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1 INTRODUCTION, OVERVIEW1 Introdution, Overview�Cryptanalysis is the study of mathematial tehniques for attempting todefeat ryptographi tehniques, and, more generally, information seurityservies� [8, p.15℄.�Cryptography is the study of mathematial tehniques related to aspets ofinformation seurity suh as on�dentiality, data integrity, [...℄� [8, p.4℄.Together, Cryptography and Cryptanalysis omprise the siene Cryp-tology wherein they an be illustrated as oppositions. Cryptanalysis hasa strong impat on Cryptography as it poses as evaluation. Continuous at-tempts to thwart protetion of information provided by ryptographi meansexpose their weaknesses and enhane knowledge about them. This leads tothe development of improved ryptographi tools whose seurity, in turn,will be questioned. Simultaneously, knowledge gained from ryptanalyti ap-proahes leads to enhaned analytial methods. This phenomenon is knownas the ontinuous ompetition between designers and analysts, or more fa-miliar, the at-and-mouse-game. It motivates progress on both sides and sofar, none of the opponents has been able to do the ultimate move that ends�the game�.In (lassial) Cryptanalysis, the seurity level of a ryptographi tehnique isdetermined purely theoretially. Therefore, an algorithm that desribes theoperation of the tehnique is onsidered. Basially, the omplexity of an at-tak against an algorithm is determined from only looking at the underlyinglogial strutures and is given by a workload estimation. The omplexity ofthe most e�ient attak against an algorithm de�nes its seurity level.But in the last deade, the �eld of Cryptanalysis has experiened majorhanges. Cryptanalysts do not only look at abstrat algorithms anymore butonsider their onrete implementations in eletroni devies, too. Sine thedisovery of implementation attaks, ryptographers have to wath ryptan-alysts oming up with attaks whih easily defeat ryptographi protetionsof implemented algorithms whih are regarded as seure from a lassi pointof view. The di�erene is ruial: an e�etive implementation attak does1



1 INTRODUCTION, OVERVIEWnot a�et the seurity level of the ryptographi algorithm but the seurityprovided by its implementation. Hene, there are many algorithms that arestill onsidered as seure, although there exist e�etive attaks against non-proteted implementations.Implementation attaks expand ryptanalysis into the world of physis. Realdevies that exeute ryptographi operations deliver muh more informa-tion than only the intended output of the algorithm. The term Side Channelabstrats all unintended information leakage, e.g. power onsumption of thedevie. Attaks based on this information are Side Channel Attaks. SideChannel Attaks have also raised new problems within Cryptanalysis, ina-uray has entered the �eld. While the e�ieny of a lassi attak is mostlyexpressed by omputational omplexity and therefore omparable to that ofother attaks against the same algorithm, the situation is somewhat di�erentfor Side Channel Attaks. They proess measured data of physial observ-ables to ahieve their goal and physis does not only know 0 and 1 but oftenprefers numbers like 68,17469. Amongst other fators, the e�ieny (oromplexity) of a Side Channel Attak signi�antly depends on the quality ofthe side hannel information whih in turn is in�uened by numerous soures.These oherenes let strong statements on e�ieny appear a quite daunt-ing task and in fat, many publiations in this area evade preision whenan attak's e�ieny is � estimated (p. [16, 14℄). So far there exists nomeasure for side hannel quality (or the resulting omplexity) whih for themoment abstrats environmental, devie spei�, implementation spei�,and measurement spei� in�uenes on an attak's e�ieny. A ompari-son of two Side Channel Attaks whih obviously requires not only that thesame ryptographi algorithm is attaked, but as well that the underlyingside hannel omplexity is onsidered, pratially means a omparison underidential physial onditions.In this ontext, we1 regard further investigation of known side hannel at-taks as valuable. We think that understanding more detailed how, why,and under whih irumstanes a ertain attak works (better than anotherone) will lead to more preise onlusions and to progress in Side Channel1Although I prefer to write �we� than �I�, this thesis presents my personal work.2



