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Abstract. We show that the section determinant of eA can be expressed, under
certain conditions, by the Fredholm determinant of an integral operator. The
kernel function of this integral operator is computed explicitly in terms of the
operator A. As a simple consequence we derive a Weierstrass type product
expansion for the section determinant.
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1. Introduction

Section determinants of linear operators occur, e.g., in quantum mechanics where
they describe transition probabilities within fermionic many-particle systems. Our
aim here is to relate the investigation of those determinants to several other prob-
lems such as eigenvalue problems of integral operators and boundary value prob-
lems of evolution equations (see Lemmas 3.3 through 3.5). This is done mainly
by showing that the section determinant can be written essentially as Fredholm
determinant of some integral operator.

To be more precise let A : H → H be a bounded operator acting on the
Hilbert space H and U := eA be the exponential function of A. Let H be writ-
ten as orthogonal sum H := H1 ⊕ H2 and represent U by a 2 × 2 block matrix
corresponding to this decomposition

U =
(

U11 U12

U21 U22

)
.
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Assume that dimH1 < ∞ and H2 is separable. The section determinant detU11

then is well-defined. Under some conditions to be imposed on A we show in Corol-
lary 3.7 that there holds the equality

det U11 = etr A11 det(�+ K̂0) (1)

where we have decomposed A analogously to U . The integral operator K̂0 acts on
L2([0, 1],H1). It is trace class and its kernel function K0(t, t′) is given by

K0(t, t′) =
∫ 1

max{t,t′}
e(t−τ)A11A12e

(τ−t′)A22A21 dτ.

This easily implies that if U(T ) := eTA, then

det U11(T ) = eT tr A11 det(�+ K̂0,T ), (2)

where K̂0,T is the integral operator on the space L2([0, T ],H1) with the kernel
function

K0,T (t, t′) =
∫ T

max{t,t′}
e(t−τ)A11A12e

(τ−t′)A22A21 dτ.

For instance, formula (1) is valid when A is self-adjoint as is shown in Section 4.
The main ingredient to this result is an integral formula due to the author [4],
which expresses section determinants through the solution to some integral equa-
tion. Integral formulae of this type originally appeared in the physics literature in
the framework of many-particle physics where section determinants describe tran-
sition probabilities in fermionic systems. However, the derivations given therein
are highly formal and cannot be made rigorous with a reasonable expenditure.

A related question was discussed in the framework of section determinants
of Toeplitz matrices. In 1999 A. Its and P. Deift asked whether such determinants
could be interpreted as Fredholm determinants of operators having some special
properties. This was answered affirmatively by Borodin and Okounkov [1] (see
also [2]). However, their formula intensively exploits the Toeplitz structure of the
operators considered which makes it inapplicable to our more general issue.

2. An integral formula

Let H1 and H2 be complex Hilbert spaces with N := dimH1 < ∞ and H2 being
separable. We consider the orthogonal sum

H := H1 ⊕H2. (3)

Let A : H → H be a bounded linear operator. The boundedness of A is not
really necessary but it helps to avoid annoying technicalities that would only de-
tract from the main ideas. A can be written as block matrix corresponding to the
decomposition (3)

A =
(

A11 A12

A21 A22

)
(4)
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with Ajk : Hk → Hj , j, k = 1, 2. All block matrices that will appear subsequently
are to be understood with respect to (3). Let U(t) : H → H, t ∈ �, be given
by U(t) := etA, where the exponential is defined via the usual power series. Note
U(t1+t2) = U(t1)U(t2). In the context of semi-group theory U(t) is also called the
group of bounded linear operators generated by A. Since A is bounded U(t) de-
pends continuously differentiably on t with respect to the operator norm. Here and
in what follows analysis of operator-valued functions is always meant with respect
to the operator norm. We are interested in the section determinant det U11(1),
which is well-defined because of N < ∞. We want to use the integral formula in
[4]. To this end we decompose A into

A = A0 + B, A0 :=
(

A11 A12

0 A22

)
, B :=

(
0 0

A21 0

)
. (5)

We first compute U0(t) := etA0 because this is considered the unperturbed problem
and thus ought to be explicitly soluble. We determine U0(t) via the initial value
problem

U ′
0 = A0U0, U0(0) = � (6)

or written in components

U ′
0,1j = A11U0,1j + A12U0,2j

U ′
0,2j = A22U0,2j

(7)

with j = 1, 2. It is easily checked that the differential equations are solved by

U0,2j(t) = etA22U0,2j(0)

U0,1j(t) = etA11U0,1j(0) +
∫ t

0

e(t−τ)A11A12e
τA22U0,2j(0) dτ.

