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We derive upper bounds for the spectral radius of the n×n
Hilbert matrix. The key idea is to write the Hilbert matrix
as integral operator with positive kernel function and then to
use a Wielandt-type min-max principle for the spectral radius.
Choosing special trial functions yields a new bound which we
show improves the best bound known heretofore.

1. Introduction

The spectral asymptotics of the Hilbert matrix has attracted a lot of interest
concerning both the lowest and the largest eigenvalue. Here we shall focus
on the spectral radius ρn of the n × n Hilbert matrix for which we shall
prove, particularly, the bound

(1) ρn ≤ 2wn arcsin
1

wn
with wn := 2

[
(n!)2

(2n)!

]1/2n

, n ∈ N.

This improves, at least for large values of n, Cassels’ bound, see (5) below,
which is the best bound hitherto known. Numerical computations suggest
that (1) is even better for all n except n = 1, 2.

We base the proof of (1) upon relating the Hilbert matrix to an integral
operator Hn whose spectral radius can be expressed by a min-max principle
for operators having positive kernel functions:

(2) ρn = inf
ϕ∈M

sup
0<x<1

(Hnϕ)(x)
ϕ(x)

where M is some set of appropriate trial functions. For the sake of com-
pleteness we shall prove (2) without recourse to the general theory. In the
matrix case the above min-max principle is due to Wielandt [16] and related
to the enclosure result of Collatz [3]. It was generalized in many directions
(see e.g. [6, 9, 10]).

To derive estimates we pick ϕ(x) := (1 − x)γ in (2) with −1 < γ < 0.
We restrict ourselves to the case γ = −1

2 , for which the calculations are
manageable, and obtain (1).

Hilbert was the first one to investigate spectral properties of the matrix
named after him. In his lectures he showed his double series theorem stating
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that ρn stays finite as n→∞ and this was first published by Weyl [13] (see
also [17]). The concrete inequality

(3) ρn ≤ π

is due to Schur [11]. This is the optimal constant that does not depend on
the dimension n. However, if we do want the bound to depend on n it is
possible to strengthen (3). Frazer [5] obtained

(4) ρn ≤ n sinπ/n, n ≥ 2,

by refining a method due to Fejér and Riesz [4] used by them to prove
what is now called the Fejér-Riesz inequality for analytic functions. (4)
was rediscovered by Hsiang [7] and, later, Yahya [18] and was eventually
improved by Cassels [2] to

(5) ρn ≤ 2 arctan
√

2n.

Finally, it might be instructive to look at the asymptotic expansion of ρn.
The first, but not exact, asymptotic result was obtained by Taussky [12]

ρn = π + O(1/ lnn)

by computing the quadratic form with special trial vectors having compo-
nents ck := 1/

√
k. The exact asymptotic behaviour

ρn = π − π5

2 ln2 n
+ O(ln lnn/ ln3 n)

was determined by de Bruijn and Wilf [1] who compared the matrix operator
with an integral operator whose spectral asymptotics can be derived from
general results due to Widom [14] (see also [15]).

2. Estimates for the spectral radius

We start by relating the Hilbert matrix

(6) An :=
(

1
j + k + 1

)
j,k=0,...,n−1

to the integral operator Hn : C[0, 1]→ C[0, 1] having the kernel function

(7) Kn(xy) :=
n−1∑
j=0

(xy)j =
1− (xy)n

1− xy
.

For n =∞ this operator was used by Magnus [8] to study the spectrum of
the infinite Hilbert matrix. We let Hn act on C[0, 1] because we want to have
sufficiently many trial functions at hand. As we hoped, Hn has (almost) the
same spectrum as An. In particular, they have the same spectral radius
henceforth denoted by ρn.
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Lemma 1. Let C[0, 1] be equipped with the usual maximum norm. Then
Hn : C[0, 1]→ C[0, 1] is a bounded linear operator. The respective spectra of
the Hilbert matrix An and the integral operator Hn are the same apart from
0. Furthermore, their common spectral radius ρn can be expressed by
(8)

ρn = inf
ϕ∈M

sup
0<x<1

(Hnϕ)(x)
ϕ(x)

where M := {ϕ ∈ L1[0, 1]|ϕ > 0,
1
ϕ
∈ C[0, 1]}.

Proof. It is clear from the definition and (7) that Hn is linear and bounded.
Moreover, (7) also shows that Hn has n-dimensional range spanned by the
monomials xk, k = 0, . . . , n − 1, which implies that the spectrum of Hn

consists only of eigenvalues. To each c ∈ Cn we associate ϕc ∈ C[0, 1] in the
natural way

(9) c = (c0, . . . , cn−1) ∈ Cn ←→ ϕc(x) =
n−1∑
j=0

cjx
j .

The statement on the spectra then follows from

(Hnϕc)(x) =
∫ 1

0

n−1∑
j=0

(xy)j
n−1∑
k=0

cky
k dy

=
n−1∑
j,k=0

ckx
j

∫ 1

0
yj+k dy =

n−1∑
j=0

xj
n−1∑
k=0

1
j + k + 1

ck.

