that the so-called bottleneck is the link bandwidth limita-
tion. At the segment size of 700 bytes is a slight dent in the curve (22.1 kBps). If the segments 
have 700 bytes or more, bundling is not possible any more due to the PMTU. The overhead is 
again higher although the chunk header forms a smaller portion of the complete chunk.

The curves of SCTP over IPsec and S-SCTP have the same shapes, but they are located 
slightly (i.e. less than 1 kBps) under the SCTP curve. Bundling is performed analogue to the 

42



standard SCTP transmissions. The only difference is the higher overhead: IPsec has additional 
ESP headers and authentication blocks; S-SCTP submits additionally its 'EncData' header and 
the AUTH chunk. Both protocols add this additional data once per SCTP packet or IP packet 
respectively. TLS over SCTP is different at this point: each single user message gets its own 
record header and authentication part before it is inserted into an SCTP data chunk. If the 
data chunks are small enough, SCTP bundles several of them into one SCTP packet – includ-
ing as much record headers and authentication blocks as user messages. This disadvantage 
can be seen at the TLS over SCTP curve of figure 21: the payload throughput for small user 
messages is very low (10.6 kBps at 64-byte messages) compared to the other security solu-
tions. Further on the curve converges to the other ones and meets them at the segment size of 
700 bytes. At this segment size there is no bundling effect any more and one SCTP packet (or 
one IP packet respectively) contains only a single set of authentication part and encryption 
header.

In another set of measurements the solutions are compared with a different link connecting 
the endpoints: a T1 link with a bandwidth of 1544 Mbps is simulated. All other parameters 
are exactly the same. The results can be seen in figure 22. The curves have exactly the same 
shapes and are exactly in the same positions related to each other. The chart looks like a copy 
of the already analysed one. The only difference is the scale of the y-axis. T1 allows a band-
width of 193 megabyte per second (MBps), the payload throughput reaches 182 MBps at 600-
byte segments. The CPU is still not under full utilisation; the bottleneck again is the link lim-
itation. The differences of the security solutions have the same proportions compared to the 
DSL measurements. That is why also the number of IP datagrams, SCTP packets and security 
headers is proportionally higher than during the DSL tests. All the above mentioned explana-
tions for the results are also valid for the results of this chart.

43



Figure 22: Payload throughput of security solutions at T1 link simulation

A third set of measurements is performed with exactly the same configuration apart from the 
link's bandwidth. This time it was not limited by dummynet and therefore the full 1000 Mbps 
of  the  Gigabit  Ethernet  are  available.  CPU monitoring  has  shown a  complete  utilisation 
during the tests for all segment sizes and security solutions. The available bandwidth is not 
completely used at all. In these cases the link limitation is not the bottleneck. In fact the pro-
tocol,  its  implementation  and  the  CPU performance  limit  the  actual  payload  throughput. 
Therefore these tests  do not allow statements about  the traffic  overhead and the resulting 
network effectiveness. Figure 23 shows the results. The top-most curve describes the standard 
SCTP tests, between the segment sizes of 64 bytes and 1300 bytes there is a steady and fast 
increasing of the throughput – starting at 1129 MBps and resulting in 10,340 MBps. Unlike 
the curves seen before there is no significant dent at 700-byte segments. It does not affect the 
CPU utilisation much if the unencrypted data chunks are bundled or not. Obviously there is a 
meaningful offset between 1300-byte and 1400-byte segments; here is the threshold between 
no fragmentation size and fragmentation size. At 1400-byte segments the server has to send 
about double as many SCTP packets in the same time to reach the same payload throughput 
compared to the transmission of 1300-byte segments. This is much more CPU time-consum-
ing.

