
Browser Security Model∗

Horst Görtz Institute for IT Security
Ruhr University Bochum, Germany

Michael Nordhoff
michael.nordhoff@rub.de

February 8, 2008

Abstract

Attacks against web authentication, known as rebind-
ing attacks and dynamic pharming, are described. It
works by hijacking DNS and infecting the victim’s
browser with malicious JavaScript or other active con-
tent, which then exploits the name-based same-origin
policy to hijack a legitimate session after authentica-
tion has taken place. As a result, the attack works
regardless of the authentication scheme used. Dy-
namic pharming enables the adversary to eavesdrop
on sensitive content, forge transactions, key log sec-
ondary passwords, etc. To counter dynamic pharm-
ing attacks, several long-standing and recent proposals
are identified and discussed. Also browser’s plug-ins
with specific vulnerabilities and their potential elim-
ination are treated. Smarter pinning, finer-grained
origins or policy-based pinning are some kinds of
countermeasures. Recently two locked same-origin
policies for web browsers were published. In con-
trast to the legacy same-origin policy, which regulates
cross-object access control in browsers using domain
names, the locked same-origin policy enforces access
using servers’ X.509 certificates and public keys. This
policies help existing web authentication mechanisms
resist dynamic pharming attacks.

1 Introduction

The well-known social engineering attack called phish-
ing makes the credulous Internet user to disclose con-

∗This is a seminar work presented at the Chair of Network
and Data Security, Ruhr University Bochum, Germany

fidential information to the attacker, although he usu-
ally would direct these information only to a trustwor-
thy communication partner he thinks to communicate
with. The attack leads to an identity theft, the web
visitor reveals his login credentials, e.g. personal iden-
tification numbers, bank account transaction numbers
or credit card numbers. In a more advanced attack the
adversary subverts the domain name systems (DNS).
The attacker can force the DNS system to resolve a
victim’s site domain to an attacker-controlled IP ad-
dress. This can be achieved by techniques like DNS
poisoning and DNS response forgery. Nowadays DNS
systems can be more and more manipulated in wire-
less network environments which are mainly still not
secured properly. Often a wireless LAN router can be
compromised easily and either the whole software can
be swapped or manipulated or only DNS settings can
be changed and might then point to a DNS server the
attacker owns. This attack is also known as “Drive-by
pharming” [1]. Additional to this deceptive (static)
pharming attacks, there is a new, stronger attack
called dynamic pharming. During this kind of attack,
the attacker first delivers a web document containing
malicious content (e.g. JavaScript code) to the vic-
tim, and then forces the victim’s browser to connect
to the legitimate server in a separate window, frame,
table field, etc. The adversary waits for the victim
to authenticate himself to the legitimate server, and
then uses the malicious JavaScript to hijack the vic-
tim’s authenticated session. Dynamic pharming can
be used to compromise even the strongest web authen-
tication schemes currently known, e.g. passwords, au-
thentication cookies or client-side SSL [4]. It is a spe-
cial kind of a DNS rebinding attack. These attacks



need to cheat the client’s same-origin policy, because
the malicious script - coming from the adversary -
needs access to the objects (web documents, authenti-
cation cookies, etc.) related or belonging to the honest
web site. The usual same-origin policy fails because
browsers consider two objects to have the same origin
if the host and the protocol are the same. Actually
the host and domain name of the malicious script and
the honest web site are equal but the IP addresses, the
actual and technical origins, are different. To face the
problems of rebinding attacks, there are defenses by
using smarter pinning, policy-based pinning or finer-
grained origins. A recent proposal is using more so-
phisticated policies which not only binding to URLs
but also to properties of the SSL, X.509 and public
key system. More details are given later.

1.1 Preliminaries

For further analysis we define three underlying threat
models: phishers, pharmers and active man-in-the-
middle attackers. We assume a phisher has the fol-
lowing capabilities:

• complete control of a web server with a public IP
address (but not the same domain name as the
target domain)

• the ability to send emails or instant messages to
potential victims

• mount application-layer MITM-attacks, repre-
senting a legitimate server to the victim and prox-
ying input from the victim to the real server as
needed.

• complete control of authoritative DNS server for
resolving DNS names of the own domain

Pharmers are attackers which have all the abilities of
a phisher, plus

• the ability to change DNS records for the target
site, such that the victim will resolve the target
site’s name to the attacker’s IP address.