1 INTRODUCTION, OVERVIEWCryptanalysis.Therefore, the primary goal of this diploma thesis is a profound analysisand omparison of Template Attaks and the Stohasti Model. In additionto a omparison of key dislosure suess rates, we aim at understanding theresults in order to learn more about eah attak's nature.Finally, it turned out that we learned enough about the attaks to suggestand verify improvements for both of them.This doument is strutured as follows. Setion 2 brie�y introduesCryptanalysis and Side Channel Cryptanalysis. Setion 3 provides the theo-retial fundamentals used in this thesis, while Setions 4 and 5 give insightsinto the pratial work whih was performed and present the obtained re-sults. Setion 6 omprises the analysis of the results and our suggestion ofimprovements, whose revised results are given in Setion 7. Setion 8 ov-ers our work on EM and Multihannel attaks. Our onlusion and furtherresearh topis are given in Setion 9.
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2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSIS2 Classial and Side Channel CryptanalysisIn this setion, a transition from lassial ryptanalyti to reent side hanneltehniques is given. After an introdution to lassial Cryptanalysis and thegeneral idea of side hannel attaks, the latter ones will be explored moredetailed. The state of the art is presented and reent problems are outlined.2.1 Classial CryptanalysisFrom a historial point of view, Cryptanalysis is related to the analysis ofemployed ryptographi algorithms in order to �nd and exploit weaknesseswithin their logial struture. Conrete attaks whih apply suh knowledgeare referred to as Logial Attaks or Cryptanalyti Attaks in literature.Cryptanalyti approahes are always embedded into a model, often referredto as attak senario, that de�nes a framework, in partiular the attakersabilities and goals. The general approah of lassial Cryptanalysis is de-pited in Figure 1. In this setting, the attaker of a ryptographi primitive,
Cryptographic

Algorithm
Input OutputFigure 1: Model for lassial Cryptanalysise.g. enryption, has the following abilities: he knows the ryptographi algo-rithm, he an hoose inputs to the algorithm at his will, and he an observeits output. For example, in the ase of enryption (resp. deryption) anadversary an observe the output that was omputed from hosen input by aknown algorithm using unknown key data. His task is to dedue the unknownkey with the help of all available information. There are many variations ofthis attak senario, whih onstrit the amount or the nature of usable data.With the attak framework being de�ned, the seurity provided by the ryp-tographi primitive an be evaluated under several seurity models. In thestyle of varying attak senarios, seurity models (un-)limit the attakersomputational resoures. A ryptographi primitive is said to be seure un-4



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISder a ertain model, if it resists an adversary with the appropriate powers.We refer the interested reader to [8, pp.41℄, whih is a rih soure for furtherdetails.For the reason of this introdution, the attention is restrited to the mainharateristi of lassial Cryptanalysis: The atual devie performing theryptographi operation is regarded as a blak box. It generates output (e.g.iphertext) from the orresponding given input (e.g. plaintext) using theknown employed algorithm and (seret) key data. No further properties ofthe blak box, in partiular its internal operating mode, are known or on-sidered2.A lassial example for Cryptanalysis of a message that has been en-rypted with a monoalphabetial substitution ipher (e.g. the Caesar Cipher[8, p.239℄) is the observation of the frequeny of letters' ourrene. Sinethe substitution is monoalphabeti, the plaintext's harateristi in termsof frequeny distribution of the alphabet, whih is haraterisiti for manylanguages, remains intat. Hene it is a reasonable approah to assume that,for a text of reasonable size, the most ommon letter in the iphertext or-responds to the most ommon letter in the plaintext. Then, the key an beonluded by determining the o�set by whih a letter gets displaed in thealphabet.Two other well-known and more reent examples for (lassial) Crypt-analysis of an employed algorithm are Linear Cryptanalysis and Di�erentialCryptanalysis. Both of them arose in the ontext of the Data EnryptionStandard (DES) [3℄.Linear Cryptanalysis was disovered by Mitsuru Matsui in 1992, althoughthe premisies of its priniple were initiated by Henri Gilbert. One year laterhe published �Linear ryptanalysis method for the DES ipher� [1℄, whih was2Note that for redued versions of algorithms, whih in a way make use of intermediatestates, we might reate a �smaller� blak-box performing only the redued algorithm suhthat the image holds. 5



