
The first Szegö limit theorem for non-selfadjoint

operators in the Følner algebra
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We determine the first order asymptotics of the trace of f(PnUPn) and the
determinant det PnUPn for operators U belonging to the Følner algebra asso-
ciated with the sequence {Pn} and satisfying an “index zero” condition. We
present three different proofs of the main result in the case where U is a normal
operator.

1. Introduction

LetH be a separable Hilbert space. We denote by ‖·‖, ‖·‖1, ‖·‖2 the operator norm,
the trace norm, and the Hilbert-Schmidt norm, respectively. We fix a sequence {Pn}
of orthogonal projections on H such that Rn := dim ranPn < ∞ for all n and we
put Qn = I − Pn. For B ∈ B(H),

‖PnBQn‖2
2 = tr (QnB

∗PnBQn) = tr (PnBQnB
∗Pn),

‖QnBPn‖2
2 = tr (PnB

∗QnBPn).

The Følner algebra F({Pn}) associated with {Pn} is the set of all operators B in
B(H) for which

lim
n→∞

‖PnBQn‖2
2

Rn
= 0, lim

n→∞

‖QnBPn‖2
2

Rn
= 0.

The set F({Pn}) is a unital C∗-subalgebra of B(H). For B ∈ B(H), we consider
the sequence {PnBPn}. We are interested in a first order asymptotics of the trace
trf(PnBPn) for appropriate functions f and in particular in the case f(λ) = logλ,
which amounts to considering the determinant det (PnBPn).

Two standard situations are H = `2(Z) and

Pn : {xj}∞j=−∞ 7→ {. . . , 0, x−n, . . . , x0, . . . , xn, 0, . . .} (Rn = 2n+ 1),(1)

Pn : {xj}∞j=−∞ 7→ {. . . , 0, x0, . . . , xn−1, 0, . . .} (Rn = n).(2)

In these two cases, F({Pn}) contains all banded operators and all Laurent oper-
ators. A banded operator is an operator that is induced by a banded matrix. A
Laurent operator L(ϕ) is given by a matrix of the form (ϕj−k)

∞
j,k=−∞ where the

ϕk’s are the Fourier coefficients of a bounded function ϕ, that is,

ϕk =
1

2π

∫ 2π

0

ϕ(eiθ)e−ikθdθ (k ∈ Z)

with ϕ in L∞ on the complex unit circle T. Notice that L(ϕ) is unitarily equivalent
in an obvious way to the operator of multiplication by ϕ on L2(T). If Pn is as in
(2), then the operators PnL(ϕ)Pn|ranPn may be identified with n × n Toeplitz
matrices Tn(ϕ) := (ϕj−k)

n−1
j,k=0. The classical first Szegö limit theorem [18] states

that if ϕ is real-valued and essinf ϕ > 0 on T, then

(3) log det Tn(ϕ) = n(logϕ)0 + o(n) as n→ ∞,

where (logϕ)0 is the 0th Fourier coefficient of logϕ. (Notice that detTn(ϕ) is
positive for ϕ > 0, so that the logarithm is well-defined.) Extensions of (3) to more
general situations, mainly concerning either Toeplitz-like or selfadjoint operators B
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in place of L(ϕ) have been studied by many authors. References [1], [2], [4] - [17],
and [19] - [21] are a few exemplary works of the business.

We here prove an analogue of (3) for operators in F({Pn}) that are a power of an
operator whose numerical range is separated away from zero and that are subject
to an additional stability requirement. Suppose, for example, the operator under
consideration is the Laurent operator L(ϕ) with a continuous function ϕ : T → C.
The operator L(ϕ) is the power of an operatorL(ψ) with a continuous function ψ for
which the convex hull of ψ(T) does not contain the origin if and only if the winding
number (= index) of ϕ about the origin is zero. Consequently, the assumption of
our main theorem (Theorem 3.2) may be interpreted as an “index zero” condition.
Notice also that the operator L(ϕ) is selfadjoint if and only if ϕ is real-valued. But
this operator is always normal. Thus, when dealing with the problem considered
here, passage from selfadjoint to normal operators is in fact quite a nontrivial step,
because it includes passing from Hermitian Toeplitz matrices to arbitrary Toeplitz
matrices as a special case.

