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Abstract

Phase sensitive measurement techniques, such as THz time-domain spectroscopy or dispersive

Fourier transform spectroscopy, are very useful tools to obtain a complete set of optical material

parameters. When recording the electric field as a function of time delay between THz and optical

pulse, the absorption coefficient and the index of refraction can be extracted. However, the analysis

shows ambiguity. Here, we describe an analysis which yields a complete set of mathematical

solutions and show how the physically relevant can be deduced. We present a comprehensive

mathematical survey for parameter extraction. We have recorded the THz spectra of anthracene

and the fatty acid capric acid as examples for weakly absorbing solid samples, and an ionic liquid

as an example for a strongly absorbing liquid sample. Finally, we discuss the uncertainty of the

obtained optical parameters using error propagation of the Fourier transformation with a simple

model and a rigorous mathematical procedure.
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INTRODUCTION

Developed in the 1980s and 1990s [1, 2], THz time-domain spectroscopy (THz TDS) has

been established as a general spectroscopic technique to study liquids [3], solids [4], gases

[5], biomolecules [6, 7], aqueous salt solutions [8], nanoparticles [9], semiconductors [10]

and plasmas [11]. The covered frequency bandwidth ranges from 3 cm−1 to 140 cm−1 (0.1

THz to 4 THz). THz TDS reaches higher frequencies in comparison to microwave dielectric

spectroscopy [12, 13] and is restricted to lower frequencies compared to Fourier-transform

infrared spectrometers (FTIR). When combining all available techniques the absorption

coefficient can be measured over a bandwidth of up to 8 orders of magnitude in frequencies

[14].

THz spectroscopy is able to probe intermolecular interactions and collective network mo-

tions on a picosecond time scale [15], thus provides complementary information to infrared,

fluorescence and NMR spectroscopy. The latter probes localized chemical bonds and local

optical and nuclear properties. In contrast, THz spectroscopy probes weak intermolecular

forces, long range interactions and it is sensitive to fast solvent fluctuations and solvent-

solute coupling [16, 17].

When recording the phase and amplitude of the electric field in THz TDS, it is possible

to deduce the absorption coefficient α and the index of refraction n of the sample. However,

the individual steps of data analysis are a challenging task requiring a careful extensive

extraction procedure.

In fig. 1, the basic procedure for data analysis is shown. Standard data extraction proce-

dures use an algorithm that searches for roots in the pulse propagation function. Starting at

a certain set of initial guess values, the algorithms use a stepwise variation of the complex

index of refraction until the measured data are reproduced (fig. 1 left). The sample thickness

can either be treated as a constant parameter or can be included as a parameter in a global

fit. In the latter case, the total variation is calculated which is a measure for the similarity

of adjacent data points, and thus a measure for the smoothness of the spectrum. When

minimizing the total variation the sample thickness can be deduced [18]. Other algorithms

use multiple echoes of the THz pulse [10] or include the determination of the correct sample

thickness in the time-domain [19] and in the frequency-domain [20]. For thin samples, the

Fourier transformation of the extracted data into a quasi space enables the determination of
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the thickness with the smallest oscillations of the extracted optical parameter [21]. Naftaly

et al. introduces an algorithm, where the spectral data and oscillation due to Fabry-Pérot

effects can be separated by deconvolution using Fourier transformation [22].

In this paper, we describe an alternative method based on Cauchy’s principal argument

which has the advantage that it is independent of initial guess values(fig. 1 middle). This

takes into account the inherent ambiguity of the index of refraction calculated from the

measured data.

A second issue addressed in this paper is the determination of the uncertainty of the

obtained complex index of refraction of the sample (fig. 1 right). In general, there are

many sources for noise and systematic errors in THz TDS, such as intensity fluctuations

of the pump laser, the THz antenna, spatial and spot-size fluctuations due to mechanical

delays, multiple reflections within plane parallel optical components, noise arising from the

sample’s inhomogeneity and scattering properties, or electronic background noise of the

detector. The spectral noise can be separated into contributions from the emitter, detector

and shot noise contributions [23]. Whereas an increase in the number of measurements

decreases the statistical error, further repetitions lead to long measurement times and might

be accompanied by long-term drifts and instabilities of the signal. On the other hand, with

the advent of fast-scanning THz TDS such as vibrating membrane or asynchronous optical

sampling spectrometers [24], the measurement speed can be largely increased. We present

a procedure that determines the confidence intervals for the complex index of refraction of

the sample starting with the uncertainty of the time-domain data. Using implicit function

theorem, a rigourous error propagation as well as a simplified model are presented.