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISthe �rst suessful Cryptanalysis of the ipher reported in the open ommu-nity. In the broadest sense, it analyses the non-linearity of a given algorithmand omes up with a linear approximation. Matsui disovered that one ofthe eight Sboxes used in DES was less balaned than the others whih madeit possible for him to mount his attak.The disovery of Di�erential Cryptanalysis in the late 1980s is attributedto Eli Biham and Adi Shamir. In 1991 they published the results of theiranalysis of DES in �Di�erential Cryptanalysis of the full 16-Round DES�[2℄. Simpli�ed, an adversary reates pairs of plaintexts omprising a ertaindi�erene and observes the di�erene in the orresponding iphertexts afterenryption. Statistial means are then used to detet patterns in the distri-bution of the di�erenes.Sine their disovery, both attaks are a basi onern for ryptographers andnewly designed iphers are pratially required to be provably resistant tothem, as is for example DES' suessor, the Advaned Enryption Standard(see Setion 3.1).2.2 Side Channel CryptanalysisSide Channel Cryptanalysis is another step in the ontinuous ompetitionbetween designers and analysts. But it is not only an attak that suess-fully operates where prior attaks are ine�etive. Side Channel Cryptanalysis(abbr.: SCC) is an entire new �eld within ryptanalyti researh whih haspotential for various attaks and even attak styles.SCC is based on side hannel information whih abstrats all informationpreservable from the ryptographi devie that is not overed in the attaksenarios of (lassial) Cryptanalysis. In other words, it is information whihis observable additionally to the intended output of the ryptographi algo-rithm. These leakages arry valuable information about the devie's internalstate. Furthermore it is known that every eletroni devie3 is not only in-�uened by an intended input but as well by other fators as for example3whih is not espeially proteted 6



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISexternal environmental onditions or physial phenomenons in the devie.Figure 2 shows a model that gives onsideration to these fats by newly in-trodued dimensions. In this model, the devie arrying out a ryptographi
Cryptographic

Algorithm
Input Output

Environmental
Influences

Physical
ObservablesFigure 2: Model for Side Channel Cryptanalysisoperation is no longer a disregarded blak-box. An algorithm's tangible im-plementation on the physial devie is the entral point. The ommon basisof all Side Channel Attaks (abbr.: SCAs) is to determine the devie's inter-nal state from measurements of physial observables in order to dedue thedata whih is proessed by the devie.The �rst attak based on side hannel information was published in 1995by Paul Koher. He showed, how timing information of ryptographi oper-ations an be used to break implementations of several ryptosystems [13℄.In 1998, Koher et al. published �Simple and Di�erential Power Analysis�[14℄, two attaks that use measurements of the ryptographi devie's poweronsumption to dislose seret key material. Eletromagneti emanation wasintrodued as a side hannel in 2001. Quisquater and Samyde as well asGandol�, Mourtel and Olivier published fundamental works [15, 16℄.The following paragraph exemplary shows why the power onsumptionof a standard digital iruit 4 arries valuable side hannel information.Almost all digital iruits are build in Complementary Metal Oxide Semion-dutor (CMOS) tehnology, beause it is heap and e�ient. But iruits4and hene of non-proteted devies 7



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSIS
In Out0 Soure1 Ground

Figure 3: Logi inverter in CMOS tehnology and truth tablebuild from CMOS gates also have properties, that an be regarded as disad-vantageous. The power onsumption of logial gates in CMOS tehnology isdiretly orrelated to their state. More preisely, the power onsumption ofa CMOS gate is diretly orrelated to its state hange. Figure 3 depits thesimplest logial gate in CMOS tehnology: a logi inverter. For a onstantinput, one of the transistors is insulating and the other is ondutive. In thisstate, the power onsumption of the inverter is negligible as urrent annot�ow from soure to ground. If the input hanges, the ondutivity of bothtransistors is inverted and there is a small time frame where both of them areondutive. During this short period of time, urrent an �ow from soureto ground whih results in power onsumption that is obviously orrelatedto the input value's alteration.SCAs do not attak ryptographi algorithms but �only� their implemen-tations. One must not onlude any relation between the seurity of analgorithm and a suess probability of a SCA against one of its implementa-tions, or vie versa. Hene, in general all implementations of ryptographialgorithms are onsidered to be vulnerable to SCAs, if they are not expresslyproteted.For ompleteness it shall be mentioned that SCAs are only a subset of pas-sive attaks against implementations of ryptographi algorithms. Note inpartiular that no intentional in�uene is exerted on the devie. [12℄ providesdetailed information on implementation attaks.8