Note that Hn must have a kernel and An does not.
To prove Formula (8) we recall from the Perron-Frobenius Theorem that,

since An has positive entries, ρn is an eigenvalue of An and, hence, of Hn. Let
v be the corresponding eigenfunction. Writing down the eigenvalue equation
for v and dividing by ϕ ∈M yield

ρn
v(x)
ϕ(x)

=
∫ 1

0
Kn(xy)

ϕ(y)
ϕ(x)

v(y)
ϕ(y)

dy.

This shows that v/ϕ ∈ C[0, 1] is an eigenfunction of the operator Hn,ϕ with
kernel

Kn,ϕ(xy) := Kn(xy)
ϕ(y)
ϕ(x)

whence ρn ≤ ρ(Hn,ϕ), the spectral radius of Hn,ϕ. Since ρ(Hn,ϕ) ≤ ‖Hn,ϕ‖∞
we conclude

ρn ≤ ‖Hn,ϕ‖∞ = sup
0<x<1

∫ 1

0
Kn,ϕ(xy) dy

where we have heeded ϕ(x) > 0, Kn(xy) ≥ 0 and, thus, Kn,ϕ(xy) ≥ 0. To
show equality in (8) we once again invoke the Perron-Frobenius Theorem
according to which the eigenvector of An belonging to ρn can be chosen
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to have positive components whence we can, via (9), likewise choose the
eigenfunction v > 0. In particular v ∈M . �

We use Lemma 1 to estimate the spectral radius from above by cleverly
choosing trial functions in (8), i.e. in

(10) rn(x) :=
(Hnϕ)(x)

ϕ(x)
=

1
ϕ(x)

∫ 1

0

1− (xy)n

1− xy
ϕ(y) dy, n ∈ N.

In order to get an idea how the ϕ’s should look like we cast rn into a form
more amenable to further investigation. The crucial point is to evaluate the
integral

Jn(x) :=
∫ 1

0

yn

1− xy
ϕ(y) dy.

We start by differentiating with respect to x:

(11) J ′n(x) =
∫ 1

0

yn+1

(1− xy)2
ϕ(y) dy =

1
x

∫ 1

0

yn

(1− xy)2
ϕ(y) dy − 1

x
Jn(x).

The first integral on the very right-hand side can also be produced by in-
tegration by parts, which we perform in such a way that ϕ(1) is omitted
because our trial functions will have a singularity at x = 1:

Jn(x) =
[
(y − 1)

yn

1− xy
ϕ(y)

]1

0

−
∫ 1

0
(y − 1)

[(
nyn−1

1− xy
+

xyn

(1− xy)2

)
ϕ(y) +

yn

1− xy
ϕ′(y)

]
dy

= δnϕ(0) + nJn−1(x)− nJn(x) + (x− 1)
∫ 1

0

yn

(1− xy)2
ϕ(y) dy

+ Jn(x) + J̃n(x)

with δn := δn,0 the Kronecker delta and

J̃n(x) :=
∫ 1

0

yn

1− xy
(1− y)ϕ′(y) dy.

Hence we can eliminate the integral in question from (11)

(12) J ′n(x) =
1

x(1− x)

(
δnϕ(0) + nJn−1(x)− nJn(x) + J̃n(x)

)
− 1

x
Jn(x).

To eliminate the annoying Jn−1 we observe that

Jn(x) =
∫ 1

0

yn

1− xy
ϕ(y) dy =

1
x

Jn−1(x)− 1
x

∫ 1

0
yn−1ϕ(y) dy

and therewith (12) becomes

(13) J ′n(x) =
δn

x(1− x)
ϕ(0)− n + 1

x
Jn(x) +

κn

x(1− x)
+

1
x(1− x)

J̃n(x)
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where we have put

(14) κn := n

∫ 1

0
yn−1ϕ(y) dy, n ∈ N, κ0 := 0.

We are going to express

(15) Φn(x) :=
xn

ϕ(x)
Jn(x)

by dint of (13) through a differential equation:

Φ′n(x) = − ϕ′(x)
ϕ2(x)

xnJn(x) +
nxn−1

ϕ(x)
Jn(x) +

xn

ϕ(x)
J ′n(x)

= −
(

ϕ′(x)
ϕ(x)

+
1
x

)
Φn(x) +

xn−1

(1− x)ϕ(x)
J̃n(x)

+
xn−1

(1− x)ϕ(x)
(δnϕ(0) + κn).

At this point we fix our trial function ϕ in such a way that

(16) (1− x)ϕ′(x) = −γϕ(x),

i.e. ϕ(x) = (1 − x)γ with some γ ∈ R to be specified later, whereby J̃n

becomes a multiple of Jn and, hence, we arrive at a differential equation for
Φn:

(17) Φ′n(x) = −(γ + 1)
1
x

Φn(x) +
xn−1

(1− x)1+γ
(δn + κn)

this being equivalent to

(x1+γΦn(x))′ =
xn+γ

(1− x)1+γ
(δn + κn).