(8)

Now the initial conditions yield

U0(t) =
(

etA11
∫ t

0
e(t−τ)A11A12e

τA22 dτ
0 etA22

)
. (9)

Finally, we introduce the free time-ordered Green operator G0(t, t′) by

G0(t, t′) :=

{
U0(t)U+

0 (1)U0(1 − t′) t ≤ t′,
U0(t)U+

0 (1)U0(1 − t′) − U0(t − t′) t > t′
(10)

where

U+
0 (1) :=

(
U−1

0,11(1) 0
0 0

)
(11)

is the so-called pseudo-inverse of U0(1) with respect to H1. Now we have collected
the necessary prerequisites to write down the announced integral formula.

Proposition 2.1. Let A(α) := A0 + αB, α ∈ [0, 1], and U(1, α) := eA(α). We
assume det U11(1, α) �= 0 for all α ∈ [0, 1]. Then the integral equation

G(t, t′; α) = G0(t, t′) − α

∫ 1

0

G0(t, τ)BG(τ, t′; α) dτ, t, t′, α ∈ [0, 1], (12)
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possesses exactly one solution G(t, t′; α), the time-ordered Green operator, having
the following properties.

1. For each t′ ∈ [0, 1] and each α ∈ [0, 1], the function t �→ G(t, t′; α) is contin-
uous on [0, 1] for t �= t′.

2. For 0 ≤ t ≤ t′ ≤ 1 the operators G(t, t′; α) and BG(t, t′; α) are trace class
and the function

trBG(t, t + 0; α) := lim
t′→t
t′≥t

trB(G(t, t′; α)

is well-defined and continuous with respect to both t and α.

Moreover, the section determinant can be expressed by

detU11(1) = etr A11 exp
[∫ 1

0

∫ 1

0

trBG(t, t + 0; α) dt dα

]
. (13)

Proof. [4], Theorem 2.9 and Corollary 3.5. �

The expression
∫ 1

0
trBG(t, t + 0; α) dt looks like the trace of the integral

operator defined by

ϕ(t) �→
∫ 1

0

BG(t, τ ; α)ϕ(τ ) dτ.

Note that this trace is not to be confounded with that referring to H. Unfortu-
nately, the above integral operator is not trace class because of the singularity of
the kernel, which is easily deduced from the integral equation (12) or the explicit
expression given in [4]. However, a closer look at (13) shows

trBG = trA21G12 (14)

whence we only need to know G12. The integral equation (12) for G12 reads

G12(t, t′; α) = G0,12(t, t′) − α

∫ 1

0

G0,12(t, τ)A21G12(τ, t′; α) dτ. (15)

Now it is time to compute the explicit form of G0,12(t, t′). Let t ≤ t′. Then,

G0,12(t, t′) = U0,11(t)U−1
0,11(1)U0,12(1 − t′)

= e(t−1)A11e(1−t′)A11

∫ 1−t′

0

e−τA11A12e
τA22 dτ

= e(t−t′)A11

∫ 1

t′
e−(τ−t′)A11A12e

(τ−t′)A22 dτ

=
∫ 1

t′
e(t−τ)A11A12e

(τ−t′)A22 dτ.
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For t > t′ the only difference comes from U0,12(t − t′) (see (10))

U0,12(t − t′) = e(t−t′)A11

∫ t−t′

0

e−τA11A12e
τA22 dτ

= e(t−t′)A11

∫ t

t′
e−(τ−t′)A11A12e

(τ−t′)A22 dτ.

Hence,

G0,12(t, t′) =
∫ 1

t

e(t−τ)A11A12e
(τ−t′)A22 dτ.

In a more compact form G0,12(t, t′) reads

G0,12(t, t′) =
∫ 1

max{t,t′}
e(t−τ)A11A12e

(τ−t′)A22 dτ. (16)

We can now rewrite formula (13).