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISIn the following it is important to distinguish two styles of SCAs beausetheir approahes fundamentally di�er and hene have di�erent requirements.Setions 2.3 and 2.4 therefore introdue One- and Two-Step Side ChannelAttaks. Setion 2.5 ompares representatives of both lasses with respetto requirements and appliability.2.3 One-Step Side Channel AttaksOne-Step SCAs are diretly mounted against the devie under attak. Allside hannel information or meta-information that is used by the attak isobtained from exatly the one devie under attak and during this one attak.Simple { Power ‖ EletroMagneti } Analysis Simple Power Analy-sis (SPA) and Simple EletroMagneti Analysis (SEMA) are known plain-text attaks. The adversary needs passive physial aess to the devie toobtain instantaneous measurement data. He dedues information about theproessed data by e.g. the Hamming Weight leakage model whih onsid-erably redues the brute fore searh spae. SPA/SEMA is partiularly ofinterest if key bits are proessed sequentially by the implemented algorithm,as for example in modular exponentiation with seret exponents. However,a disadvantage of this approah is that it requires detailed knowledge aboutthe implementation.Di�erential { Power ‖ EletroMagneti } Analysis Di�erential PowerAnalysis (DPA) and Di�erential EletroMagneti Analysis (DEMA) requiresamples that represent well-spread5 plaintexts and a �xed key k. Hene, theyare known-plaintext attaks if this distribution may be assumed and hosen-plaintext attaks if not. The adversary needs passive physial aess to thedevie under attak to obtain many6 samples. Based on a sub-key hypothesis
k′ ∈ {0, 1}n, the adversary omputes the value of a hosen key-dependentintermediate result r ∈ {0, 1}n for eah sample and sorts the samples to5approximately equally likely distributed6the exat number of required samples, usually 1000 samples should su�e, heavilydepends on several fators whih we summarize to side hannel information quality9



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSIS
2n piles with respet to r. Next, the adversary omputes the average avgrof eah pile and then the sum of pairwise di�erenes between all averages,that is∑r

i=0,j>i avgi − avgj. The height of the peaks in the di�erential traequanti�es the orrelation between the key hypothesis and the orret key,hene the adversary deides for the hypothesis with maximum orrelation.The higher omplexity of these attaks ompared to SPA/SEMA faes theadvantages that superposed noise is eliminated due to the averaging proessand no knowledge about the implementation is required. It is ommon sensethat DPA/DEMA are more powerful than SPA/SEMA in the ontext ofblok iphers, while the relation is rather inverse in the ontext of Publi-Key tehniques.2.4 Two-Step Side Channel AttaksTwo-Step SCAs onsist of two onstitutive steps. The �rst step whih will bereferred to as the pro�ling step requires aess to a training devie A, whihis programmable to the adversary's will and idential to the devie underattak B. Note that �idential� should not be interpreted too stritly. It isommon sense that a devie A whih ful�lls the same spei�ations, e.g. thatomes from the same prodution as B, su�es. At least for the ase of at-taks against several blok-iphers, long-term aess to a non-programmabledevie A, this ould even be devie B for instane, substitutes the need of aprogrammable devie A, see Remark 1 in Setion 5.1.1.The seond step whih will be referred to as the lassi�ation step involvesdevie B in either ase. Two-Step SCAs require well-spread inputs to theryptographi algorithm in the pro�ling step.Pro�ling Step During the pro�ling step, an adversary applies di�erentialand statistial tehniques to a large number of side hannel samples from de-vie A to determine the harateristis of the algorithm's implementation. Inother words: he generates key-dependent pro�les of the devie's side hannelleakage.
10