44



The curves of SCTP over IPsec and S-SCTP remain much underneath the standard SCTP 
curve. This is not amazing because cryptographic functions utilise the CPU; encryption of a 
data block and creating an authentication part has to be done – once each SCTP packet or IP 
packet respectively. Offsets can be seen between 600-byte and 700-byte segments. It is the 
bundling/non-bundling threshold. At 700-byte segments about twice as many packets need to 
be sent. For each packet the encryption and authentication functions must be called. So the 
cryptographic workload of the CPU is much higher; this is why the throughput cannot reach 
the same rate as before. Further on the throughput increases again due to the larger blocks that 
are encrypted.  At 1400-byte segment  size there is the fragmentation threshold.  Like men-
tioned before the average encrypted block size is low, the cryptographic functions need to be 
called relatively often. Further on the payload throughput increases because the average size 
of the fragmented parts increases, too. This affects IPsec more heavily than S-SCTP.

The TLS curve is somewhere above the other security solution curves. Especially at the 
bundling and fragmentation thresholds the offsets are minimal and the curve remains at a sig-
nificant higher level. This seems to be curious because S-SCTP uses the same cryptographic 
libraries of TLS. S-SCTP and TLS over SCTP should deliver the same results between 700-
byte and 1400-byte segments. In this range the cryptographic functions are called with the 
same frequency. Actually, S-SCTP and SCTP over IPsec are slower because the encryption of 
the data and the transmission take place in the same process. When the send queue of this 
process is full, the send call blocks and waits until new packets can be transmitted. During 
this time the process runs idly. In the case that bundling cannot be used any more (around 700 
bytes of user data length) or when long messages have to be fragmented (1400 bytes of user 
data length) the throughput drops because there is less user data contained in packets and the 
process cannot send more packets due to the blocking send call. When using TLS, encryption 
and transmission are  performed by different  processes.  In this  case,  even if  the  send call 
blocks and waits until new packets can be transmitted, TLS can still encrypt data for future 
transmission. 

Finally an additional statement can be gained out of figure 23: TLS and S-SCTP have the 
ability  to  multiplex  protected  and  unprotected  data.  The  unprotected  data  throughput  of 
standard SCTP was meaningful faster;  a mixture of protected and unprotected data would 
consequently lead to a performance that is higher than at completely protected transmissions.

45



Figure 23: Payload throughput of security solutions at Gigabit Ethernet link

4.3.2 TLS handshake costs concerning the amount of streams
As already pointed out in chapter 4.3 the scalability for multiple streams is theoretically a 
problem with TLS over SCTP due to the separate security association management for each 
stream.  Especially at  the  beginning of  these  associations  the  handshakes  have to  be  per-
formed. To evaluate the actual significance of this drawback measurements are performed. 
Different amount of streams for the maximum inbound streams (MIB) and outbound streams 
(OS) are chosen. The delay between the start of the client program execution and the transfer 
of the first DATA chunk is measured. The results are depicted in figure  24. Obviously the 
duration of setting up the security associations is proportional to the amount of streams. The 
bandwidth of the link effects the gradient of the curves. While looking at the absolute values, 
the significance can be evaluated as very high. When there are 1000 streams to initiate, it 
takes 8 seconds at Gigabit Ethernet links, 16 seconds at T1 links and 69 seconds at DSL-like 
links. At 10,000 streams it takes 97, 175 and 704 seconds (i.e. more than 11 minutes!) re-
spectively. During this time CPU and network are well utilised.

46



Figure 24: Setup time for security associations of TLS over SCTP

4.3.3 Throughput with an erroneous link
Now we want to focus on the behaviour of the security solutions regarding erroneous links. 
The aim is to simulate low quality of the data link or network layer. Due to the possible usage 
of  SCTP  with  its  security  solutions  as  a  general  purpose  transport  protocol  of  modern 
networks, the underlying link could be of wireless nature. Typical for wireless networks are 
limited  bandwidth  and also  limited  quality of  service.  High delay,  jitter  and  loss  are  the 
problems the reliable transport protocol has to face. SCTP has to compensate the lack of reli-
ability and needs to provide reliable transport towards the upper layers. The error correction 
mechanisms of standard SCTP are known. Here, real measurements should show the effect-
iveness of these mechanisms for standard SCTP and all three security solutions.