2. A general trace formula

Let B be an operator in B(H). The sequence {PnBPn} is said to be stable if the
operators PnBPn|ranPn are invertible for all sufficiently large n, say n ≥ n0, and
supn≥n0

‖(PnBPn)−1Pn‖ <∞.

The spectrum of an operator B ∈ B(H) will be denoted by σ(B). We write
λ− B and λ− PnBPn for λI −B and (λI − PnBPn)|ranPn, respectively.

Theorem 2.1. Let K be a compact subset of C and let Ω ⊂ C be a bounded

open set with a smooth boundary ∂Ω that contains K. Let f be analytic in Ω and

continuous on the closure of Ω. Let finally U ∈ F({Pn}) and suppose σ(U) ⊂ K
and {Pn(λ− U)Pn} is stable for all λ ∈ ∂Ω. Then

tr f(PnUPn) = trPnf(U)Pn + o(Rn) as n→ ∞.

The proof is based on three lemmas. The first lemma is the basic trick of our
approach. The other two lemmas are needed to make some estimates in the proof
of Theorem 2.1 uniform.

Lemma 2.2. Let B ∈ B(H) be invertible and let P and Q be complementary

projections on H. Then PBP |ranP is invertible if and only if QB−1Q|ranQ is

invertible. In that case

(PBP )−1P = PB−1P − PB−1Q(QB−1Q)−1QB−1P,(4)

(QB−1Q)−1Q = QBQ−QBP (PBP )−1PBQ.(5)

Proof. See [5, Proposition 7.15] or [6, Lemma 2.9], for example.

Lemma 2.3. Let B ∈ B(H), λ ∈ C, and suppose {Pn(λ−B)Pn} is stable. Then

there exist n0 ∈ N, M <∞, ε > 0 such that

‖(Pn(µ−B)Pn)−1Pn‖ ≤M

for n ≥ n0 and |µ− λ| < ε.

Proof. Put Bn = PnBPn|ranPn. Suppose that λ − Bn is invertible and that
‖(λ−Bn)

−1Pn‖ ≤ N <∞ for all n ≥ n0. With µ = λ+ δ,

µ−Bn = λ+ δ −Bn = (λ−Bn)(I + δ(λ −Bn)
−1),
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and hence µ − Bn is invertible for all n ≥ n0 whenever |δ|N < 1. For these δ we
get

‖(µ−Bn)
−1Pn‖ ≤

∞
∑

k=0

|δ|k‖(λ−Bn)
−1‖k+1 ≤ N

1 − |δ|N ,

which yields the assertion with ε = 1/(2N) and M = 2N .

Lemma 2.4. Let B ∈ B(H), λ ∈ C \ σ(B), and suppose

lim
n→∞

‖Pn(λ−B)−1Qn‖2
2

Rn
= 0.

Then there exists an ε > 0 such that

lim
n→∞

‖Pn(µ−B)−1Qn‖2
2

Rn
= 0

uniformly for |µ− λ| < ε.

Proof. Let again µ = λ+ δ and suppose |δ| ‖(λ−B)−1‖ < 1. Then

‖Pn(µ−B)−1Qn‖2 = ‖Pn(λ+ δ −B)−1Qn‖2

=

∥

∥

∥

∥

∥

Pn

∞
∑

k=0

(−1)kδk[(λ−B)−1]k+1Qn

∥

∥

∥

∥

∥

2

≤
∞
∑

k=0

|δ|k
∥

∥Pn[(λ−B)−1]k+1Qn
∥

∥

2

≤
∞
∑

k=0

|δ|k(k + 1) ‖(λ−B)−1‖k‖Pn(λ −B)−1Qn‖2

=
‖Pn(λ−B)−1Qn‖2

(1 − |δ| ‖(λ−B)−1‖)2 ,

which gives the assertion with ε = 1/(2 ‖(λ−B)−1‖).
Proof of Theorem 2.1. We have

tr f(PnUPn) − trPnf(U)Pn(6)

=
1

2πi

∫

∂Ω

f(λ) tr
[

(Pn(λ− U)Pn)
−1Pn − Pn(λ− U)−1Pn

]

dλ.