This paper focuses on the analysis of TDS spectra in transmission geometry [3], although

the conclusions are transferable to other geometries such as reflection [25], ellipsometry [26],

interferometry [27] or differential TDS [28].

THEORETICAL BACKGROUND

Basic definitions

In the following, we simplify the notation by writing a tilde over complex variables and

define ϵ̃ := ϵ̃(ν), ñ := ñ(ν), α := α(ν), keeping in mind that these parameters frequency-

3



dependent. Average or mean values are indicated by a bar, for example, n̄. Parameters that

are time-dependent are marked by a circumflex, e.g. Ê := E(t). Furthermore, all parameters

that refer to the sample and reference measurements will have the subscripts s and r. An

asterisk ∗ denotes the complex conjugate of a complex parameter.

THz TDS records the electric field Ê as a function of time. The procedure of data analysis

starts with a discrete Fourier transformation of the time-dependent discrete signal Êm into

a discrete, frequency-dependent Fourier transform Ẽk [29]

Ẽk =
1√
N

(
N−1∑
m=0

Êm cos
(
2πk

m

N

)
− ı

N−1∑
m=0

Êm sin
(
2πk

m

N

))
:= FFTk

(
Ê
)

(1)

with the total number of samples N .

Using THz TDS data analysis it is possible to obtain the linear response from the sample:

ñ = n− ıκ (2)

with the real index of refraction n and the imaginary part κ, describing amplitude damping

of a wave that is passing through the sample. We introduce the wavevector in vacuum

k0 = ω/c = 2πν/c. κ can be converted into the absorption coefficient α by

α = 2
2πν

c
κ = 2k0κ (3)

Due to interaction between the charge distribution in the medium and the electromagnetic

field of the beam, the phase velocity is reduced by propagating through an optical medium.

This introduces a phase retardation, expressed in terms of the real part of ñ. n describes

the ratio between the phase velocity of light in the sample and the speed of light in vacuum.

The complex index of refraction ñ can easily be converted into the frequency-dependent

complex dielectric function ε̃

ε̃ = ñ2 = ε′ − ıε′′ = n2 − κ2 − ı2nκ . (4)

The real part of the complex dielectric function ε′ describes a phase retardation between the

electric field and the dielectric mode in an alternating electric field. The imaginary part ε′′

describes the damping of the wave. ε̃ can be fit to different multi-modal relaxation models,

which is a well-known method [3, 30].
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Data analysis

An initial analysis of the TDS data can be done by using Lambert-Beer’s law to obtain

an approximation of the absorption coefficient αs and the absorption κs of a sample with a

thickness d

κs =
αs

2k0
= − 1

2dk0
ln(δ̃∗δ̃) (5)

defining the complex ratio of the sample and reference electric fields δ̃ as

δ̃ = Ẽs/Ẽr . (6)

A frequency-independent initial guess n̄s for ns, the real part of ñs, can be deduced from

the measurement of the relative time shift ∆t of the maximum of the electric field of the

time-domain pulse, which is probing the sample in comparison to the reference. We can use

the following estimation [31]:

n̄s ≈ n̄r +
c∆t

d
(7)

with d, n̄s, and n̄r being the sample thickness and the average indices of refraction of the

sample and the reference, respectively.

The following phase relation links the phase change of the sample pulse relative to the

reference pulse, ϕs − ϕr ≡ arg(δ̃) mod 2π, to ns [32]:

ns ≡ nr −
1

k0d
arg(δ̃) mod 2π (8)

An ambiguity arises, because the phase can cycle through many periods of 2π, but the

measured phase is restricted to the interval to the interval between −π and π. Thus, based

upon a single measurement, we are not able to distinguish phase shifts, if they are separated

by n · 2π with n being an integer. In most cases, the assumption is made that only the first

pulse will determine the phase, whereas contributions from further reflections of the pulse,

that influence the phase as well, are neglected. However, significant problems arise, in case

of high dispersion or large sample thickness. This can be improved when multiple sample

thickness d have been probed. In this case, ns is fitted to the phase ϕ(d) and αs is fitted to

ln(δ̃∗δ̃) [3].