We assume that the server under the pharmer’s con-
trol does not have the same IP address as the victim’s
server and cannot receive packets destined to the vic-
tim’s IP address.
Man-in-the-middle (MITM) attackers have all the
abilities of a pharmer, plus

• the ability to control the Internet routing infras-
tructure and re-route traffic destined to particu-
lar IP addresses

• eavesdrop on all traffic.

• mount active, network-layer, MITM attacks

Furthermore we assume that users will ignore
browser’s certificate warnings that appear e.g. when
a self-signed certificate is used or the certificate chain
cannot be validated toward built-in root certificates.
Studies have shown that users routinely ignore and
dismiss such warnings [2].

1.2 Principle of Dynamic Pharming At-
tacks

In [4] the authors describe the so-called dynamic
pharming attack. During usual (static) pharming at-
tacks the adversary makes the victim’s name service
to answer queries for the target domain to always re-
turn the adversary’s IP address. But during dynamic
pharming attacks the adversary causes DNS to answer
queries with either his IP address or the legitimate
server’s IP address - depending on the situation, the
state of the attack. This can be achieved by a special
form of rebinding attacks explained in chapter 4.3.
The reminder of this paper introduces object access
mechanisms in chapter 2. The resulting DNS rebind-
ing vulnerabilities are described in chapter 3, leading
to different attack scenarios explained in chapter 4.
In chapter 5 potential countermeasures are shown and
discussed in the final section.

2 Object Access in Browsers

Today’s web browsers are – including a plurality of
plug-ins – highly integrated applications which leads
to the multipurpose usability, specially for modern
web applications. To face the security risks of un-
trusted content trying to execute harmful code and
trying to get unauthorized access to other objects,
the sandbox principle is used for the browser security
model: each object using the browser’s environment
and its DOM model1 has only access to resources of
the same sandbox. Resources are mainly accessible
through the network, but also history, cookies and

1The Document Object Model (DOM) is a platform-
and language-neutral interface allowing scripts to dynami-
cally access and update content, structure and style of doc-
uments. Standardized by W3C, usually used in browsers by
JavaScript[3].

2



other objects need to be focused. The so-called sand-
boxes are generated for each origin of any object.

2.1 Access Within Same Origin

HTML and browser scripts can read and write net-
work resources using the HTTP protocol. Plug-ins
like Flash player or Java have additionally the oppor-
tunity to establish direct socket connections on other
ports. While Java has no port number restrictions
for the socket access, the Flash player needs to find
a suitable XML policy file at the destination’s site to
connect to port numbers below 1024.
Some browsers block network access to prevent dis-
tributed denial of service attacks or cross site script-
ing even within same origin. The Internet Explorer
7 does not allow connections to e.g. FTP, SMTP,
POP3, NNTP or IMAP. Otherwise the simple HTTP
form protocol attack could be applied. Firefox 2 even
blocks dozens of well-known server ports.[5]

2.2 Access Between Different Same Ori-
gins

In general web content and scripts have no authoriza-
tion to access DOM elements of other origins. Fo-
cussing on network access, browser scripts may send
HTTP requests to any destination, but if the desti-
nation differs from the script’s origin the responses
cannot be read. Additionally the Flash player can
read content from other sources and even make direct
socket connections if the destination provides a suit-
able XML policy file.
Furthermore some types of web content like CSS are
assumed to be public libraries and can be included
across domains [6].

2.3 Origin Definition

Different parts of the browser use different origin
definitions. For network access three parts of the
Uniform Resource Locator (URL) are used: the
scheme (e.g. http or ftp), the host name (like
www.example.com.au) and the port number (e.g.
8080). Cookies for example just use the host names
as origin. [7]

3 DNS Rebinding Vulnerabilities

Common browsers’ same origin policies (SOP) refer
(beside to protocol and port number) always to the
host names, but actually the network access is per-
formed with the help of IP addresses. When the
browser starts loading network content, the host name

first gets resolved by the DNS system and then the
request is sent with the IP address as technical and
routable destination. The origin of the content will be
still determined as DNS host name. The SOP can only
be effective until there is no mismatch between the
DNS host name and the technical IP address (apart
from protocol and port number). And this is a crux
of the SOP.

3.1 Standard Rebinding Vulnerability

The simple standard rebinding attack uses JavaScript,
Java Virtual Machine (Java VM, JVM) or Flash
player to connect to different IP addresses with the
same host name.