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISClassi�ation Step During the lassi�ation step, a single or a few sidehannel samples7 from devie B are used to ompute, for eah pro�le, theprobability that the samples resemble this pro�le. The pro�le, respetivelythe key hypothesis, whih yields the maximum probability is the best andi-date and seleted.Inferential Power Analysis Attak [9℄, published by P.N. Fahn and P.K.Pearson at CHES 1999, is, to the best of our knowledge, the �rst attakomplying to our de�nition of Two-Step SCAs reported in the open ommu-nity. Two more reent representatives of this lass of SCAs are introdued inSetion 3 and investigated in this thesis.2.5 One-Step vs. Two-Step attaksIn this setion, the requirements and the appliability of One- and Two-StepSCAs are onfronted. Table 1 illustrates a general overview. If a trainingTraining devie Training devie Implementationnot available available knownmany measurements (Ampli�ed)from devie B DPA/DEMA Two-Step Attaks unimportantone measurement SPA/SEMA Two-Step Attaks yesfrom devie B Two-Step Attaks noTable 1: Requirements and appliability of One- and Two-Step SCAsdevie is not available, the hoie of a Single-Step SCA depends only on thenumber of available urves. Under the reasonable assumption, that a train-ing devie is available, the range of seletable attaks is wider.Two-Step SCAs gain relevane in onsequene of suessfully performingunder irumstanes that render most One-Step SCAs inoperative.Consider the following reasonable assumptions for an attak senario: an at-taker might be limited in the number of samples whih he an obtain from7This depends on the attak's nature. 11



2 CLASSICAL AND SIDE CHANNEL CRYPTANALYSISdevie B. Reasons for this inlude but are not limited to: limited aess tothe devie or implemented tehniques within the devie suh as non-linearkey updates. In the worst ase senario, this turns into aess to only a singlesample. Under this assumption, DPA/DEMA style attaks obviously turnout to be unmountable.Furthermore, the implementation of the ryptographi algorithm on the de-vie might be unknown. One obvious reason for this irumstane is a ven-dor's onern in his Intelletual Property. This assumption at least onsider-ably ompliates SPA/SEMA style attaks and, in pratie, takes them fromthe range of hoie.Two-Step SCAs perform well, even if both is assumed simultaneously.

12



3 THEORY3 TheoryThis hapter provides the theoretial basis that later hapters will rely on. InSetion 3.1 we introdue the Advaned Enryption Standard sine knowledgeof ertain properties of the algorithm is required for this thesis. Setion 3.2gives a short review of all relevant statistial measures and in Setion 3.3 and3.4 the Template Attak and the Stohasti Model are introdued.3.1 Advaned Enryption StandardIn 1997 the National Institute of Standards and Tehnology (NIST) invitedthe ryptographi ommunity to submit proposals for a new enryption stan-dard [4℄. The new standard would be the suessor of the Data EnryptionStandard (DES) whih was in plae sine 1977 and outdated in terms of theprovided seurity level. At the end of the seletion proess, during that pro-posed iphers were judged not only by their seurity and e�ieny properties[4℄, the Rijndael algorithm [5℄ was hosen and standardized as the AdvanedEnryption Standard (AES) [6℄ in November 2001. In fat, the AES onlyprovides a subset of Rijndael's options. This is due to the fat that NISThanged the requirements for proposed iphers during the seletion proesswhen Rijndael's basis had already been designed. [7℄ ontains the �nal sub-mission paper of Rijndael while [5℄ is a rih soure for design strategies anddetailed insights.Beause the AES resists all known forms of lassial ryptanalysis and isonsidered seure, its implementations are widespread and a basi module inalmost every appliation that deals with information seurity. This makes itan interesting objet of studies for SCC but as well a good �tester� for thee�ieny (or omplexity) of SCAs.The following desription stritly follows [6℄ and provides additional infor-mation where neessary. The AES is a symmetri blok ipher that proessesdata bloks of 128 bits. Cryptographi keys of 128, 192, and 256 bits in lengthan be used, where eah key length leads to a spei� number of rounds (10,13



3 THEORY12, 14) and may be indiated by naming the algorithm AES-128, AES-192,or AES-256, respetively. During our experiments we only used AES in en-ryption mode and with a key length of 128 bits (10 rounds). Therefore theremainder of this doument will fous on this variant.3.1.1 Mathematial preliminariesAES operates on bytes as its basi unit. Within a byte, single bits are iden-ti�ed by their index value in the following order: b7, b6, b5, b4, b3, b2, b1, b0.Hene b0 stands for the least signi�ant bit, for example. Bytes are inter-preted as �nite �eld elements using a polynomial representation in GF(28):
b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0 =