By (4), the absolute value of (6) does not exceed

1

2π

∫

∂Ω

|f(λ)|
∣

∣

∣
tr

[

Pn(λ− U)−1(Qn(λ− U)−1Qn)
−1Qn(λ− U)−1Pn

] ∣

∣

∣
|dλ|,

and since |tr (ABC)| ≤ ‖A‖2‖B‖ ‖C‖2, this is at most

1

2π

∫

∂Ω

|f(λ)| ‖(Qn(λ− U)−1Qn)
−1Qn‖ ×

×‖Pn(λ− U)−1Qn‖2‖Qn(λ− U)−1Pn‖2 |dλ|.
The sequence {Pn(λ − U)Pn} is stable for each λ ∈ ∂Ω. Since ∂Ω is compact,
Lemma 2.3 implies that there are n0 ∈ N and M <∞ such that

‖(Pn(λ− U)Pn)−1Pn‖ ≤M
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for all n ≥ n0 and all λ ∈ ∂Ω. Identity (5) therefore implies that

‖(Qn(λ− U)−1Qn)
−1Qn‖ ≤ ‖λ− U‖ + ‖λ− U‖2M ≤ N <∞

for all n ≥ n0 and all λ ∈ ∂Ω. Since U ∈ F({Pn}) and λ − U is invertible, the
inverse (λ−U)−1 belongs to the C∗-algebra F({Pn}) for each λ ∈ ∂Ω. Lemma 2.4
and the compactness of ∂Ω therefore yield that

max
λ∈∂Ω

‖Pn(λ− U)−1Qn‖2√
Rn

‖Qn(λ− U)−1Pn‖2√
Rn

→ 0

as n→ ∞. This gives the assertion.

3. Operators with good numerical range

Here is a first consequence of Theorem 2.1.

Corollary 3.1. Let U ∈ F({Pn}) and suppose the closure of the numerical

range H(U) := {(Ux, x) : ‖x‖ = 1} does not contain the origin. Then U = eA for

some A ∈ F({Pn}) and

(7) log detPnUPn = trPnAPn + o(Rn) as n→ ∞,

where log is any branch of the logarithm that is analytic on closH(U).

Proof. We employ Theorem 2.1 with K = closH(U). We may without loss of
generality assume that K is a subset of the right open half-plane. The spectrum
of U is contained in K. Let Ω ⊃ K be a bounded open subset of the right open
half-plane with a smooth boundary ∂Ω. The function f(λ) = logλ is analytic in Ω
and continuous on the closure of Ω. Thus, U = eA with

A =
1

2πi

∫

∂Ω

(logλ) (λ − U)−1 dλ.

If λ ∈ ∂Ω, then 0 /∈ λ−closH(U) = closH(λ−U). This implies that λ−U = α(I+S)
with α ∈ C \ {0} and ‖S‖ < 1 and hence

‖(Pn(λ− U)Pn)−1Pn‖ ≤ 1

|α|

∞
∑

k=0

‖PnSPn‖k ≤ 1

|α|(1 − ‖S‖) ,

which shows that {Pn(λ − U)Pn} is stable for every λ ∈ ∂Ω (this argument is
from [10, Section II.5]). The corollary is now immediate from Theorem 2.1 and the
identity log detPnUPn = tr logPnUPn.

The following result concerns powers of operators with good numerical range.
The stability requirement in that result is nasty at the first glance, but in the next
section we will see that the result is not true without this additional condition.