3.1.1 Multiple A Records

This kind of vulnerability was already published in
May 1996 [8]. An A record is a specific type of record
in the DNS database. It associates a DNS host name
with a single IP address. Multiple A records with the
same host name are used to send the DNS-requesting
client a complete list of associated IP addresses. Al-
though it is not standardized, the DNS client may
cyclically run through the list and use the next IP ad-
dress for resolving. The so-called round-robin mecha-
nism provides load balancing and failover.
With multiple A records of an attacker’s host name
in the DNS system the Java VM could be confused:
while the malicious Java applet is loaded from the first
IP address, the applet itself starts connecting to the
same host name. Because of the round-robin usage of
A records, this second connection is established to the
second IP address, which was chosen by the attacker
to address the victim target. The Java VM permitted
this attack, because the target’s IP address belongs
to one of the origins A records. With Java applets
this specific type of attack is not possible anymore
because the current Java SOP focuses directly on the
network layer: connections can only be established to
IP addresses the applet comes actually from.
With JavaScript a very similar attack is still possible:
the malicious JavaScript code needs to initiate a sec-
ond connection to the attacker’s server. The attacker
only has to refuse this connection request by send-
ing a TCP RST packet2 and the browser is forced
to connect to the second IP address. This is not an

2A TCP reset packet (TCP RST) is commonly sent by a
host when a client (here: browser) tries to establish a TCP
connection to a closed port, i.e. a port which no service (here:
HTTP or HTTPS) is listening on

3



unspecified bug of browser software, it is the idea of
round-robin DNS to obtain failover. Thus the browser
continues working with the new IP address masked by
the origin host name, and the malicious script loaded
from the attacker’s IP address can connect to the vic-
tim’s IP address. [9].

3.1.2 Time-Varying DNS

Instead of multiple A records the attacker can also
provide the authentic DNS record with a minimal
time-to-live (TTL). If this field is set to zero, the re-
solving IP address is discarded immediately after the
first usage.
Like described above JavaScript tries to reconnect to
the origin but the browser has to re-resolve the DNS
host name. In the meantime the attacker has modified
the DNS record and swapped the authentic IP address
to the victim’s IP address. Now the malicious script
can use the XMLHttpRequest or uses frames to con-
nect to the victim, because the SOP is not violated
regarding the DNS host name.

3.1.3 Weak Countermeasure: Browsers’ Pin-
ning

Browsers’ developers have basically realized the DNS
rebinding vulnerabilities and have introduced the to-
day’s commonly used countermeasure: the pinning
mechanism. Most of the current browsers perform
pinning of IP addresses to host names. This should
prevent referencing to multiple IP addresses when
scripts access to a single host name. But these pin-
ning policies are not strictly applied, because round-
robin DNS and dynamic DNS (DDNS)3 need still be
supported by the browsers. Sidestepping the pinning
mechanism is easily: the current Internet Explorer 7
or the prior version usually pins IP addresses to host
names for 30 minutes. But when there are multiple A
records and the server is not available at the current
used IP address, it will use the next IP address af-
ter one second. Firefox 1.5 and 2 pin IP addresses to
DNS entries for 60 to 120 seconds. With JavaScript
it is possible to forecast the exact expire time. With
multiple A records it is also possible to reduce this

3Dynamic DNS (DDNS) can be used to resolve DNS host
names to dynamic allocated IP addresses. Every time the ISP
allocates a new IP address to a host, this host can initiate an
DNS record update. Ensuring the propagation of updates the
time-to-live value of these records are short.

time to one second. Opera 9 pins for about 12 min-
utes, but with connecting to a closed port the pin
releases after a few seconds. Safari 2 only pins for
one second. In this case forcing HTTP to closing the
connection prevents the browser from reusing the ex-
isting TCP connection to the first IP address. (The
duration details are taken from [6]).

3.1.4 Behavior of Flash Player Plug-in

The current Flash players allow the active content in
the form of small web format(SWF) files (or SWF
“movies”) to establish TCP sockets to any host. The
only condition to fulfill is the destination holds and
serves an XML policy file which allows the access by
specifying the movie’s origin. Up to the Flash player
version 9.0.48.0 which was released about mid of 2007
the SWF rebinding vulnerability can be used as fol-
lows:

1. The web browser loads (unnoticed) an embedded
SWF file from the attacker’s site.

2. The SWF movie opens a socket to the attacker’s
site, bound to the authentic IP address of the
attacker’s server and requests the policy file.

3. The attacker’s server responds with the XML pol-
icy file e.g. like this:
<?xml ve r s i on=” 1 .0 ”?>
<cross−domain−po l i cy >
<al low−access−from domain=”∗” to−port s=”∗”/>
</cros s−domain−po l i cy >

4. The attacker changes his site’s A record and sub-
stitutes his real IP address with the victim’s IP
address

5. The malicious SWF movie connects can connect
to any port number of the victim, because the
policy seems to come from the same host.