The loss of packages can be considered as the worst disturbance of low-quality networks. 
These tests are done while simulating a link with limited bandwidth and adjustable loss rate. 
Dummynet is able to drop IP packets randomly with a certain probability and the resulting oc-
currence. As bandwidth limitation the T1 example of 1,544 Mbps is chosen again. The loss 
rate is changed between 0% and 15%. Each test lasts 5 minutes. Segments of 1000 bytes are 
sent from the server to the client. The results are displayed in figure 25. The standard SCTP 
payload throughput is about 180 MBps when the loss rate is 0%. The curve goes steadily 

47



down without  any special  dent  or  bend.  At  15% of  loss  only a  throughput  of  40  MBps 
remains. Relative to the high loss rate this remaining throughput can still be considered as 
satisfying. But more remarkable is that all security solutions show the same behaviour. The 
curves are not significantly different. At limited links all three security solutions and standard 
SCTP show the same robustness and performance at the certain loss rates. 

Figure 25: Payload throughput at different loss rates

4.4 Measurement conclusion

In this part of the work we focused on features and limitations of the SCTP security solutions. 
Functional drawbacks of the alternatives 'SCTP over IPsec' and 'TLS over SCTP' were pointed 
out. The new solution S-SCTP was introduced to solve these functional disadvantage. The 
performance-related  problems  were  discussed  theoretically  in  chapter  4.2,  too.  To  obtain 
statements about the significance of these performance-related problems, measurements have 
been performed. Let us have a look at the treated problems:
• Scalability  of  multiple  streams:  This  limitation  is  an  essential  drawback  for  TLS over 

SCTP. If there is a high amount of streams that need to be encrypted – which is imaginable 
for the use in telecommunication signalling networks –, the establishment of new security 
associations are very time-consuming and even unacceptable. Potential rekeying scenarios 

48



are also affected although their handshakes are shorter and the impact is not as high as at 
the initial handshakes. As expected the other solutions have shown their good scalability.

• Overhead for small messages: This drawback was confirmed by the measurements with the 
limited link bandwidth as a bottleneck. But the performance drawback in fast networks – 
which depends mostly on the CPU utilisation – was less significant than expected. 

• Long messages: IPsec was the weakest solution facing the fragmentation problem. But also 
S-SCTP was affected by throughput reduction.

Over high bandwidth links, the throughput of IPsec is lower compared to the other solutions. 
If only a small portion of the transmitted data has to be secured, the throughput of IPsec is 
lower because it can not differentiate between data that has to be secured and data that can be 
send unsecured. A TLS over SCTPs major performance limitation is linked to the number of 
streams which have to be secured. With an increasing number of streams, the memory usage 
and the time to establish the secure sessions for all streams also increase. The only identified 
throughput  degradation  occurs  when  TLS  has  to  secure  small  messages  which  can  be 
bundled. S-SCTP was designed to overcome the performance limitations of SCTP over IPsec 
and TLS over IPsec, so we only identified some performance limitations using high band-
width  links.  The  main  reason  for  this  is  the  use  of  a  prototype  S-SCTP implementation 
developed to validate the design decisions which was not optimised for performance yet.

49



5 Conclusion
This work deals with the analysis of robustness and security of SCTP. Chapter 1 outlines 
briefly the importance of robustness and security, presents the motivation of analysing SCTP 
concerning these aspects and introduces the general approach of realisation.

In chapter 2 a short overview of SCTP is given. Further on the most important differences 
between SCTP as a new, and TCP as a traditional transport protocol are pointed out. Essential 
attributes of SCTP – like multi-homing, message-wise transportation and multi-streaming – 
are the basis for a set of features that is different to the TCP's one. In the third sub-chapter the 
standard security protocols IPsec and TLS are explained; furthermore the combinations 'SCTP 
over  IPsec'  and  'TLS over  SCTP' as  SCTP security  solutions  are  explained.  Additionally 
Secure-SCTP (S-SCTP) is introduced; this integrative approach was developed to solve the 
functional limitations resulting from the other solutions.

Chapter 3 covers the analysis of robustness. Vulnerabilities of transport protocols towards 
DoS attacks and the motivation to mitigate their effects are described. DoS attacks are ana-
lysed in a theoretical manner and countermeasures are derived. Actually used techniques of 
the traditional transport protocol TCP and of the new SCTP are displayed. Further on tests 
were developed to evaluate the actual efficiency of these countermeasures. Different kinds of 
attacks, different configurations regarding the testbed and different parameters to measure the 
robustness are depicted. 