Proposition 2.2. Let det U11(1, α) �= 0 for α ∈ [0, 1] and define

K0(t, t′) =
∫ 1

max{t,t′}
e(t−τ)A11A12e

(τ−t′)A22A21 dτ. (17)

Then the integral equation

K(t, t′; α) = K0(t, t′) − α

∫ 1

0

K0(t, τ)K(τ, t′; α) dτ, t, t′, α ∈ [0, 1], (18)

admits a solution K(t, t′; α) having the following properties.

1. For each t′ ∈ [0, 1] and each α ∈ [0, 1], the function t �→ K(t, t′; α) is contin-
uous on [0, 1].

2. The operator K(t, t; α) : H1 → H1 is trace class and depends continuously
on both t and α.

Furthermore, with the aid of this solution the section determinant can be expressed
by the formula

detU11(1) = etr A11 exp
[∫ 1

0

∫ 1

0

trK(t, t; α) dt dα

]
. (19)

Proof. Note that trA21G12 = tr G12A21 in (14). We know that (12) is uniquely
solvable. In particular G12 is uniquely determined. Multiplying (15) from the right
by A21 and putting

K0(t, t′) := G0,12(t, t′)A21, K(t, t′; α) := G12(t, t′; α)A21

yield the integral equation (18). The explicit expression for K0 follows from (16).
The continuity of K(·, t′; α) follows from that of K0(·, t′). Since H1 is finite dimen-
sional K(t, t′; α) being trace class is implied by the boundedness of G0,12(t, t′) :
H2 → H1. �
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Without uniqueness of the solution to (18) the above proposition is not very
helpful because we are not told how to choose the correct solution to be inserted in
(19). One way to show uniqueness is to prove that (18) is uniquely solvable if and
only if (12) is and then use Proposition 2.1. Although this is not too difficult we
prefer, however, to study independently the solvability of (18) in the next section
because we consider this to be more instructive.

3. The operator version of the integral formula

Since we want to find an integral operator K̂(α) such that the trace of K̂(α) equals
the inner integral in (19) we first need an appropriate Hilbert space on which it
can act. We take Ĥ := L2([0, 1],H1), i.e. the space of square integrable functions
having values in H1. Analogously to the operator-valued case, analysis of vector-
valued functions always refers to the corresponding Hilbert space norm. Now let
K̂(α) and K̂0 be defined as follows:

(K̂(α)ϕ̂)(t) :=
∫ 1

0

K(t, τ ; α)ϕ̂(τ ) dτ, (K̂0ϕ̂)(t) :=
∫ 1

0

K0(t, τ)ϕ̂(τ ) dτ (20)

with ϕ̂ ∈ Ĥ. It is easy to see that K̂0 and K̂(α) are well-defined bounded linear
operators mapping Ĥ into itself. Since the kernel functions are continuous we may
hope that we are faced with trace class operators. In order to verify this we need
some well-known facts from operator theory, which may be found in [3].

Lemma 3.1. Let K be a separable Hilbert space.
1. Let L, M : K → K be Hilbert-Schmidt operators. Then LM : K → K is a

trace class operator.
2. Let L(t, t′) be a square integrable function from some separable L2-space, i.e.∫ 1

0

∫ 1

0

‖L(t, t′)‖2 dt dt′ < ∞.

Then the corresponding integral operator having L(t, t′) as its kernel function
is Hilbert-Schmidt.

3. Let L : K → K be trace class and M : K → K be bounded. Then LM and
ML are trace class, too.

Proof. See [3]. Chap. III, Remark 7.1; Chap. III, Sec. 9, P. 109; Chap. III, Theo-
rem 7.1. �

Equipped with the above lemma we can prove that at least the operator K̂0

fulfills our hopes.

Proposition 3.2. The operator K̂0 : Ĥ → Ĥ is trace class.

Proof. Define L̂ and M̂ via their kernel functions

L(t, t′) = Θ(t′ − t)e(t−t′)A11 and M(t, t′) = Θ(t − t′)A12e
(t−t′)A22A21,
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respectively. Here Θ is the Heaviside function. It is a straightforward task to check
that K̂0 = L̂M̂ . It is also clear that

∫ 1

0

∫ 1

0

‖L(t, t′)‖2 dt dt′ < ∞ and
∫ 1

0

∫ 1

0

‖M(t, t′)‖2 dt dt′ < ∞

whence we conclude with the aid of Lemma 3.1 that L̂ and M̂ are Hilbert-Schmidt.
The same lemma then yields that K̂0 is trace class. �

We want K̂(α) to be trace class, too. In order to find conditions under which
this is true we notice that the integral equation (18) can be read as operator
equation for K̂(α) and K̂0

K̂(α) = K̂0 − αK̂0K̂(α). (21)

If (� + αK̂0)−1 exists and is bounded we can solve for K̂(α) = (� + αK̂0)−1K̂0

and deduce from Lemma 3.1 that K̂(α) is trace class. Therefore, we examine the
spectrum σ(K̂0) of K̂0 which is not only useful for our present needs but may also
become important for estimating the trace of K̂(α).