7∑

i=0

bix
i (1)In ase of the AES, operations over a GF(28) are de�ned by the irreduiblepolynomial

m(x) = x8 + x4 + x3 + x + 1. (2)Addition of two �eld elements an be ahieved by onseutively addingoe�ients of orresponding powers in the two polynomials modulo 2, sinethey are elements of the prime �eld, thus ∈ {0, 1}. Addition modulo 2 isequivalent to the XOR operation, denoted by ⊕. Furthermore, additionmodulo 2 is equivalent to subtration modulo 2, whih implies that the samerelation is true for the polynomials ∈ GF (28).Multipliation of two �eld elements in polynomial representation orre-sponds to multipliation of two polynomials modulo the irreduible polyno-mial m(x). The modular redution ensures that the result will be a polyno-mial of degree less than 8, hene an element of GF (28) and representable bya byte.The multipliative inverse element a(x) of any non-zero element b(x) is
14



3 THEORYde�ned by
a(x) · b(x) ≡ 1 mod m(x)⇒ a−1(x) ≡ b(x) mod m(x). (3)Further mathematial preliminaries with referene to the AES an be foundin [6℄, for a wider overview we refer to [8℄.We will mostly use hexadeimal notation to present byte values, e.g. {1A}= 26, but might hange to other notations where neessary.3.1.2 The State ArrayAES' operations are performed on a two-dimensional array of 16 bytes,arranged in four rows and four olumns, alled State and denoted by s.In the beginning of the algorithm, the input data bytes are opied into theState. After all operations have been performed, the State is opied intothe output, see �gure 4 for details. Note that this notation is used both forenryption and deryption.input bytes State output bytes

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

→

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

→

out0 out4 out8 out12
out1 out5 out9 out13
out2 out6 out10 out14
out3 out7 out11 out15Figure 4: AES: Input, State, and Output3.1.3 CipherAs mentioned above, all transformations are performed on the State. Theipher begins with an initial Round Key addition, after whih the Stateis transformed by 9 iterations of a round funtion. In the end, a slightlymodi�ed �nal round is applied one.The round funtion of the AES algorithm is omposed of four byte-wisetransformations. In enryption mode, their order is: SubBytes, ShiftRows,MixColumns, and AddRoundKey. The �nal round is idential besides themissing MixColumns transformation. Figure 5 shows the overall proessingorder of an AES enryption. 15



3 THEORY

AddRoundKey

ShiftRows

MixColumns

SubBytes

AddRoundKey

ShiftRows

SubBytes

AddRoundKey

CiphertextPlaintext 9x

Initial Round Normal Round Final Round

Figure 5: Overall proessing order of an AES enryptionSubBytes This is a non-linear, invertible byte substitution using a substi-tution table (S-box). For eah byte of the State, the following two transfor-mations are performed:1. The byte is substituted by its multipliative inverse element8 inGF (28).2. The a�ne transformation:
b′i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci (4)is applied over GF (2) for 0 ≤ i < 8, where bi and ci are the ith bits ofthe byte b and , respetively, and  = {63} = 011000112.The a�ne transformation an be written in matrix form as shown in Figure6. The byte-wise e�et of SubBytes is illustrated in Figure 7, see [6℄ for theomplete S-box substitution table.ShiftRows The ShiftRows transformation ylially left-shifts eah row ofbytes within the State by a ertain o�set. The o�set for eah row is givenby its index, e.g. row0 is not shifted sine the o�set is 0. Figure 8 shows thisproedure.8The zero element is mapped to itself 16
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1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
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Figure 6: A�ne transformation in SubBytes

Figure 7: S-box substitution for eah byte of the State [6℄

Figure 8: ShiftRows, a yli left-shift [6℄MixColumns MixColumns operates on the four olumns of the State, oneat a time, as an be seen in Figure 10. The four bytes of one olumn aretreated as oe�ients of a four-term polynomial over GF(2564). This poly-17