These versions of flash players perform no pinning and
the cross-domain policy method is also vulnerable to
rebinding attacks, as we can see. The only restric-
tion is that it depends on the port number of the
policy file service: in case the policy is served on port
numbers below 1024, the Flash player can even con-
nect to ports below 1024. Otherwise only ports with
numbers starting at 1024 can be used for socket con-
nection. Note that the above described attack can
be performed even with the limited capabilities of a

4



phisher.
Recently (December 2007) Adobe reacted and re-
leased the Flash player 9 update 3, version 9.0.115.0.
Several security enhancements were made and also
this kind attack is not possible anymore: the SOP
applies now to the IP addresses, i.e. the source IP
address of the policy file must match with the one
used for socket connections. In despite of this im-
provement, most of the browsers currently might work
with the Flash player 9 without Update 3. But the
auto-update notification checks for updates every 30
days (by default) when the Flash player is running
and notifies the user when new updates are available.

3.2 Multi-Pin Vulnerabilities

There are other vulnerabilities to enable rebinding
attacks: while the browsers and the plug-ins usually
maintain their own and separated DNS database
they use for pinning, an attacker can use the lack
of replication between the browser and the plug-ins.
Generally the browser allows JavaScript accessing
the plug-ins and vica versa. This results in the po-
tentiality of accessing objects from different origins.
Concerning this matter every plug-in has its own
peculiarity.

3.2.1 Java

The Java VM itself is not vulnerable. It maintains its
own pinning separated form the browser. While with
Java it is possible to use TCP sockets directed to the
applets origin, the SOP is related to the actual source
IP address of the applet and not to a DNS host name.
This avoids rebinding attacks. However problems oc-
cur with LiveConnect, which can be seen as the glue
between JavaScript and the Java VM. The Java stan-
dard library can be used by scripts without loading
an applet. While JavaScript uses the browser’s pin-
ning and connects to the attacker’s server, the Java
VM accessed by LiveConnect does a second DNS re-
solve. Corresponding to the other rebinding attacks
the attacker is able to change the DNS entries in the
meanwhile.
Another weakness is the combination of applets with
the usage of HTTP proxies. The Java VM loads the
applet via a proxy with the help of the host name.
In this case the proxy performs the DNS resolution.
Once the applet is started and tries to connect to a
socket, the Java VM performs another DNS resolu-
tion. Also during this scenario a usual rebinding at-

tack is possible.
A third vulnerability occurs when a Java applet is em-
bedded with the attribute “MAYSCRIPT” by a rela-
tive path. In this case the HTML page is first loaded
from the target server, the browser pins to the target
server. Then the Java VM loads the malicious applet
and performs a second resolve which points to the at-
tacker’s IP address. Now the applet can make the
browser via JavaScript to start XMLHttpRequests to
the target’s address.[6]

3.2.2 Flash

Basically the Flash player is vulnerable to multi-pin
attacks. It does not pin DNS bindings at all, but
however it would not lead to more security: the SWF
movies are first downloaded by the browser which pins
the DNS name to its resolved IP address. Then the
browser delivers the movie and additionally its origin
in the form of the host name. When the SWF movie
tries to make a socket connection, it resolves the host
name a second time.
Since the new Flash player 9 update 3 a stricter cross-
domain policy handling is enforced. Cross-domain
policy files need to be served by the socket connection
destinations. To avoid the procedure of a rebinding at
a moment when the policy file has been received and
the socket connection is not yet initiated, the Flash
player allows socket connections only to IP addresses
that already have served a suitable policy file.

3.2.3 Other Plug-Ins

The Adobe Acrobat plug-in restricts general network
communication to the SOAP protocol but allows ac-
cess by document origin. “often” ([6]) the user is in-
formed before accessing the network.
Microsoft’s Flash plug-in pendant Silverlight also per-
mits network access but uses the browser to make the
request. That is why it also uses the browser’s DNS
pinning.

4 Attacks

The above mentioned vulnerabilities can be used by
attackers to perform several kinds of attacks. Gen-
erally they can be put into three categories: firewall
evasion, IP hijacking and dynamic pharming.