Since K̂0 is a compact operator on an infinite dimensional space we know
0 ∈ σ(K̂0). We investigate the non-zero eigenvalues by showing that the eigenvalue
equation is equivalent to a boundary value problem for a differential equation.

Lemma 3.3. For any λ �= 0 the eigenvalue equation
∫ 1

0

K0(t, τ)ϕ̂(τ ) dτ = λϕ̂(t) (22)

has a non-trivial solution ϕ̂ ∈ Ĥ if and only if there is a non-trivial solution to
the boundary value problem(

ϕ′
1(t)

ϕ′
2(t)

)
=

(
A11 A12

− 1
λA21 A22

)(
ϕ1(t)
ϕ2(t)

)
and ϕ1(1) = 0, ϕ2(0) = 0. (23)

with ϕj(·) : t �→ ϕj(t) ∈ Hj, j = 1, 2, being continuously differentiable.

Proof. Let ϕ̂ be an eigenfunction of K̂0 to a non-zero eigenvalue λ. We define

ϕ1(t) := ϕ̂(t), ϕ2(t) := − 1
λ

∫ t

0

e(t−τ)A22A21ϕ1(τ ) dτ.

Then, ϕ1(1) = 0 and ϕ2(0) = 0. Since K0(t, τ) is continuous ϕ1(·) and ϕ2(·) are
continuously differentiable. We obtain

λϕ′
1(t) = λA11ϕ1(t) + λA12ϕ2(t)

ϕ′
2(t) = − 1

λ
A21ϕ1(t) + A22ϕ2(t).
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Thus, ϕ1(·) and ϕ2(·) solve (23). Conversely, let ϕ1(·) and ϕ2(·) be solutions to
the boundary value problem. Then,

ϕ1(t) = −
∫ 1

t

e(t−τ)A11A12ϕ2(τ ) dτ (24)

ϕ2(t) = − 1
λ

∫ t

0

e(t−τ)A22A21ϕ1(τ ) dτ. (25)

Inserting (25) into (24) yields the eigenvalue equation (22). �

The solution theory of (23) is intimately related with the section determinant
detU11(1,− 1

λ).

Lemma 3.4. The boundary value problem (23) possesses a non-trivial solution if
and only if det U11(1,− 1

λ ) = 0.

Proof. [4], Theorem 3.4. �

The following lemma is a simple consequence of the preceding results.

Lemma 3.5. λ �= 0 is an eigenvalue of K̂0 if and only if detU11(1,− 1
λ ) = 0.

Proof. Combine Lemmas 3.3 and 3.4. �

We thus arrive at the operator version of Proposition 2.2.

Theorem 3.6. Let det U11(1, α) �= 0 for all α ∈ [0, 1]. Then the operator (� +
αK̂0)−1K̂0 is well-defined and trace class. Moreover, for the section determinant
we have the formula

detU11(1) = etr A11 exp
[∫ 1

0

tr(�+ αK̂0)−1K̂0 dα

]
. (26)

Proof. We know from Proposition 2.2 that there is at least one solution to the
equation (18) respectively (21) such that formula (19) holds. By Lemma 3.5
detU11(1, α) �= 0 implies that (� + αK̂0)−1 exists and is bounded. Hence, we
can solve for K̂(α) in (21) and deduce from Lemma 3.1 that (� + αK̂0)−1K̂0 is
trace class. The statement follows directly from Proposition 2.2. �

We recall the formula
d

dα
ln det(�+ αS) = tr(�+ αS)−1S, (27)

which is valid whenever (�+ αS)−1 exists and S is trace class (see [3], Chap. IV,
(1.14)). By the way we want to mention that this formula also provides the ground
for Proposition 2.1. By reading (27) from the right to the left we can derive the
main result of this paper as simple corollary of the above theorem.
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Corollary 3.7. Let detU11(1, α) �= 0 for all α ∈ [0, 1]. Then the section determinant
detU11(1) essentially equals the Fredholm determinant of the integral operator K̂0

having the kernel function (17):

detU11(1) = etr A11 det(�+ K̂0). (28)

Proof. Insert formula (27) into formula (26). �

A further simple consequence is a product representation of detU11(1) in
terms of the zeroes of det U11(1, κ).