In both approximations (5) and (8), αs and ns can be obtained by using either amplitude

or phase information. In reality, we have to consider different transmission coefficients at
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each optical interface and thus different reflection losses for sample and reference measure-

ments. The transmission coefficients are calculated using the Fresnel equations (see next

chapter).

As an example we can choose a solid sample with air (nr = 1) as reference. In this case

a correction term can be inserted into Eq. 5and we can use the following approximation for

sufficiently small αs:

αs = −1

d
ln

(
δ̃∗δ̃

(
(ns + 1)2

4ns

)2
)

(9)

For samples with high absorption, the complex index of refraction ñs must be used instead

of ns to calculate the Fresnel coefficients.

An alternative method to deduce ns and κs, based upon an initial guess for either ns or

κs, is the Kramers-Kronig analysis [33]. It links real and imaginary parts of the complex

index of refraction. In the following, we will consider the more common case where discrete

values for the initial guess of the absorption κs are obtained from the experiments. Then,

the integral in the exact equation is replaced by an approximated sum:

ns(νj) ≈ n∞,s +
2

π

N∑
p=1
p̸=j

κs(νp)νp
νp2 − νj2

∆ν (10)

with n∞,s being the index of refraction at infinite frequency and ∆ν the discrete sampling

rate. κs(νp) is calculated from αs(νp) within the measured frequency range. The real part

ns(νj) at the frequency νj is determined according to Eq. 10.

Using Eq. 9, αs can be re-calculated. Now an iterative procedure is used, until the changes

in ns and κs are sufficiently small. However, in order to apply the Kramers-Kronig relation,

we need information over the entire frequency range. Practically, this is not possible due to

the limited bandwidth and the discrete nature of the measurement. The Kramers-Kronig

relation is known to be a good approximation as long as αs is small within the frequency

range which has not been investigated.

Pulse propagation

Previously, THz data analysis was based on pulse propagation models [18, 19, 34, 35],

i.e. the THz pulse is monitored during propagation. At every interface between two optical

media 1 and 2, with an index of refraction n1 and n2 respectively, the THz pulse is split
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into two pulses, a transmitted pulse and a reflected secondary pulse. At the next interface,

the secondary pulse is split into further pulses and so forth. Given an incident angle of 90◦,

we obtain by the Fresnel equations r = (n1 + n2)/(n1 − n2) and t = 2n2/(n1 + n2) for the

reflection and the transmission coefficients. Within each optical medium, the THz pulse is

retarded due to refraction and damped due to absorption. This can be summarized when

using the following propagation coefficient:

P̃s,r = exp (ık0ñs,rd) (11)

The different transmission, reflection and propagation terms of all pulses reaching the de-

tector have to be multiplied yielding the pulse propagation function, a complex, frequency-

dependent function that describes the change of the THz pulse by the sample geometry

with respect to the reference geometry. Depending on the geometry and number of optical

interfaces, many terms have to be considered. However, pulses that are reflected at the first

optical interface, pulses that take more time to reach the detector than the maximum time

delay of the measurement and pulses that are, due to multiple absorptions, damped such

that their amplitude is below the noise level don’t have to be considered. Contributions

from other pulses have a strong influence on the spectrum. For example, multiple reflections

between plane-parallel surfaces (Fabry-Pérot effect), for example the sample, windows of

the measurement cell or the detection crystal, generate periodic oscillations in the frequency

domain spectrum. To reduce this effect, additional terms, such as series expansions describ-

ing multiple reflections, are added to the pulse propagation function. The accuracy of the

parameter extraction can be further improved by more complex algorithms, for example the

spatially variant moving average filter [36].

Visualization of the pulse propagation function

For a solid sample we obtain the following equation which includes a Fabry-Pérot

effect[34]:

δ̃ =
4ñsñr

(ñs + ñr)2
P̃s

P̃r

(
1−

(
ñs − ñr

ñs + ñr

)2

P̃ 2
s

)−1

(12)

By rearranging Eq. 12, the following function F (ñs) can be defined:

F (ñs) =
4ñsñr

P̃s

P̃r
− δ̃(ñs + ñr)

2 + δ̃(ñs − ñr)
2P̃ 2

s

(ñs + ñr)2 − (ñs − ñr)2P̃ 2
s

(13)
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Every ñs that solves F (ñs) = 0 is a mathematical solution for the complex of index refraction

of the sample. F is a frequency-dependent complex function, which is visualized in Fig. 2

using the Hue Saturation and Value (HSV) color scheme. Each complex data point in the

considered interval is assigned a specific color and a brightness value. Smaller amplitude

corresponds to darker pixel and vice versa, whereas the phase determines the color of the

plot point. The roots of the function can be found in the dark areas, whereas the light pixels

show singularities of F , i.e. the roots of the denominator.