5



4.1 Firewall Evasion

The firewall’s assignment is to restrict traffic between
different trust zones. A usual scenario is the protec-
tion of an internal net against connections coming
from the Internet. Firewall evasion tries to bypass
the firewall by using an outgoing connection which
was established by a user of the inner network and
then uses the free access to the whole intern network
by utilizing the client’s browser (or plug-ins) as prox-
ies (see figure 1). The attacker can e.g. spider the
inner network. He needs to guess the internal IP ad-
dress of interesting hosts. This is sometimes easy, but
also depends on the network structure and the size of
the IP network (class). However it is also possible to
let the used client resolve guessable host names to the
internal IP addresses. The attacker only has to make
the client rebinding to a CNAME record4. Although
this variant is not possible with exploiting the multi
A record vulnerability, the time-varying DNS vulner-
ability is usable for this variant. Once the attacker got
response from e.g. a port number 80, he can request
the root document and follow all links and hyperlinks
and filtrate all interesting documents being meant for
internal use only. Many confidential content exists
on intranet web servers of company networks without
any additional security, assuming they are protected
by the firewall.

Figure 1: Basic firewall evasion

Additionally, attackers can try to compromise un-
patched machines of the inner network. Often secu-
rity updates are not performed at hosts that seem
to be protected by the firewall. With direct socket
connections toward these unpatched machines known
vulnerabilities of e.g. the operation system can be ex-
ploited. Especially the attacker can try to attack the

4A CNAME record is a name entry in the DNS system that
points to another record, typically to an A record referenced by
another host name.

client’s machine itself, because attacks coming from
the localhost origin are often not avoided by software
firewalls and other security mechanisms. Once an ex-
ploit was successful, the attacker might have perma-
nently the opportunity to access the inner network,
independently of the client’s browser.
Another risk is the abuse of internal open services.
Usually printer ports are open for free access from
the intranet or file shares are readable and writable,
so the attacker can exhaust the printers or use file
shares for storing illegal content. Also network com-
ponents with standard passwords can be used for re-
configuration. Even the recent security advances at
routers against vulnerabilities called cross-site script-
ing (XSS) and cross-site request forgery (XSRF) do
not prevent from rebinding attacks using socket con-
nections.
Firewall evasion can be achieved via rebinding attacks
by attackers having solely the restricted capacities of
a phisher.

4.2 IP Hijacking

The second attack category includes attacks against
hosts on the public Internet. The attacker abuses the
implicit or explicit trust public services have in the
client’s IP address. One example is performing click
fraud. While web advertisements are often paid per
click, the publisher is interested in gaining as much
clicks as possible at the advertisements’ sites. The
clicks are counted by requests coming from different
IP addresses. So-called click-bots exist and make the
members of their bot nets to send requests to the ad-
vertisements’ site. Defending these flick fraud nowa-
days it is not enough to just send a simple request.
The attacker first has to read a nonce – generated for
each response separately – from the advertisement im-
pression, coming with the first HTTP response from
the site. The click request needs to contain this nonce.
But also this assumed security advance allows bot
nets, which use rebinding techniques, to perform click
fraud, because the attacker can buy a high amount
of advertising impressions and can convert them into
clicks.
Another possibility for the attacker is sending spam.
While many e-mail servers maintain blacklists of
spam-sending IP addresses, the attacker can hijack
hosts with IP addresses not listed by them. While
most browsers do not allow JavaScript sending on
port 25, it is possible to use clients with the older ver-
sion of the Flash player to make socket connections.
Like descried above the current update for the Flash
player with the new strict cross-domain policy mech-

6



anism prevents this attack. Nevertheless the current
Java VM still allows this kind of attack. Additionally
the attacker may use the client’s mail relay and might
also be already authenticated, because often the client
runs the mail user agent at the same time and polls
e-mails from the POP3 server – which authenticates
for SNTP usage.
Also IP hijacking can be performed with the minimum
of phishers’ capacities.

4.3 Dynamic Pharming

A dynamic pharming attack affects some security
goals very hardly: the attacker is able to eavesdrop
on sensitive content, forge transactions, key log sec-
ondary passwords and so on, regardless of the au-
thentication mechanism between client’s browser and
server. During pharming attacks the adversary causes
DNS to answer queries with either his IP address or
the legitimate server’s IP address – depending on the
situation, the state of the attack. The typical “time-
varying rebinding” technique is used. The attack can
be described in six phases (see also figure 2):

1. The client browser tries to connect to the vic-
tim’s page, e.g. a login page of an online bank.
Because the IP address is not known (not in the
cache) the client sends a DNS request to the name
system the adversary controls. The response is a
DNS record with the right domain name but the
adversary’s IP address and an information that
the client should not cache this result (TTL=0).