Finally the robustness of standard SCTP has shown good results concerning memory/buffer 
resource  DoS  attacks.  A  consequently  implemented  cookie  mechanism  has  actually  not 
shown any vulnerabilities to allow a memory/buffer-exhausting exploit. More differentiated 
results were obtained by evaluating the CPU resource attacks. The INIT attack towards an 
SCTP implementation shows higher vulnerability than a SYN attack towards a current, state 
cookie-protected  TCP implementation.  One  reasons  is  the  more  complex  state  cookie  of 
SCTP. Additionally a comprehensive set of other possible attacks were tested, too. Unexpec-
ted or even higher vulnerabilities were not discovered. Approaches of mitigating the impact 
of DoS attacks have been shown: hiding the information about open ports and primary paths 
to potential attackers reduces the effects of the attack. Finally and as mentioned before SCTP 
is still in a early phase of development and the implementations are surely improvable con-
cerning the performance. It is imaginable that future implementations of SCTP are less sensit-
ive to INIT attacks than current TCP implementations to SYN attacks.

Chapter  4  deals  with  the  security solutions  for  SCTP.  Standard  SCTP has no security 
features to protect the transmitted data sufficiently for today's fields of application.  Three 
already introduced security solutions are compared. In a deductive way their problems are 
discovered. Some of these problems are functional, especially some features of SCTP cannot 

50



be  used  in  the  combination  with  the  standard  security  protocols.  S-SCTP  solves  these 
problems and has less restrictions due to its integrated implementation. Other non-functional 
problems  are  performance-related  drawbacks.  In  the  first  step  they  were  also  deducted 
theoretically.  In  a  further  step  their  significance  is  evaluated  by  measuring  the  actual 
performance of the different solutions in different scenarios.

IPsec over SCTP has shown the most disadvantageous results. Beside a lack of flexibility, 
scalability and controllability,  it  shows the  most  performance-related  problems.  TCP over 
SCTP also has essential functional limitations, but the performance-related drawbacks were 
actually not very serious apart from the scalability problem with a high amount of streams. 

Basically the concept of S-SCTP has solved the problems occurring at the other solutions 
with traditional security protocols. The performance is not as good as TLS over SCTP; this is 
caused by the lack of performance optimisation of the used prototype implementation. 

What has not been discussed yet is the dependency of S-SCTP's acceptance in the stand-
ardisation process. The IETF standardisation process of S-SCTP would take a long time and 
requires essential changes of the existing SCTP standard. Without an adopted standard there 
is almost no chance that this solution will be accepted widely. Especially kernel implementa-
tions  for  all  important  operating  systems  are  necessary  to  increase  the  acceptance.  But 
problems would for example occur when the S-SCTP's association and key management is 
implemented into the kernel. This could cause unpredictable blocking effects due to certific-
ate verification and key establishment procedures. This could effect the responsiveness of the 
operating system and thus would not be accepted by developers and users. Aware of these 
problems the  Computer  Networking Group is  developing a  new concept:  Datagram TLS 
(DTLS) aware SCTP. This solution uses the standard of SCTP without major modifications in 
combination  with  DTLS;  a  modified  version  of  TLS to  support  UDP as  the  underlying 
transport protocol. It solves the earlier shown problems of TLS over SCTP and provides func-
tionality similar to S-SCTP. The concept is presented in [30]. The current work of the group 
is to refine the concept. An Internet Draft is already submitted to the IETF [32]. Further on a 
prototype implementation will be developed to advance a security solution for SCTP with a 
wide acceptance.