Search method

For F (ñs) = 0, it is necessary that the following equation is valid:

F0(ñs) := 4ñsñr − δ̃(ñs + ñr)
2 P̃r

P̃s

+ δ̃(ñs − ñr)
2P̃sP̃r = 0 . (14)

In order to obtain all roots of F0(ñs) in a given two-dimensional rectangular interval G1 with

boundary ∂G1, a special procedure performing a global analysis of all minima is used(Fig. 3).

The initial interval for a search should be chosen such that it contains the actual complex

index of refraction of the sample. Under the assumption that there is no root directly on ∂G1

and as singularities have been eliminated beforehand, the total number of roots within G1

can be calculated by choosing a closed, positively oriented Jordan path γ1 on the boundary

∂G1. The Cauchy argument principle can be used to calculate the total number of roots N

for F0(ñs) inside G1 by

N =
1

2πı

∫
γ1

F ′
0(ñs)

F0(ñs)
dñs (15)

Eq. (15) can be solved numerically. When the total number of roots in G1 is calculated, it

can be separated into smaller subsets G2 to GN , where the procedure is repeated (Fig. 4).

All subsets with N = 0 can be ignored, whereas all other subsets are re-divided into smaller

subsets and so on. By this, all roots in the given interval can successively be identified and

calculated with high precision. The procedure can be stopped as soon as the size of a subset

is sufficiently small. If the number of roots for this subset is greater than 1, the uncertainty

of the measurement is too high to distinguish between two minima.
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Error propagation

In order to estimate the statistical experimental uncertainties of the results, typically

several measurements are averaged in the frequency domain [37]. Using subsequent Gaussian

error propagation of implicit functions, we present here an alternative method which uses

directly the recorded time-domain data.

Confidence intervals for δ̃

We will use the following notation: z̃ = zR + ızI with zR and zI being the real and imag-

inary part. The partial derivatives of a function y = f(x1, x2, . . .) depending on measured

values x1, x2, . . . are denoted as y;xn := ∂y/∂xn.

For the pth single measurement, it is possible to approximate the function using a Taylor

expansion. Under the assumption that the derivatives are small, averaging commutates with

the mapping f , i.e. f(x̄1, x̄2, . . .) = ȳ. Using the abbreviation ∆xi = xip − x̄i, we obtain[38]:

y1p − ȳ = y;x1∆x1 + y;x2∆x2 + . . . (16)

The variance of y is

σ2
y = y;x1σ

2
x1
y;x2σ

2
x2

+ . . .+ 2y;x1y;x2σ
2
x1x2

+ . . . (17)

σ2
x1x2

is the covariance of x1 and x2. For a Fourier transformation with frequency index k,

the variances of the real and imaginary parts of the amplitude Ek, σ
2
kR and σ2

kI , and their

covariance σ2
kRI are obtained:

σ2
kR =

1

N

N−1∑
m=0

(
σ̂m cos

(
2πk

m

N

))2
=

1

2N

N−1∑
m=0

σ̂2
m +

1

2
√
N
ℜ
(
FFT2k

(
σ̂2
m

))
(18)

σ2
kI =

1

N

N−1∑
m=0

(
σ̂m sin

(
2πk

m

N

))2
=

1

2N

N−1∑
m=0

σ̂2
m − 1

2
√
N
ℜ
(
FFT2k

(
σ̂2
m

))
(19)

σ2
kRI = − 1

2N

N−1∑
m=0

(
σ̂2
m sin

(
4πk

m

N

))
=

1

2
√
N
ℑ
(
FFT2k

(
σ̂2
m

))
(20)