2. The client loads the malicious web page from the
adversary server. If the adversary implemented
an SSL web page, the user gets a warning because
the certificate cannot be proper but may be self-
signed or signed by unknown root CAs. Usually
the user ignores these warnings.

3. Meanwhile the pharmer can update his DNS en-
try to the real IP address of the victim’s server.

4. Forced by the malicious web page (see listing 1)
the client wants to load the web page into the
unnoticeable iframe. Because the domain name
is not in the cache, a new DNS query provokes
an answer with the real IP address of the victim’s
web page.

5. The client loads the origin web page of the server
and the well-known web page appears in front of
the user as it usually does – just in an iframe. The
user will ignore this detail and enter his password

or the browser even will automatically login with
a client-side SSL certificate or password from the
password manager.

6. Now the malicious JavaScript can hijack the ses-
sion with the real server, because the same-origin
policy is not offended.

The additional task of the attacker (compared to fire-
wall evasion or ip hijacking) is that the client’s user
need to be fooled. He has to believe he is visiting the
familiar web page of a trusted application, e.g. the
online bank or other sensitive systems. The above
described attack cannot be performed with capabil-
ities of a phisher, because initially the user has to
receive the attacker’s page when he is requesting the
trusted page. For manipulating the client’s DNS re-
sponse the attacker needs pharmer’s capabilities. An-
other vector could be the typical phishing mechanism
to get the user to the attacker’s malicious web site.
In this case step 1 can be left out but the browser
now keeps the attacker’s host name as origin of the
page. Subsequently the rebinding mechanism could
bind the attacker’s host name to the victim’s server
IP address. Further on the real web page could be
loaded in an iframe, also having the attacker’s host
name as origin. Again the SOP is met. The URL in
the browser’s address field is now the attacker’s one,
but history has shown that many users cannot realize
this, if the attacker’s address is chosen trickily. This
modified attack is also performable by attackers with
only phishing capabilities. There is no need to ma-
nipulate a foreign DNS resolver anymore.

<html>
<body>
<s c r i p t >

−−−MALICIOUS JAVASCRIPT CODE−−−
</s c r i p t >
<i f rame s r c=” https ://www. mybank . com/ index . html”>
</i f ramle >
</body>
</html>

Listing 1: Structure of malicious HTML page

The above described dynamic pharming attack uses
the time-varying rebinding vulnerability in phase
number 1. Alternatively, exploiting the multiple A
record vulnerability is possible. In both cases the
browser’s pinning can be released by answering with
a TCP RST message, if the browser sends the second
request again to the attacker’s server in phase num-
ber 4. Furthermore other variants of this attack are
possible by exploiting the multi-pin vulnerability. For
example the functionality of LiveConnect can be used

7



Figure 2: Dynamic pharming attack against www.vanguard.com [4]

as well as a Java applet, if the client’s browser uses an
HTTP proxy (as already explained in chapter 3.2).

5 Defenses

Defenses for above mentioned attacks can be applied
at different points: at the browser, it’s plug-ins, at
the DNS resolver together with the firewall and at
the servers.

5.1 Fixing at the Firewall

For preventing firewall evasion by rebinding attacks
the firewall must not allow outbound traffic on port
53 to avoid resolving DNS host names by DNS servers
not controlled by yourself. A second step is to pre-
vent your DNS servers to resolve external names to
internal IP addresses. DNSWALL is a small program
that runs as a daemon at hosts with BIND servers
and enforces this policy. By default it categorizes the
standard private IP addresses as internal addresses.
Some router-firewall appliance vendors might already

have implemented a kind of this policy. For instance
my up-to-date home DSL router is not vulnerable to
rebind attacks as long as my intern hosts are forced
to use this device for resolving.
Note that these methods do not prevent from IP hi-
jacking or dynamic pharming, only firewall evasion
can be stopped.

5.2 Fixing at the Plug-Ins

We have seen that socket-level network access permit-
ted by plug-ins like Java VM and Flash player basi-
cally creates effective rebinding vulnerabilities. These
weaknesses can be faced with changes of the plug-ins’
behavior.

5.2.1 Flash

Since the Flash player 9 has got the update 3 since
December 2007 and Adobe is heading to fully im-

8



plement the new strict cross-domain policies in the
next update, the former massive vulnerabilities – us-
ing socket connections with action script 3 – seem now
to be cleared out. Uploading and using manipulated
policy files are hard to perform due to a standard
cross-domain policy port, meta-policies, and the re-
quiring of a policy from every IP address for socket
connections.