Theorem 3.2. Let U ∈ F({Pn}) and suppose the origin does not belong to the

closure of H(U). If k ∈ N and {PnUkPn} is stable, then

(8) log |detPnU
kPn| = k log |detPnUPn| + o(Rn) as n→ ∞.

Proof. It is easy to show that

(9) ‖PnBkPn − (PnBPn)
k‖1 ≤ k ‖B‖k‖PnBQn‖1
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for every B ∈ B(H). Put Ln := PnU
kPn − (PnUPn)

k. Using (9) and taking into
account that ‖PnB‖1 ≤ ‖Pn‖2‖PnB‖2 =

√
Rn ‖PnB‖2, we get

‖Ln‖1

Rn
≤ k ‖U‖k ‖Pn‖2‖PnUQn‖2

Rn
= k ‖U‖k ‖PnUQn‖2√

Rn
= o(1).

Furthermore,

detPnU
kPn = (detPnUPn)

k det (I + (PnUPn)−kLn),

and since the closure of H(U) does not contain the origin, we may conclude as in
the proof of Corollary 3.1 that the sequence {PnUPn} is stable. Consequently,

|det (I + (PnUPn)
−kLn)| ≤ e‖(PnUPn)−kLn‖1 ≤ eM ‖Ln‖1

with some constant M <∞. It follows that

(10) lim sup
n→∞

1

Rn
(log |detPnU

kPn| − k log |detPnUPn|) ≤ 0.

On the other hand,

(detPnUPn)
k = (detPnU

kPn) det (I − (PnU
kPn)

−1Ln).

Since {PnUkPn} is stable by assumption, the same argument as above yields that

(11) lim sup
n→∞

1

Rn
(k log |detPnUPn| − log |detPnU

kPn|) ≤ 0.

Combining (10) and (11) we arrive at the assertion.

The following corollary is well known (see, e.g., [5], [10], [12]). We cite it in order
to illustrate Theorem 3.2 by a concrete realization.

Corollary 3.3. Let ϕ ∈ L∞(T) and suppose {Tn(ϕ)} is stable. Then

log |det Tn(ϕ)| = n(log |ϕ|)0 + o(n) as n→ ∞.

Proof. The stability of {Tn(ϕ)} implies that essinf |ϕ| > 0 on T. Write ϕ = |ϕ|eib
with a real-valued function b : T → (−π, π] and put ψ = |ϕ|1/3eib/3. The operator
U = L(ψ) is normal. The closure of H(U) is therefore the convex hull of the
spectrum. As the spectrum of L(ψ) is the essential range of ψ, we conclude that
closH(U) is a subset of the right open half-plane. From Corollary 3.1 we deduce
that

log |detPnL(ψ)Pn| =
1

3
trPnL(log |ϕ|)Pn + o(n)

and Theorem 3.2 shows that

log |detPnL(ϕ)Pn| = 3 log |detPnL(ψ)Pn| + o(n).

The last two relations clearly imply the assertion.

Note that if ϕ is real-valued and essinf ϕ > 0 on T, then {Tn(ϕ)} is stable and
detTn(ϕ) > 0. Hence Corollary 3.3 contains the first Szegö limit theorem as a
special case.

For a piecewise continuous function ϕ ∈ L∞(T), let ϕ#(T) be the naturally
oriented curve that consists of the components of ϕ(T) connected by straight seg-
ments at jumps. The sequence {Tn(ϕ)} is known to be stable if and only if ϕ#(T)
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does not contain the origin and has winding number zero about the origin. In this
case the third order asymptotics is

log |detTn(ϕ)| = n(log |ϕ|)0 +A logn+B + o(1) as n→ ∞,

where A and B are completely identified constants [3].