The last equality in Eqs. (18) to (20) can be processed using the Fast Fourier Algorithm (1)

at the second harmonic of k, thus increasing the speed of computation by several orders of
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magnitude. For a single frequency we can drop the index k and by using the sample and

reference measurements, we obtain the real and imaginary part of δ̃ according to:

δ̃ =
EsR + ıEsI

ErR + ıErI

(21)

Defining ∆⃗ = (δR, δI) and E⃗ = (EsR , EsI , ErR , ErI ), we calculate the uncertainties σδR ,

σδI and the covariance σ2
δRδJ

of δ̃ by

COV(∆⃗) = J(δ̃)COV(E⃗)J(δ̃)T (22)

using a higher-dimensional analogon to Eq. 17 with J being the Jacobian matrix. The

covariance matrix COV(X⃗) of a vector X⃗ = (x1, x2, . . . , xs) is defined as

COV(X⃗) =


σ2
x1

σ2
x1x2

· · · σ2
x1xs

σ2
x2x1

σ2
x2

· · · σ2
x2xs

...
...

. . .
...

σ2
xs

σ2
xsx2

· · · σ2
xs

 (23)

COV(E⃗) can be obtained from Eq. 18 to Eq. 20.

Confidence intervals for ñs and ñr

In order to deduce the confidence intervals σ2
nsR

and σ2
nsI

from COV(∆⃗), the partial

derivatives of nsR and nsI with respect to δR and δI have to be computed. We define:

h(nsR, nsI , δR, δI) = 4ñsñr

−(δR + ıδI)(ñs + ñr)
2 exp(−ık0d(ñs − ñr))

+(δR + ıδI)(ñs − ñr)
2 exp(+ık0d(ñs + ñr)) (24)

with:

H : R2 × R2 −→ R2

((naR, naI), (δR, δI)) 7→ H((naR, naI), (δR, δI)) = (hR, hI) (25)

Let n̄s be a solution to Eq. (25) with the parameter δ̄, then H(n̄s, δ̄) = 0. According to

the implicit function theorem: nsR;δR(δ̄) nsR;δI (δ̄)

nsI;δR(δ̄) nsI;δI (δ̄)

 =

 HR;nsR(n̄s, δ̄) HR;nsI(n̄s, δ̄)

HI;nsR(n̄s, δ̄) HI;nsI(n̄s, δ̄)

−1 HR;δR(n̄s, δ̄) HR;δI (n̄s, δ̄)

HI;δR(n̄s, δ̄) HI;δI (n̄s, δ̄)


(26)

10



with the constraint

det

 HR;nsR(n̄s, δ̄) HR;nsI(n̄s, δ̄)

HI;nsR(n̄s, δ̄) HI;nsI(n̄s, δ̄)

 ̸= 0 . (27)

Finally, we obtain for the variances with a cross-correlation term

σ2
nsR = n2

sR;δR
σ2
δR

+ n2
sR;δI

σ2
δI
+ 2nsR;δRnsR;δIσ

2
δRδI

(28)

σ2
nsI = n2

sI;δR
σ2
δR

+ n2
sI;δI

σ2
δI
+ 2nsI;δRnsI;δIσ

2
δRδI

(29)

Simplified error propagation model

In a simplified model, the uncertainty of ns and κs can be calculated by Gaussian error

propagation. The errors for the absolute σ|Ẽu| and the phase σϕ of the Fourier transformation

for the reference and sample measurements can be calculated as [38]:

σ2
|Ẽu| =

1

|Ẽu|2

(
E2

uRσ
2
uR + E2

uIσ
2
uI + 2EuREuIσ

2
uRI

)
u = r, s (30)

and for the phase

σ2
ϕu

=
1

|Ẽu|4

(
E2

uIσ
2
uR + E2

uRσ
2
uI − 2EuREuIσ

2
uRI

)
u = r, s (31)

The error bars for the phase arg(δ̃) and the absolute |δ̃| can be approximated in the following

way:

∆ arg(δ̃) =
√

σ2
ϕr

+ σ2
ϕs

(32)

∆|δ̃| = |δ̃|

√(
σ|Ẽr|

|Ẽr|

)2

+

(
σ|Ẽs|

|Ẽs|

)2

(33)