5.2.2 Java

The Java LiveConnect vulnerability could be solved
by installing a custom class that will handle the DNS
resolution for the LiveConnect-used JVM. This class
could have a native method for resolving DNS using
the browser’s DNS resolver. Actually this class must
be installed into browsers, in this case the Java VM
stays unchanged. Though performing this change the
multi-pin vulnerability of LiveConnect in connection
with the browser is removed.
Fixing the problem with Java VM behind a HTTP
proxy other measures are needed to face the multi-
pin attacks. Many used Java applets expect that it
is allowed to use socket connections. A saver method
would be the use of the CONNECT method to ob-
tain a proxied socket connection to an external host,
because proxies usually only allow CONNECT on
HTTPS port. An advanced measure would be the
usage of the HTTP host header for communicating
the IP address between browser and proxy. This mea-
surement would require complementary changes in the
browser’s and proxy’s implementations and is hard to
enforce.
Another approach could be the usage of cross-domain
policies similar to the Flash player. This would
also need a deployment of multiple steps but might
be more successful and practicable as the other ap-
proaches.

5.3 Fixing at the Browsers and/or
Servers

There are several long standing and recent approaches
to prevent rebinding attacks by patching the browsers.
Essential for their success is – like it is for the ap-
proaches fixing the firewalls or the plug-ins – the ro-
bustness, the effectiveness and the deployability.

5.3.1 Checking Host Header

HTTP 1.1 requires host header in the HTTP requests.
These headers are used by proxies and web servers
hosting more than one site’s web pages. Because
XMLHTTPRequest5 is restricted from spoofing the
host header, a server-side defense could be the rejec-
tion of requests with unexpected host headers.
This measurement is only leading to the desired result
without allowed socket connections.

5.3.2 Smarter Pinning

Pinning parameters have to balance between robust-
ness and security. For example a short pinning
time might improve the robustness when multiple A
records provide a round robin failover mechanism, un-
like a long pinning time results to better security. But
there are other, smarter parameters which also can
be used: for example the IP address heuristic can be
used: assuming multiple failover servers which have
the same DNS host name have similar IP addresses.
For example it might be a good trade-off if a rebinding
within the same class C network (which holds IP ad-
dresses matching at the first three octets) is allowed
after using the old address a very short time, while
rebinding between different class C network addresses
is not possible or only after a duration of several min-
utes. The Firefox extension NOSCRIPT might imple-
ment this feature in current releases.
Another, easier heuristic mechanism is avoiding of
rebindings between public and private IP addresses.
This measurement is only useful against firewall eva-
sion in case the firewall protects a private IP network.
It is already implemented in the Firefox extension Lo-
calRodeo that performs JavaScript pinning.

5.3.3 Policy Based Pinning

The cross-domain policy mechanism can also be sug-
gested for authorization of HTML and JavaScript con-
tent to access different network destinations. The pol-
icy files would be accessible in a standardized file at
the root path of each web server. Like described above
this technique is already used by Flash players.

5XMLHttpRequest is an API that can be used by JavaScript
to transfer XML and other data between browsers and servers.

9



5.3.4 Host Name Authorization

Another approach is the authorization of host names.
The owner of an IP address can use DNS PTR6

records to release a white list with all host names that
can be resolved to this IP address. Every owner of a
server and it’s IP address only adds honest host names
to this white list and does not include the attacker’s
domain.

5.3.5 IP Address Based Origins

To gain more security by finer-grained origins a
straightforward suggestion is to define origins by IP
address instead of host names. One problem would be
the behavior during failover situations, when today’s
long-lived applications are not able anymore to con-
nect to new failover IP addresses. A second problem
occurs when the browser is situated behind a proxy:
the browser is not aware of the IP address and thus
cannot determine and bind the IP address origin.

5.3.6 Locked SOP and Public Key Extension

In [4] the authors propose the update of the browser’s
some-origin policy. Two different stages are proposed.
The “weak locked same-origin policy” distinguishes
locked and non-locked web objects. Locked web ob-
jects are retrieved from legitimate servers via SSL.
The browser uses for every object the tuple (scheme,
domain name, port, validity bit). The validity bit is
set when there was no problem with the certificate
chain at all. On the other hand self-signed certifi-
cates and domain mismatch avoid setting the validity
bit. This is independent of the user reaction of possi-
ble warnings when problems occur. Objects retrieved
over HTTP have also not set the validity bit.
The weak locked SOP only allows access between
locked web objects if the corresponding tuples exactly
match. The attacker has no possibilities to perform
a rebinding attack, because he has no valid certifi-
cate for the target domain and his validity bit is not
set. But there is one significant exception: if the tar-
get domain uses an invalid X.509 certificate, the weak
locked SOP provides no additional protection com-
pared to the legacy SOP. Naturally also sites that are
completely not SSL-protected are not protected.
The so-called “strong locked same-origin policy” goes