4. Normal operators

In [15] it is shown that if A ∈ F({Pn}) is selfadjoint, then (7) is true for U = eA.
Since in this case U ∈ F({Pn} and H(U) is some line segment [m,M ] ⊂ (0,∞),
the result of [15] is a straightforward consequence of Corollary 3.1. Here is what
Corollary 3.1 tells about normal operators.

Theorem 4.1. Let A ∈ F({Pn}) be normal and put U = eA. If the spectrum of

A is contained in some open horizontal strip of width π, that is, if there exists an

y0 ∈ R such that |Imλ− y0| < π/2 for all λ ∈ σ(A), then the closure of H(U) does

not contain the origin and

(12) log detPnUPn = trPnAPn + o(Rn) as n→ ∞,

where log is any branch of the logarithm that is analytic on closH(U).

Proof. The operator U is normal together with A, and σ(U) is contained in some
open half-plane whose boundary passes through the origin. The closure of the
numerical range of the normal operator U is the convex hull of σ(U). Thus, 0 is
not in closH(U) and Corollary 3.1 gives (12).

Example 4.2. This example shows that Theorem 4.1 is sharp. Let A = L(ψ)
where ψ(t) = iπ/2 for t on the upper half of the unit circle T and ψ(t) = −iπ/2 for t
on the lower half. Then σ(A) = {−iπ/2, iπ/2}. We have U = eA = L(eψ). Clearly,
ψ0 = 0. If (12) would be true, it would follow that log |detTn(e

ψ)| = o(n) or,
equivalently, |detTn(e

ψ)|1/n → 1 as n → ∞. However, Tn(e
ψ) is skew-symmetric

(see, e.g., [6, p. 143]) and hence detTn(e
ψ) = 0 whenever n is odd.

Example 4.3. This example reveals that Theorem 3.2 is in general no longer
valid without the requirement that {PnUkPn} be stable. Let U = L(ϕ) where
ϕ(t) = eiπ/4 for t on the upper half of the unit circle T and ϕ(t) = e−iπ/4 for t
on the lower half. Then H(U) is the line segment between e−iπ/4 and eiπ/4. We
have U2 = L(ϕ2) and ϕ2 takes the values i and −i on the upper and lower halves
of T, respectively. This implies that Tn(ϕ

2) is not stable. From Example 4.2 we
know that Tn(ϕ

2) is skew-symmetric and that therefore detTn(ϕ
2) = 0 for odd n.

Relation (8) amounts to

log |detTn(ϕ
2)| = 2 log |detTn(ϕ)| + o(n),

and this is clearly not true because log |detTn(ϕ)| = n(log |ϕ|)0 + o(n) due to
Corollary 3.3.

5. Two more proofs for normal operators

Here are two more proofs of Theorem 4.1.

Second proof. We proceed directly, without invoking Theorem 2.1. We know that
the origin does not lie in the closure of H(U) and we may therefore without loss
of generality assume that closH(U) is contained in the right open half-plane. Let
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Γ be a smooth curve in the right open half-plane that encircles closH(U) exactly
once counter-clockwise. Obviously, H(PnUPn) is a subset of H(U). Consequently,

1

Rn
(log detPnUPn − trPnAPn)

=
1

Rn
(tr logPnUPn − trPnAPn)

=
1

Rn

(

tr logPne
APn − tr log ePnAPn

)

=
1

2πiRn

∫

Γ

(log λ) tr
[

(

λ− Pne
APn

)−1 −
(

λ− ePnAPn

)−1
]

dλ

=
1

2πiRn

∫

Γ

(logλ) tr
[

(

λ− Pne
APn

)−1 (

ePnAPn − Pne
APn

)

×

×
(

λ− ePnAPn

)−1
]

dλ.

Taking into account that ‖(λ − B)−1‖ ≤ 1/dist (λ, closH(B)) for every operator
B ∈ B(H), we get

1

Rn
| log detPnUPn − trPnAPn|

≤ 1

2πRn

∥

∥ePnAPn − Pne
APn

∥

∥

1

∫

Γ

| logλ| |dλ|
dist (λ, closH(U))2

.