The error bars for the real part ∆ns and the imaginary part ∆κs of ñs are obtained by error

propagation of Eq. (32) and (33). For thin, as for highly absorbing samples, the uncertainty

of the sample thickness must be taken into account. A typical sample thickness for a highly

absorbing material is in the range of 25 µm or even thinner, which requires a very accurate

thickness measurement to avoid large error bars. We derive

∆ns =
arg(δ̃)

k0d

√√√√(∆arg(δ̃)

arg(δ̃)

)2

+

(
∆d

d

)2

(34)
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∆κs =
1

2k0
∆α =

1

k0d

√√√√(∆|δ̃|
|δ̃|

)2

+

(
∆d

d
ln |δ̃|

)2

(35)

Analogous error bars can be derived for the real and imaginary parts of the complex dielectric

function:

∆ε′s = 2
√
(κs∆κs)2 + (ns∆ns)2 ∆ε′′s = 2

√
(ns∆κs)2 + (κs∆ns)2 (36)

Using Fourier Transform Infrared (FTIR) spectroscopy, the sample thickness can be derived

when recording the maxima in transmission in the frequency domain:

d =
c

2n̄νe
(37)

with n̄ being the average index of refraction of the material. Using a commercial FTIR we

obtain an accuracy of ∆d ≤ 1 µm. Equation (37) is valid as long as ns is not frequency-

dependent, i.e. in case of low sample dispersion. For a precise measurement the choice of

sample thickness is extremely important. A thin sample bears the disadvantage that the

relative error in the sample thickness is relatively large. A large sample restricts the dynamic

range of the spectrometer due to high absorption. Especially for highly absorbing materials

such as aqueous solutions or ionic liquids, the absorption is found to increase with frequency,

whereas the intensity of the THz source typically decreases at frequencies beyond 1.5 THz.

As a consequence, the dynamic range critically drops with increasing sample thickness.

APPLICATION TO EXPERIMENTAL DATA

As an example for the approximation of ns, we have measured a series of octadecane

samples with thicknesses d = 4.85 mm, 5.7 mm, 7.1 mm and 9.75 mm, respectively. Figure

4 shows the result of the sample measurements with a scaled x-axis relative to the reference

measurement with the optical delay d = c∆t/(n̄s − n̄r) according to Eq. (7). As expected,

the relative optical delay is directly related to the sample thickness d.

Kramers-Kronig relation

One example for which the numeric Kramers-Kronig relation has been applied is displayed

in Fig. 5. The index of refraction and absorption coefficient for anthracene were measured
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with an asynchronous optical sampling (ASOPS) THz time-domain spectrometer [24]. The

sample was pressed into a pill and the empty pill holder was used for the reference measure-

ment. The data were analyzed using a parameter extraction algorithm (cf. 12) retrieving

also the index of refraction. For comparison, the iterative numeric Kramers-Kronig analysis

according to Eqs. (9) and (10) is shown, which converged within three iterations (Fig. 5).

Both measured and approximated values for the index of refraction agree for frequencies

in close proximity to the absorption peak and even for frequencies down to 0.15 THz and

below. At high frequencies, i.e. above 2 THz, the measured and calculated curves deviate.

This can be attributed to an absorption within the sample which contributions considerable

even beyond the measurement bandwidth of 2.5 THz. Both the absorption and dispersion

spectra agree qualitatively very well with the spectra given in the literature [39].

Multiple solutions

Figure 6 shows all possible mathematical of Eq. 14 as deduced from a single transmission

measurement of a 9.2 mm thick capric acid sample. Solutions with a strongly negative value

of the absorption k have been omitted. We find that for a large ratio of sample thickness

and wavelength the different solutions are in close proximity (Fig. 6). In general, we expect

distinct solutions for different sample thicknesses except for the physically true complex index

of refraction. Thus, when using several sample thicknesses, physically irrelevant solutions

can be eliminated. Figure 8 shows the resulting dispersion spectrum of capric acid. The

error bars were calculated using Eq. 28 and Eq. 29.

If the physically true solution is known for low frequencies, it can be extrapolated to

higher frequencies. This can be extrapolated to high-frequency phase-sensitive spectroscopy

like dispersive Fourier transform spectroscopy (DFTS).