6The DNS PTR record is normally used for reverse lookups
to ask for a corresponding host name of a known IP address.

on step further: a locked web object has only access
to another one, if the origins’ X.509 certificates have
the same public keys. The tuples (scheme, domain
name, port, public key) are compared. The strong
locked SOP resists phishing, pharming and active at-
tacks against locked web objects as long as the adver-
sary does not know the corresponding private key of
the victim.

6 Deployability and Conclusion

Above mentioned concepts can only be considered as
solutions if they are deployable without many changes
of the software and the protocols. Changed software
also must be compatible to the legacy versions.
To eliminate vulnerabilities of the plug-ins, a kind of
strict cross-domain policy mechanism – which is al-
ready tracked by the Flash player developers – could
be developed and advanced especially for plug-ins that
allow direct socket connections. Probably a cross-
domain policy standard for socket-connecting plug-ins
could be drafted. Independently firewall evasion can
be more simply avoided by strict control of the firewall
and the DNS resolver (e.g. with DNSWALL). This
would also mitigate the vulnerabilities which occur
when browsers and plug-ins inter-operate. The alter-
native would be a common pin database for browsers
and all plug-ins, which still does not solve the proxy
problem and seems also hard to deploy.
The weak locked same-origin policy seems to be easy
to deploy: only small changes have to be made at the
browser’s side to change the SOP. The authors have
made an HTTPS server survey to make sure the new
policy will not “break the web”. Results have shown
that only 0.0005 % of the SSL domains would make
problems due to administrative faults of the servers
and certificates. Web servers and the HTTP spec-
ification can remain unaffected. The survey shows
different results for the strong locked SOP: an order
of magnitude more servers would cause problems with
this policy. And – unlike problems mentioned above –
these ones are not the result of misconfiguration. For
example, different objects of the same domain may
have different public keys, key updates can be caused
by certificate expiration, content may come from dif-
ferent servers, etc. To face this problem the authors
propose policy files for supporting multiple keys and
key updates. These files could be send by the server
like they send the favicon.ico file. In this file all al-
lowed public keys for the domain could be listed and
signed for security reason. Subdomain object shar-
ing and key revocation are also deployable with the

10



approach of the strong locked SOP with policy files.
In this case also small changes have to be made at
server’s side, but the HTTP and HTTPS specifica-
tions need not to be changed.
These approach could mitigate the dangers of dy-
namic pharming by changing the browser security
model. However, arguable is their ability to save to-
day’s and future web applications summarized by the
term “web2.0”: the trend of web sites goes to combin-
ing web content originated from absolutely different
sources. These sources can sometimes not be trusted.
The approaches like the locked SOP are based on SSL
and put the focus on the connection between browser
and web server. This assumes that the user has to
trust the web server he connects to – including all the
content it is actually providing. Unfortunately web2.0
servers may not be able to guarantee the harmlessness
of its content.

References

[1] Stamm, S., Ramzan, Z., Jakobsson, M.
“Drive-By Pharming”, December 2006,
http://www.cs.indiana.edu/pub/techreports
/TR641.pdf

[2] Dhamija, R., Tygar, J.D., Hearst,
M. “Why Phishing Works”, 2006,
http://people.seas.harvard.edu/˜rachna/papers
/why phishing works.pdf

[3] “W3C Document Object Model”,
http://www.w3.org/DOM/

[4] Karlof, C.K., Shankar, U., Tygar, D., Wanger,
D. “Dynamic pharming attacks and the locked
same-origin policies for web browsers” May 2007.

[5] “Mozilla Port Blocking”, http://www.mozilla
.org/projects/netlib/PortBanning.html

[6] Jackson, C. et al. “Protecting Browsers from
DNS Rebinding Attacks” October 2007.

[7] “The Same Origin Policy”, http://www.mozilla
.org/projects/security/components/same-
origin.html

[8] Dean, D., Felten, E.W., Wallach, D.S. “Java se-
curity: from HotJava to Netscape and beyond” in
IEEE Symposium on Security and Privacy. Oak-
land, California, USA May 1996.

[9] “A small contribution to the current ’hack-
ing the intranet with JavaScript’ theme”,
http://shampoo.antville.org/stories/1451301

11