51



References

[1] Stewart,  R.;  Xie,  Q.;  Morneault,  K.:  RFC 2960  –  “Stream  Control  Transmission 
Protocol”, IETF, Network Working Group, October 2000

[2] ISO 7498:1984 Open Systems Interconnection - Basic Reference Model 
[3] Stewart, R.; Xie, Q.: “Stream Control Transmission Protocol – A Reference Guide”, 

Addison-Wesley, November 2001
[4] Stone, J.; Stewart, R.; Otis, D.: RFC 3309 – “Stream Control Transmission Protocol 

(SCTP) Checksum Change”, IETF, Network Working Group September 2002
[5] Stewart,  R.;  Ramalho,  M.;  Xie,  Q.;  Tüxen,  M.;  Conrad,  P.: RFC 3758 – “Stream 

Control Transmission Protocol (SCTP) Partial Reliability Extension”, IETF, Network 
Working Group, May 2004

[6] Stewart, R.; Ramalho, M.; Xie, Q.; Tüxen, M.; Conrad, P: Internet-Draft – “Stream 
Control Transmission Protocol (SCTP) Dynamic Address Reconfiguration”, draft-ietf-
tsvwg-addip-sctp-14 (work in progress), IETF, Network Working Group, March 2006

[7] Tüxen, M.; Stewart, R.; Lei, P.; Rescorla, E.: Internet-Draft – “Authenticated Chunks 
for  Stream  Control  Transmission  Protocol  (SCTP)”,  draft-ietf-tsvwg-sctp-auth-02 
(work in progress), IETF, Network Working Group, March 2006

[8] Balliache, L.: “Practical QOS”, http://www.opalsoft.net/qos/TCP-1021.htm 
[9] Floyd, S.: RFC 2914 – “Congestion Control Principles”, IETF, Network Working 

Group, September 2000 
[10] Jungmaier, A.; Schopp, M.; Tüxen, M.: “Performance Evaluation of the Simple 

Control Transmission Protocol (SCTP)”, ATM 2000 – Proceedings of the IEEE 
Conference on High Performance Switching and Routing, 2000, pp 141-148 

[11] Ong,  L.;  Yoakum,  J.:  RFC  3286  –  “An  Introduction  to  the  Stream  Control 
Transmission Protocol (SCTP)”, IETF, Network Working Group, May 2002

[12] Coene,  L.:  RFC  3257  -  “Stream  Control  Transmission  Protocol  Applicability 
Statement”, IETF, Network Working Group, April 2002

[13] Jungmaier, A.: “SCTP for Beginners”, http://tdrwww.exp-math.uni-
essen.de/inhalt/forschung/sctp_fb, 2003

[14] Unurkhaan, E.: “Secure End-to-End Transport – A new security extension for SCTP”, 
Dissertation, March 2005 

[15] Mathis, M.; Mahdavi, J.; Floyd, S.; Romanow, A: RFC 2018 - “TCP Selective 
Acknowledgement Options”, IETF, Network Working Group, October 1996

[16] Baccala, B.: Connected: “An Internet Encyclopedia”, http://www.freesoft.org/CIE/ 

52

http://www.opalsoft.net/qos/TCP-1021.htm
http://www.freesoft.org/CIE/
http://tdrwww.exp-math.uni-essen.de/inhalt/forschung/sctp_fb/sctp_multihoming.html
http://tdrwww.exp-math.uni-essen.de/inhalt/forschung/sctp_fb/sctp_multihoming.html


[17] Bellovin, S.; Ioannidis, J.; Keromytis, A.; Stewart, R.: RFC 3554 – “On the Use of 
Stream Control Transmission Protocol (SCTP) with IPsec”, IETF, Network Working 
Group, July 2003

[18] Jungmaier, A.; Rescorla, E.; Tüxen, M.: RFC 3436 – “Transport Layer Security over 
Stream Control Transmission Protocol”, IETF, Network Working Group, December 
2000

[19] Unurkhaan, E.; Rathgeb, E.; Jungmaier, A.: “Secure-SCTP – A versatile and secure 
transport protocol”

[20] daemon9, "Project Neptune", Phrack Magazine, Volume 7, Issue 48, File 13 of 18, 
July 1996.