Many modern microwave spectrometers have a frequency overlap with THz TDS at the

low-frequency limit. At the high-frequency limit, FTIR spectrometers with special window

materials, beam-splitters and liquid helium cooled detectors can reach down to less than

1 THz. However, only the imaginary part, the absorption coefficient, can be compared, as a

FTIR spectrometer does not yield phase information unless it is dispersive (DFTS). In Fig. 7

we show a comparison between the absorption coefficient of the ionic liquid ethylammonium

nitrate (EAN) as measured with a THz time-domain, microwave dielectric and far-infrared

13



FTIR spectrometer [14]. Different solutions for the absorption coefficients for a theoretical

sample thickness of 300 µm (blue) and 1 mm (red) are plotted as well as the corresponding

indices of refraction. A sample thickness of 300 µm can easily be analyzed, whereas the 1

mm sample shows an ambiguity of the data which can only be solved by extrapolation from

the microwave and FTIR frequencies. The physically true solution is shown in black for

comparison.

SUMMARY

We presented a method for careful data analysis of THz time-domain data. We show that

inherent ambiguities in the data analysis can be eliminated by a combination of different

experimental methods or a systematic variation of the investigated sample thickness. This

will help to reduce the inherent errors. We also describe how physical meaningful solutions

can be separated from mathematical solutions of the problem. The data analysis is applied

to THz time-domain spectra of anthracene, ionic liquids and fatty acids.
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FIG. 1: Flow chart of data analysis starting from measured THz TDS data of the electric field of

sample and reference as a function of time and error propagation analysis. The initial guess can be

avoided by using a Cauchy argument principle. The error is calculated using the implicit function

theorem.
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FIG. 2: HSV visualization of F (ñS) for a data set of capric acid in transmission geometry at ν =

0.4 THz. The dark areas a poles, whereas the light areas are roots of F (ñS). In the upper left,

one Jordan path is shown containing two solutions. The HSV color is projected on a scale 0 to 2π

while the brightness is mapped in such a way that zeros correspond to no brightness and infinity

∞ to maximum brightness.
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FIG. 3: Scheme of the iterative search method. The initial shape G1 is subsequently divided into

smaller subsets G2 to GN . As an example, the blue dot denotes a root of F (ñS)..

18



-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

-5

0

5

10

15

Relative Optical Delay HmmL

T
H

z
A

m
pl

itu
de
Ha

rb
.u

.L

FIG. 4: Illustration of the peak shift (Eqs. (7) and (8)) for measurements of octadecane samples

of different thickness. Air was used as a reference (black). The x-axis is scaled with respect to the

relative optical delay d = c∆t/(n̄s− n̄r). The transmitted octadecane pulses are shown in different

colors. The corresponding sample thickness was 4.85 mm, 5.7 mm, 7.1 mm, and 9.75 mm.
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FIG. 5: Left: Real part of the index of refraction spectrum of anthracene a) as analyzed with a

parameter extraction algorithm (blue) and b) as obtained from numeric Kramers-Kronig analysis

(black). Right: Shown is the THz absorption spectrum of anthracene measured with an asyn-

chronous optical sampling (ASOPS) spectrometer. The two indices of refraction curves coincide

very well, but at the low and high-frequency limit, the calculated curve deviates significantly from

the measured curve.
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FIG. 6: Left: Index of refraction of capric acid at a thickness of d = 0.92 cm (blue) as obtained

from an asynchronous optical sampling (ASOPS) THz time-domain spectrometer [24]. Shown

are all results of the fitting algorithms in the given interval. The ambiguity of the measurement

is especially present at high frequencies. Right: When measuring a second sample of different

thickness d = 0.56 cm (red). the result shifts. Only the physically true solution will remain

unchanged.
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FIG. 7: Experimentally determined absorption coefficient for ethylammonium nitrate (EAN) shown

in black. Different experimental setups combining microwave, THz and FTIR data were used (see

Ref. [14]). In the small gap between microwave and THz data, the extrapolation of a microwave and

THz dielectric fit is plotted [14]. The theoretical absorption coefficient for a 1 mm thick sample is

shown in red, the corresponding result for a 300 µm thick sample is plotted in blue. The physically

true solution which connects both data is displayed in black. The left inset zooms into the THz

range, whereas the right inset shows the corresponding index of refraction ns. The thin sample has

well-separated minima, whereas the thick sample shows an ambiguity that can be solved when we

extrapolate to both, the microwave and infrared spectral ranges.
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FIG. 8: Frequency-dependent index of refraction with error bars as obtained with Eq. 28 and

Eq. 29.
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