Finally, from (9) we obtain

1

Rn

∥

∥ePnAPn − Pne
APn

∥

∥

1
≤ ‖A‖ e‖A‖ ‖PnAQn‖1

Rn

≤ ‖A‖ e‖A‖ ‖Pn‖2‖PnAQn‖2

Rn
= ‖A‖ e‖A‖

√
Rn ‖PnAQn‖2

Rn
,

which goes to zero because A ∈ F({Pn}).
Third proof. We start with formula (19) of [15]. This formula is a generalization of
Liouville’s formula from ordinary differential equations and it says that

detPnUPn = etrPnAPn exp

(
∫ 1

0

∫ t

0

E(t, τ) dτ dt

)

,

where

E(t, τ) = tr
(

PnAQne
(t−τ)QnAQnQnAPn Pne

τAPn(Pne
tAPn)−1Pn

)

.

It follows that

|E(t, τ)| ≤ e(t−τ)‖A‖ eτ‖A‖ ‖(PnetAPn)−1Pn‖ ‖PnAQn‖2 ‖QnAPn‖2

= et‖A‖ ‖(PnetAPn)−1Pn‖ ‖PnAQn‖2 ‖QnAPn‖2.
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Since A ∈ F({Pn}), we obtain

1

Rn
| log detPnUPn − trPnAPn|(13)

≤
(

∫ 1

0

tet‖A‖ ‖(PnetAPn)−1Pn‖ dt
) ‖PnAQn‖2√

Rn

‖QnAPn‖2√
Rn

=

(
∫ 1

0

tet‖A‖ ‖(PnetAPn)−1Pn‖ dt
)

o(1).

We write A = B + iC with self-adjoint operators B and C. Since A is normal,
the operators B and C commute, that is BC = CB. By assumption, σ(A) ⊂
[m,M ] × [y0 − h, y0 + h] for certain −∞ < m < M < ∞ and 0 < h < π/2. This
implies that σ(B) ⊂ [m,M ] and σ(C) ⊂ [y0 − h, y0 + h]. Therefore

|(Pnx, etAPnx)| = |(e t

2
BPnx, e

itCe
t

2
BPnx)|(14)

≥ cos(th)|(Pnx, etBPnx)|
≥ cos(th)etm‖Pnx‖2

for all n and thus,

(15) ‖(PnetAPn)−1Pn‖ ≤ 1

etm cos th
.

But if 0 ≤ t ≤ 1, then

(16)
1

etm cos th
≤ 1

e−|m| cosh
.

Inserting (15), (16) in (13) we arrive at the assertion.

If in the foregoing proof we just wanted (Pne
tAPn)−1 to exist we could allowm =

−∞. To see this, assume there is some nonzero x ∈ ranPn such that Pne
tAPnx = 0.

Estimating as in (14) we get

0 = (Pnx, e
tBPnx) = ‖e t

2
BPnx‖2,

which shows that e
t

2
BPnx = 0. Repeating this argument we arrive at

0 = (Pnx, e
t

2
BPnx) = ‖e t

4
BPnx‖2

and hence e
t

4
BPnx = 0. Proceeding further in this way and using the strong

continuity of etB we eventually obtain that x = 0. Although in this case of semi-
bounded B the invertibility of Pne

tAPn is still ensured, the uniform bound, which
is needed for stability, is not necessarily valid.

With a view to Example 4.2 it is not surprising that the assumption on C
cannot be weakened in general. For instance, in the special case B = 0, where
A = iC and hence etA is unitary, a gap condition has to be imposed on σ(A):
when supσ(PnCPn) < inf σ(QnCQn) or supσ(QnCQn) < inf σ(PnCPn), then
(Pne

tAPn)−1 exists for all t ∈ R whereas one can construct counterexamples in
the case where such a gap is missing (see [16, Theorem 3.4, Corollary 3.6, and
Section 5]).
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