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CAR

Canonical Anti-Commutation Relations

CAR

Anti-commutator
{a,a} =aa’ +afa=1

with two types of operators.
Canonical anti-commutation relations (CAR) ~~ fermions

CCR

Commutator
[a,al] = aa’ —ala=1

with two types of operators.
Canonical commutation relations (CCR) ~» bosons
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CAR

Setting

» Need more than one a, af
> Index space: L complex vector space with scalar product,
i.e. a Hilbert space

» Need a space where the operators act
> Representation space: F complex Hilbert space.

» Conclusion: For each f € L there are linear operators a(f),
al(f) : F — F with

a(af + Bg) = aa(f) + fa(g)

and
a'(af + 8g) = aa' () + Ba'(g)

~~ operator-valued functionals
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CAR

Fock representation
1. Anti-commutators (f — f conjugation on L)
{a(f). a(g)} = 0 = {al(f),a'(g)}
{a(f),a'(g)} = (f. &)1
2. Unitarity
3. Vacuum vector
3.1 Annihilation operators: 3Q € F, ||| = 1 with
a(f)2=0forall fel
3.2 Creation operators: F smallest Hilbert space containing all
al(f,)---a'(f)Q, ne N

~> Fock representation of the CAR. F Fock space
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CAR

Alternative frameworks

Index Version

> {ej} complete orthonormal system in L. Define

aj .= a(e)), aj- = al(g)
> Unitarity a7 = aJT
» CAR
{a;,a }:O:{aT aT}
j, dk TR S
{aj, 3} = 1

with dj Kronecker delta
» Equivalent to present approach (for separable L)
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CAR

Alternative frameworks

Operator-valued functions

» Formally
a(f) = / Fx)a(x) dx, a(f) = / F(x)a" (x) dx

a(x), af(x) operator-valued functions
» CAR

{a(x).a(y)} = 0= {al (x),a' ()}
{a(x),a'(»)} = 8(x = y)1

with d(x) Dirac delta (singular quantity)
> Problem: af(x) is NOT a well-defined operator

» Smear out a(x), a'(x) with a test function
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CAR

Algebraic structure of the Fock space F

» n-particle spaces
F") = linear combinations{a'(f,)---a(£)Q}, n € Ny.
» Decomposition
F =@
n=0
» Due to the CAR
(Fiyooo fa) = al () -4l (A)Q
is alternating and multilinear. Hence,

F A AL anti-symmetric tensor product
—
n—times
» F is the anti-symmetric tensor algebra over L.
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CAR
Hilbert space structure of the Fock space F
» n-particle spaces are orthogonal
Fm L 70 m+£p
» Scalar products ~~ Slater determinants

(f,g1) - (f.8n)
(a'(fa)---a'(A)Q,a(gn), - a'(g1)Q) = | : :
(f,,,gl) (f,,,g,,)

» Uniqueness F completely determined by L
» a(f) and af(f) are bounded and depend continuously on f

la(AIF < NIFll Nla () < £
Note: Boson operators are unbounded ~~ Wieland-Wintner theorem
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Second Quantization

Operators on the Fock space F
Orthonormal system {e;} in L. A, B,C € B(L).

A(A) = Za(Aej)a( ZaT Cej)a' (&)
J J
dlfr(B) == Z a'(Bey)a(e;)

Quadratic operators: Well-defined? Analytical properties?
Particle number operator

N :=dr(1) = ZaT(ej)a(éj)

Indicates the particle space
Na'(f,)---a'(R)Q = nal(f,)---a'(7)Q
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Second Quantization

Well-definedness

Important tool: N7-estimates. The literature has
IA(A)P] < ||All2l[N®, [|Al2:= (trA*A)% (Hilbert-Schmidt norm)
We can do better
|AA)S] < [Alll| (N + 1)z

Allows to define A(A) on D(N2) instead of D(N).
Some properties

» A(A) and AT(C) need only AT = —A, CT = —C (AT transpose).
» A(A) and AT (C) are well-defined if and only if A, C € By(L).
» dl(B) is well-defined if and only if B € B(L). No anti-symmetry!
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Second Quantization

Boundedness

> A tool from spectral theory. Singular value decomposition
Cf =) Aief)f;
J
» When C trace class then AT (C) bounded (false for bosons!)
AT = Z (Cey)a
< Z la (Cey)a(?)]
J
<>l
J

< 00

» When AT(C) bounded then? Needs more machinery!
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Second Quantization

Exponential functions
We study
27O te @, CeByl)

Bosons: Squeezing operators. In particular BCS states or fermionic
Gaussians

etA+(C)Q

Well-defined because of N%—estimate

o0

t” n
letA7(Oq|12 = Z( e ()2
n=0
= n! n n n
SDIFFE t27|C|13

n=0
< 0

for all t € C and C € By(L). No restriction ||C||2 < 1 needed.
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Second Quantization

Commutators

» Functor of second quantization
[dl(B1),dl(By)] = dI'([B1, B2])
» Scalar terms
[A(A), AT(C)] = —4dT(CA) +2tr AC1.