Corollary 3.8. The section determinant can be represented by

detU11(1) = etr A11

∞∏
j=1

(
1 − 1

κj

)
(29)

with κj �= 0 being the zeroes of det U11(1, κ) with respect to κ.

Proof. It is clear from (9) that κ = 0 cannot be a zero of detU11(1, κ). Recalling
the properties of the Fredholm determinant (see e.g. [3]) we deduce the statement
from Corollary 3.7 and Lemma 3.5. �

The product in (29) is of Weierstrass type. This observation provides an al-
ternative approach to our main result (28). To be more precise, one can show
that the function κ → detU11(1, κ) is an entire holomorphic function with re-
spect to κ and has at most exponential growth. Then Corollary 3.8 follows from
Hadamard’s factorization theorem and we can derive (28) from (29) with the aid
of Lemma 3.5. Whatever way is chosen to prove (28) it relies heavily on the special
decomposition (5) of A. The method presented here has the advantage that it is
Theorem 3.6 rather than its corollaries that may prove itself useful in studying
section determinants from a more general and abstract point of view.

4. A criterion

Thus far we have not derived any statement concerning the actual location of the
spectrum of K̂0. This will be done now for self-adjoint A. We first prove a general
result.

Lemma 4.1. Let S : H → H be a bounded self-adjoint operator and V (t) := etS .
Then detV11(t) �= 0 for all t ∈ �.

Proof. We show that V11(t) is invertible for all t ∈ �. Since S is self-adjoint so is
V (t) which implies Vjk(t)∗ = Vkj(t) for j, k = 1, 2. Recalling the group property
V (t) = V (t/2)V (t/2) yields

V11(t) = V 2
11(t/2) + V12(t/2)V21(t/2). (30)
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Assume that V11(t)ϕ = 0 for some ϕ ∈ H1. Then it follows from (30) that
V11(t/2)ϕ = 0 because of the right-hand side being positive. Repeating this argu-
ment yields V11(t/2n)ϕ = 0. Now we take the limit n → ∞ to conclude

0 = lim
n→∞V11(t/2n)ϕ = ϕ

where we used the continuity of V (t) with respect to t. This proves the lemma. �

There are several ways of proving the above statement. The one presented car-
ries over to the case when S is just self-adjoint without necessarily being bounded
because then V (t) becomes a strongly continuous semi-group which is still suf-
ficient to make the proof work. We cannot apply the result immediately to our
problem of proving detU11(1, α) �= 0 because A(α) is not self-adjoint. Nonetheless,
we can show that A(α) is similar to a self-adjoint operator that generates the same
section determinant.

Lemma 4.2. Let A be self-adjoint. Then detU11(1, κ) �= 0 for all κ ≥ 0.

Proof. The case κ = 0 is clear from (9). Let κ > 0 and define

J(κ) :=
(√

κ� 0
0 �

)
.

Then,

Ã(κ) := J(κ)A(κ)J−1(κ) =
(

A11
√

κA12√
κA21 A22

)

is self-adjoint because
√

κ ∈ �. Let Ũ(t, κ) := etÃ(κ). By dint of Ũ(1, κ) =
W (κ)U(1, κ)W−1(κ) and Lemma 4.1 follows

detU11(1, κ) = det Ũ11(1, κ) �= 0.

This proves the lemma. �

Having found an concrete criterion on the resolvent set of K̂0 we can formu-
late Theorem 3.6 and its Corollary 3.7 for self-adjoint A without any additional
restriction.

Theorem 4.3. Let A : H → H be a bounded self-adjoint operator and U(t) := etA.
Then,

detU11(1) = etr A11 exp
[∫ 1

0

tr(�+ αK̂0)−1K̂0 dα

]
(31)

and
detU11(1) = etr A11 det(�+ K̂0). (32)

Proof. By Lemma 4.2 we have det U11(1, α) �= 0. Thus the conditions of Theorem
3.6 are satisfied. The formulae follow immediately from Theorem 3.6 and Corollary
3.7. �
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