3 THEORYnomial is multiplied modulo x4 + 1 (denoted by ⊗) with a �xed polynomial
a(x) = {03}x3 + {01}x2 + {01}x + {02}. Again, the transformation an bewritten in matrix notation, see Figure 9. Let s′(x) = a(x)⊗ s(x):







s′0,c

s′1,c

s′2,c

s′3,c







=







02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02













s0,c

s1,c

s2,c

s3,c







for 0 ≤ c < 3.Figure 9: MixColumns in matrix notation

Figure 10: MixColumns proesses State olumns one-by-one [6℄AddRoundKey This operation adds a 128-bit RoundKey, that is gener-ated by the key shedule (see next paragraph), to the State. As addition heremeans XOR, AddRoundKey an be denoted as State = State⊕RoundKey.Note that during the initial Round Key addition, the originally supplied keydata is used. In the subsequent 9 + 1 rounds, AddRoundKey adds derivedround keys.KeyExpansion This routine generates 11 RoundKeys that are neessaryfor a omplete AES enryption or deryption operation. The RoundKeys areiteratively derived from the supplied key data aording to the pseudo odein Figure 11. Note that in enryption mode, the derived RoundKey for the18



3 THEORYinitial Round Key addition is the supplied key.SubWord() operates on a four-byte word and applies the SubBytes() trans-formation to eah of the four bytes. RotWord() transforms a four-byte array(a0, a1, a2, a3) into (a1, a2, a3, a0), thus it is a yli left shift. The roundonstant Ron[i℄ ontains the following four bytes (xi−1, {00}, {00}, {00}),that inlude powers of x = {02}.KeyExpansion(byte key[4*Nk℄, word w[Nb*(Nr+1)℄, Nk)beginword tempi = 0while (i < Nk)w[i℄ = word(key[4*i℄, key[4*i+1℄, key[4*i+2℄, key[4*i+3℄)i = i+1end whilei = Nkwhile (i < Nb * (Nr+1)℄temp = w[i-1℄if (i mod Nk = 0)temp = SubWord(RotWord(temp)) ⊕ Ron[i/Nk℄else if (Nk > 6 and i mod Nk = 4)temp = SubWord(temp)end ifw[i℄ = w[i-Nk℄ xor tempi = i + 1end whileend Figure 11: Pseudo ode for key sheduling algorithm3.2 StatistisAll statistial measures we use in the ourse of this thesis are standard andwell desribed in virtually every introdution to statistis or omplete mathreferene book, e.g. [30, 31, 32℄. Nevertheless, we give a short review of themeasures, for ompleteness.Let n denote the number of realisations xi (i = 1, . . . , n) of a random variable
X. 19



3 THEORY3.2.1 Measures of entral tendenyArithmeti mean (Average) x = 1
n

∑n

i=1 xi = x1+x2+...+xn

nNote that the arithmeti mean onverges to the expetation value E(X) (lawof large numbers).Median If n is odd and n = 2k + 1, then M = xk+1, thus the middleelement that appears in a sorted list of all xi.If n is even and n = 2k, then M = xk+xk+1

2
, thus the arithmeti mean of thetwo middle elements of a sorted list of all xi.3.2.2 Measures of dispersionVariane σ2 = E(X − x)2is a measure of the dispersion of X from its mean x. If the probabilitydistribution of X is unknown, the sample variane 1

n−1

∑n

i=1(xi− x)2 an beomputed from realisations xi to estimate σ2.Covariane covxy = E ((X − x)(Y − y))is a measure for the linear dependeny between X and Y . A positive (resp.negative) ovariane indiates that if X inreases Y tends to inrease (resp.derease). If the probability distributions of X and Y are unknown, thesample ovariane 1
n−1

∑n

i=1(xi−x)(yi−y) an be omputed from realisations
xi and yi to estimate covxy.Correlation ρ(X,Y ) = cov(X,Y )

σXσYis the ovariane normalized to be in the range [−1, 1]. One advantage ofthe orrelation measure is that it allows an interpretation of the �strength�of the linear dependey. One has ρ(X,X) = 1.Covariane matrix Let X = (X1, X2, . . . , Xm) be a random vetor.
cov(X) := (cov(Xi, Xj)) ∈ R

m×m with i, j = 1, . . . ,mThe ovariane matrix omprises all pairwise ovarianes of the random ve-
20