» General commutator

E(A> B, C) = A(A) + dr(B) + A+(C) s <_2B;:T 2é4>

[E(Al, Bl, Cl), E(Ag, Bg, Cg)] = E([(l), (2)]) + 2tr(A1 G — A2C1)]l

» Helps to systemize computations
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Second Quantization

Lie algebras

» Block matrices

so(L) = {(‘?T g‘), AT = _A CT_—C}

~> orthogonal Lie algebra
» =(A, B, C) give central extension of §0,es(L)
~ metagonal Lie algebra
> tr(A1 G — As Cl) is called
> Schwinger term (in physics)
» Kac-Peterson cocycle (in mathematics)
» Bosons

» Block matrices: symplectic Lie algebra
» Central extension: metaplectic Lie algebra
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Second Quantization

A scalar factor
» Vacuum expectation value

w(t) == (Q, eWetr ()

v

Differential equation
W'(t) = y(t)w(t)

~ contains the trace from the commutator.

v Yy

Vacuum expectation value ~» Fredholm determinant
(Q, et2AtAT ()2 — det(1 + 4£2AC)
n x n-Slater determinant

wn(t) = (a'(gn) -+~ 3 (g1)Q, €22 (Dal () - 2T (h1)Q)

v

v

With appropriate functions gj(t), hj(t)
wn(t)? = wn(0)? det(1 + 4t>AC)
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Second Quantization

Application

Assume AT (C) bounded
> Estimate

\4

d(t) — det(]l + 4t2C*C) _ (Q, etA(C*)etAﬂC)Q)Z < e4\t|§‘

v

d is an entire function of exponential order 1
Zeros pj # 0 of d

v

=1
Z T <00, Va>1
’MJ‘

A;j singular values. C is 'nearly’ trace class

v

(o]
1
Jj=1

» Open question: Does A™(C) bounded imply C trace class?
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Bogoliubov transforms

Bogoliubov transforms
» Produce new representations. Simplest idea
b(f) = a(Sf) + a'(Tf)
bi(f) = a(Tf)+al(S5F) « unitarity!

with S, T € B(L), S, T conjugated operators.
> CAR satisfied if and only if

STT+T7s=0 {b(f),b(g)} =0

555+ T°T=1 {b(f),b'(g)} = (F,8)1
With block matrices

S T\"(s T\ (1 0
T S)\1T 5) \o1
» On the Lie algebra ~» inner automorphisms of so(L)
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Bogoliubov transforms

Quasi-free representation

» Start with a Fock representation
» Apply a Bogoliubov transform
» New representation is called quasi-free representation

» Question When is a quasi-free representation unitary equivalent to the
underlying Fock representation?

b(f) = Ua(f)U*, bi(f) = Ua'(f)U*
with U : F — F unitary.

Theorem (Shale-Stinespring)

A Bogoliubov transform is a unitary transform if and only if T is a
Hilbert-Schmidt operator, i.e. tr T*T < .

Proof: Look for a new vacuum!
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Bogoliubov transforms

The new vacuum

» Important quantity
ker(S) = {f € L|Sf =0}

Bosons S is injective!
» When T Hilbert-Schmidt then dimker(S) < oo
» Explicit form

= al(Thy) -2l (Th)e 227 (T57)Q

where
> fi,...,fq is a basis for ker(S)
» S~ is a pseudo-inverse of S

» Estimate B
HQ||4 < cgdet(l + (TST)*TS™)

Bosonization T NOT Hilbert-Schmidt then possibly dim ker(S) = oo.