We can solve immediately for Φn:

(18) Φn(x) =
δn + κn

x1+γ

∫ x

0

ξn+γ

(1− ξ)1+γ
dξ, n ∈ N0.

In particular, we can now see that γ must satisfy −1 < γ < 0 in order to
yield well-defined integrals and to have ϕ ∈ M in (8). We summarize our
calculations.

Theorem 2. The spectral radius ρn of the n × n Hilbert matrix An as in
(6) can be estimated by

(19) ρn ≤ inf
0<α<1

sup
0<x<1

1
x1−α

∫ x

0

1− κnξn

ξα(1− ξ)1−α
dξ.

Here,

(20) κn =
n!

(n− α)(n− 1− α) · · · (1− α)
, n ∈ N.
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Proof. Put α := −γ and use in turn the min-max principle (8), the defini-
tions of rn and Φn as in (10) and (15), respectively, with ϕ being chosen
according to (16) to verify

ρn ≤ inf
0<α<1

sup
0<x<1

rn(x) = inf
0<α<1

sup
0<x<1

(Φ0(x)− Φn(x)).

Then, (19) follows directly from the representation (18) of Φn.
For ϕ as in (16) the integral in (14) is Euler’s Beta function. Hence,

κn = nB(n, 1− α) =
nΓ(n)Γ(1− α)
Γ(n + 1− α)

wherefrom we deduce (20). �

The optimal way to derive bounds on ρn would be to determine the max-
imum of the function rn exactly. Unfortunately, this turns out to be rather
complicated wherefore we content ourselves with narrowing the region in
which the maximum must lie.

Corollary 3. The spectral radius ρn of the n× n Hilbert matrix An can be
estimated by

(21) ρn ≤ inf
0<α<1

κ(1−α)/n
n

∫ 1/κ
1/n
n

0

1
ξα(1− ξ)1−α

dξ

which in the case α = 1/2 specializes to

(22) ρn ≤ 2wn arcsin
1

wn
with wn := κ1/2n

n = 2
[

(n!)2

(2n)!

]1/2n

.

Proof. When 1 − κnξn ≤ 0 the function rn is decreasing whence the maxi-
mum must lie in the interval [0, x0] with x0 denoting the unique zero of the
integrand in (19)

1− κnxn
0 = 0, i.e. x0 = 1/κ1/n

n .

We conclude

sup
0<x<1

rn(x) = sup
0<x≤x0

rn(x) ≤ sup
0<x≤x0

Φ0(x) = Φ0(x0)

because the Φn(x) ≥ 0 and Φ0 increases.
For α = 1/2 the wn’s are easily obtained from (22) and (20) and the

integral in (21) can be evaluated by change of variables ξ = s2. �
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Finally, we shall check that our estimate (22) is indeed better than (5).
Using some familiar formulae for arctan and arcsin we obtain

arctan
√

2n− wn arcsin
1

wn
= arctan

√
2n− arcsin

1
wn
− (wn − 1) arcsin

1
wn

≥ arctan
√

2n− arctan
1√

w2
n − 1

− π

2
(wn − 1)

= arctan

√
2n(w2

n − 1)− 1√
w2

n − 1 +
√

2n
− π

2
(wn − 1).

Now the asymptotics of the middle binomial coefficient yields

wn ∼ 2
(√

πn

4n

)1/2n

∼ n1/4n, n→∞,

which implies immediately limn→∞wn = 1, and further

n(wn − 1) ∼ n(n1/4n − 1) = n(e(ln n)/4n − 1) ∼ 1
4

lnn, n→∞.

Therefore for large n:√
2n(w2

n − 1)− 1√
w2

n − 1 +
√

2n
≥ 1

4

√
2n(w2

n − 1)√
2n

≥ 1
4
√

wn − 1.

Noting arctanx ≥ cx for small x with some constant c > 0 and using the
monotonicity of arctan we conclude

arctan
√

2n− wn arcsin
1

wn
≥ c

4
√

wn − 1− π

2
(wn − 1) > 0

for large values of n. With some care it should be possible to show the
statement for smaller values of n, too.

3. Remarks

We suggest some topics that might be worth further investigation.
1) In order to derive from Theorem 2 a bound that can be computed more

or less explicitly we did not determine in (19) the maximum of the function
rn exactly. Thus, the very first possibility to strengthen (22) is to know
more about the maximum of rn.

2) Also for computational reasons we fixed the exponent α = 1/2 in (21).
However, numerical computations suggest that α = 1/2, generally, is not
the optimal choice and that other α’s give much more accurate estimates.
According to a theorem of Čebyšev the integral in (21) can be evaluated
for any 0 < α < 1 in closed form by means of elementary functions. How-
ever, it is not clear at all if these elementary functions allow for an efficient
minimizing procedure.
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3) A more vague idea is to pick other trial functions than (1− x)−α. Our
method will work as long as we arrive at a differential equation for Φn like
in (17).

4) Since Wielandt’s min-max principle is accompanied by a max-min prin-
ciple one can also think of deriving lower bounds for the spectral radius in
which case, however, completely different trial functions are needed.
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