[21] Eddy, W: Internet-Draft – “TCP SYN Flooding Attacks and Common Mitigations”, 
draft-eddy-syn-flood-02 (work  in  progress),  IETF, Network  Working Group,  April 
2006

[22] Aura, T.; Nikander, P.: “Stateless Connections”, Proc. Information and Communica-
tions  Security,  First  Intern.  Conf.,  ICICS’97,  pp.  87–97,  November  1997,  Beijing, 
China

[23] Bernstein, D.J.: “SYN cookies”, http://cr.yp.to/syncookies.html
[24] Nordhoff, M.: “Design and implementation of a test scenario to evaluate end-to-end 

security solutions for SCTP”, Project Seminar Report, IEM, May 2006
[25] Lemon, J.: "Resisting SYN Flood DoS Attacks with a SYN Cache", BSDCON 2002, 

February 2002
[26] Rizzo, L.: ”Dummynet”, http://info.iet.unipi.it/~luigi/ip_dummynet
[27] Tüxen, M.: “The SCTP testtool (STT)”, http://www.sctp.de/sctp-download.html
[28] 'Sorcerer of DALnet': “Juno”, http://packetstormsecurity.nl/DoS/juno.c
[29] Benecke, C.: “Überlebensfähige Sicherheitskomponenten für Hochgeschwindigkeits-

netze”, August 2002, http://www.cert.dfn.de/team/benecke/00_dis.pdf
[30] Hohendorf, C.; Rathgeb, P.; Unurkhaan, E.; Tüxen, M.: “Secure End-to-End Transport 

Over SCTP”, ETRICS 2006 
[31] Tüxen, M.; Jungmaier, A.: “sctplib”, http://www.sctp.de/sctp-download.html 
[32] Tüxen, M.; Hohendorf, C.; Rescorla, E.: Internet-Draft – “Datagram Transport Layer 

Security for Stream Control Transmission Protocol”, draft-tuexen-dtls-for-sctp-00.txt 
(work in progress), IETF, Network Working Group, February 2006, 
http://bgp.potaroo.net/ietf/all-ids/draft-tuexen-dtls-for-sctp-00.txt

53

http://bgp.potaroo.net/ietf/all-ids/draft-tuexen-dtls-for-sctp-00.txt
http://www.sctp.de/sctp-download.html
http://www.cert.dfn.de/team/benecke/00_dis.pdf
http://packetstormsecurity.nl/DoS/juno.c
http://www.sctp.de/sctp-download.html
http://info.iet.unipi.it/~luigi/ip_dummynet
http://cr.yp.to/syncookies.html


List of Abbreviations

CRC Cyclic Redundancy Check 
DSL Digital Subscriber Line
DoS Denial of Service
DTLS Datagram Transport Layer Security
HTTP HyperText Transfer Protocol 
ICMP Internet Control Message Protocol 
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IEM Institute for Experimental Mathematics 
IP Internet Protocol 
ISAKMP Internet Security Association and Key Management Protocol 
ISN Initial Sequence Number
kbps kilobit per second
kBps kilobyte per second
MAC Message Authentication Code 
Mbps Megabit per second
MBps Megabyte per second
MIS Maximum Inbound Streams
MSS Maximum Segment Size
MTU Maximum Transfer Unit 
NIC Network Interface Card 
OOTB Out Of The Blue (Packet) 
OS Outbound Streams
OSI Open Systems Interconnection 
PMTU Path MTU 
RFC Request For Comment 
RTO Retransmission TimeOut 
RTT Round Trip Time 
SHA Secure Hash Algorithm
SI Stream Identifier 

54



SIGTRAN Signalling Transport 
SSL Secure Socket Layer 
SSN Stream Sequence Number 
T1 Trunk 1 (telecommunication standard)
TCB Transmission Control Block
TCP Transmission Control Protocol 
TLS Transport Layer Security 
TLV Type-Length-Value (parameter)
TSN Transmission Sequence Number 
UDP User Datagram Protocol
ULP Upper Layer Protocol

55



Appendix

Hardware Configuration
Hardware of Server:

- AMD Athlon XP 2000+
- 2 * Netgear AC9100 Gigbit Ethernet
- 1* Broadcom 100Base-T onboard
- Asustek A7V8X Motherboard
- 512 MB Ram