Otte (RUB) Second Quantization Bad Honnef 2009

19 /29



Bogoliubov transforms

Example

» L with orthonormal system e;, j € Z

v

Index version: aj := a(ej), a}L = al(g)

v

Bogoliubov transform: S, T projection operators

S:iL—{gj>0}, T:L—{e,j<0}

v

Explicitely ~~ interchange some creation and annihilation operators
— SN
bj—aj,bj—aj,j>0
N A ;
bj—aj, bj—aj7j§0

Vacuum

v

bjQ=0, >0, HIQ=0, <0

~~ Dirac sea, particle/anti-particle creation operators

\4

No unitary transform
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Bosonization

Bosons from Fermions

Construct a representation of the
Canonical Commutation relations (CCR)

[c(f), c(g)] = 0 = [c(£), cT(g)]
[e(F). c'(g)] = (F. )1

in the fermionic Fock space!
Two points of view
» Bosonization
» First step: Construct bosonic operators in the fermionic Fock spacel!
» Second step: Diagonalize some concrete Hamilton operator!
» Boson-fermion correspondence

» First half: Get bosons from fermions!
» Second half: Get fermions from bosons!
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Bosonization

Usual approach

» Take the special quasi-free representation

b; = aj, bJr j>0
bj:aj, b}:aj,jﬁo.

Recall: NO Fock representation!

» Define fermionic currents

> bijbe ¢ == D blub

k=—00 k=—o00

These give (essentially) a representation of CCR

[cj, cf] ~ i1
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Bosonization

General approach

» Recall

[E(Al, By, Cl), E(Ag, By, Cz)] = E([(l), (2)]) + 2t|’(A1 G — A2C1)]l

» When

—Bl 2G\ (-B] 2G\]_,
2A1 B1 )\ 24, B )|

[E(Al, Bl, Cl), E(A2, 82, C2)] = 2tr(A1 G — A2C1)]l

then

~ looks like CCR!
» Find commuting block matrices!
» On the Lie algebra so(L): Find (all) abelian subalgebras!
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Bosonization

Commuting block matrices

» Take commuting operators {B}.
» Define commuting block matrices

-BT 0
0 B
» Apply a fixed Bogoliubov transform
S T\(-BT 0\ /(S T\
T S 0 B)\T §

Still commuting operators.
» Formally ~

df(B) = _ b'(Bej)b(8))
= A(A) + dT(B) + AT(C) + const1
=Z(A, B, C) + const1
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Bosonization

Commuting operators

> Quasi-free representation L with orthonormal system e;, j € Z

bj:aj, b}za},j>0
bj=al, bl =a;, j<0

» Choose L = L2[—m, 7).
» Orthonormal system ej(x) = \/%e"jx.

> B multiplication operator
(Bf)(x) = b(x)f(x)
> When b(x) = &j(x)
(Ber)(x) = ej(x)ex(x) = €j+k(x)

~~ fermionic current ¢;, cjT
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Bosonization

Bosonic vacua

» Bogoliubov transform

b(f) = a(Sf) + al(Tf), b'(f) = a(Tf) + a'(5f)

v

Formally

df(B) = > b'(Be))b(g)

Bosonic vacua

v

dif (B)Q, =0

New fermionic vacuum

v

Q= al(Tfy) - al(TH)e 227 (TS7)Q

v

Partial vacua 0 < d' < d
Qu = al (Ty)- - al (TR)e 227 (T57)Q
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Bosonization

Bosonic annihilation operators

» Formal operators
df(B) = b'(Bej)b(g))
» Vacuum property
B)Qy = Z b(Bej)b(g))al (TF)) ---af (TH)e 227 (T57)Q
= 0
» Conditions on B, e.g. e related with ker(S)
(ej, Bek) =0
» Bosonic annihilation operators
c ~ df(B)
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Bosonization

How to prove determinant formulae?

» n-particle expectation value
wn(t)? = wn(0)? det(1 + 4t>AC)
» Bosonic vacua
Qg = aT(Tfé) . aT(Tﬂ)e_%A+(TSN)Q

» Exponential function of bosonic annihilation operators and creation
operators
+
wn(t) = (le, et(c +C)Qd/)

» Evaluate wp(0)
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Bosonization

Bosons from Fermions

Remarks

» In L = L?[—m,7] any orthonormal system ist ok.

> An general index space L is ok not only L.

» Any Bogoliubov transform with general S and T is ok not only
projection operators.

> Any set of commuting operators is ok not only multiplication
operators.

» Any abelian subalgebra is ok not only those obtained via a Bogoliubov
transform.

To do

Describe the structure of all fermionic representations of the CCR!
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