Hardware of client and attacker:
- AMD Athlon XP 2000+
- 2 * Intel Pro/1000 MT Server Adapter
- 1* Broadcom 100Base-T onboard
- Asustek A7V8X Motherboard
- 512 MB Ram

Hardware of Router:
- Motherboard A8N-SLI
- AMD Athlon64 3000 Venice
- 1 GB RAM
- 2 * Intel Dual Server Adapter 1000Base-TX PCI64 (PWLA-8492MT)
- 1 * Marvell Gigabit Ethernet

56



FreeBSD system and kernel building
FreeBSD 6.1 is installed with its kernel sources. KDE desktop environment is chosen, Firefox 
as Internet browser, VIM as editor and KDevelop as development environment are installed, 
too. The following tools are installed separately:

- autoconf
- automake
- libtool
- cvs
- svn

The  latest  Ethereal  version  (v.0.99)  is  obtained  from  the  SVN  (subversion)  server.  For 
configuring  the  X  server,  the  instructions  of  the  FreeBSD  handbook 
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/x-config.html) are used. 

To use a current SCTP kernel implementation with the latest  and bug-fixes, the kernel 
needs to be patched and built again. 
The patches are obtained from Randall Stewart, who kindly created an account for his the 
CVS server:
# cd /root/sctp_kern
# cvs -d :ext:<user>@stewart.chicago.il.us:/usr/sctpCVS co KERN
# cvs -d :ext:<user>@stewart.chicago.il.us:/usr/sctpCVS co APPS

The included setup program was executed:
# cd KERN
# ./setup_FreeBSD_src.sh

Further on the kernel configuration file needs to be modified by these lines:
options SCTP
options SCTP_DEBUG

57

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/x-config.html


The kernel has to be built and installed:
# cd /usr/src
# make buildkernel KERNCONF=<config-file>
# make installkernel KERNCONF=<config-file>
General  instructions  about  configuring and building of  FreeBSD kernels  can  be  found at 
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html).

Finally four files need to be copied to other locations:
# cp /root/sctp_kern/KERN/netinet/sctp.h /usr/include/sys
# cp /root/sctp_kern/KERN/netinet/sctp_uio.h /usr/include/sys
# cp /root/sctp_kern/KERN/freebsd6_1/sys/socket.h /usr/include/sys
# cp /root/sctp_kern/KERN/freebsd49/netinet/in.h /usr/include/sys

To be able to use the corresponding library, it has to be built:
cd /root/sctp_kern/KERN/usr.lib 
gmake 
cp libsctp.a /usr/lib 
ranlib

Code that uses the SCTP library needs to be compiled like this:
gcc terminal.c -lsctp

   

58

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html


Statutory declaration  /  Eidesstattliche Erklärung

I have prepared this thesis entirely by myself using only the sources mentioned.
This thesis – or any variation thereof - has never been submitted to any 
examination authority. 

Die vorliegende Arbeit wurde von mir selbstständig und nur unter der Verwendung 
der angegebenen Quellen angefertigt. Die Arbeit hat in dieser oder ähnlicher Form 
noch keiner Prüfungsbehörde vorgelegen. 

________________________________
(Michael Nordhoff) 

 Essen, 7th of September 2006  /  Essen, 7. September 2006


	1 Introduction
	2 Overview of SCTP
	2.1 General overview 
	2.2 Comparison to TCP
	2.3 Security solutions for SCTP
	2.3.1 SCTP over IPsec
	2.3.2 TLS over SCTP
	2.3.3 Secure-SCTP


	3 Denial-of-Service attacks
	3.1 Motivation and introduction
	3.2 Theoretical background
	3.3 Measurements
	3.3.1 Basic DoS attacks
	3.3.2 Established data transfer under attack

	3.4 Measurement conclusion

	4 Performance of security solutions
	4.1 Motivation and introduction
	4.2 Theoretical Background
	4.3 Measurements
	4.3.1 Comparing throughput with different segment size
	4.3.2 TLS handshake costs concerning the amount of streams
	4.3.3 Throughput with an erroneous link

	4.4 Measurement conclusion

	5 Conclusion
	References
	List of Abbreviations
	Appendix