3 THEORYtor's elements. For example: let A = (X,Y, Z), then
cov(A) =






σ2
X cov(X,Y ) cov(X,Z)

cov(Y,X) σ2
Y cov(Y, Z)

cov(Z,X) cov(Z, Y ) σ2
Z




3.2.3 Measures for the di�erene of two setsT-Test The T-Test is a measure for the statistial di�erene of means oftwo random variables. It is an advaned tool to ompare two random vari-ables as it does not only onsider the distane of their averages but as welltheir dispersion. Let X,Y be two random variables with nx and ny knownrealizations, then

t =
x− y

√
σ2

X

nx
+

σ2
Y

ny3.2.4 Seleted distributionsGaussian distribution Let σ > 0. X has a Gaussian (normal) distribu-tion with parameters x and σ2 if X has density f(x) = 1
σ
√

2π
exp

(

− (x−x)2

2σ2

).Figure 12 shows Gaussian distributions for x = 0 and several hoies of σ2(1; 1,5; 2; 3).
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Figure 12: Seleted Gaussian distributions21



3 THEORYMultivariate Gaussian distribution Let X = (X1, X2, . . . , Xm) be avetor of m jointly normally distributed random variables with the vetorof means X and ovariane matrix ∑. |∑ | denotes the determinant of ∑.The joint probability density of X's elements is given by
f(X) =

1
√

(2π)m|
∑
|
exp

(

−
1

2
(X −X)T

∑−1
(X −X)

)Figure 13 shows the probability densities of two jointly normally distributedrandom variables. In a) they are not orrelated at all and in b) they areorrelated with ρ = −1.
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2Figure 13: a) unorrelated and b) orrelated Multivariate Gaussian densities
3.3 Template AttaksTemplate Attaks [10℄ were introdued by S. Chari, J.R. Rao, and P. Rohatgiat CHES 2002. Clearly, the Template Attak omplies with our de�nition ofTwo-Step SCAs.In this hapter we desribe Template Attaks losely to the original pa-per. Commening with the attak's elementary idea, we give a rough reviewof its proedure in Setion 3.3.1, underlying assumptions on the side hannelin Setion 3.3.2 and a step-by-step explanation with detailed information inSetions 3.3.3 and 3.3.4. 22



3 THEORYNote that we omit the expand and prune strategy that is part of the orig-inal publiation as it is more related to the �eld of stream iphers. It wasnot required for the side hannel ryptanalysis of the AES. Furthermore, aunique key-dependent omputation of a ryptographi devie will be referredto as an operation in the remainder of this hapter in order to be onsistentwith [10℄. In the ontext of stream iphers where the Template Attak wasoriginally motivated, the authors gave the example of exeuting the sameode for di�erent values of key bits to eluidate the word operation. For ourexperiments in the ontext of the AES blok ipher, we identify an operationby the value of the AES State array after the initial Round Key addition,that is x ⊕ k. The motivation of this deision is provided on page 31, see�Equal Images under di�erent Subkeys�.Unlike One-Step SCAs that use some hundred side hannel samples toeliminate the noise ontained in eah sample by omputing averages (DPA,DEMA), the Template Attak extrats and (exlusively) uses the noise tolearn about the implementations harateristis. More preisely: the tem-plate attak uses preise multivariate haraterizations of the (deterministiomponent of the) noise and preise estimations of the intrinsi signal withinside hannel samples from devie A to lassify given samples from devie B.The authors argue that espeially for CMOS devies these haraterizationsare an extremely powerful tool (f. [10℄).3.3.1 Template Attaks in a nutshellIn the pro�ling step, a training devie A is used to generate representationsof the signal and multivariate haraterizations of the ourring noise in sidehannel measurements for all possible operations of the devie. A pair ofmodels for signal and noise is referred to as the template of the operation. Inthe lassi�ation step, the maximum-likelihood approah is used to omparethe noise within one sample from devie B to these templates in order todedue the performed operation. To suessfully determine the underlyingoperation is equivalent to key dislosure, beause the operation is x⊕ k and23



3 THEORY
x is known.3.3.2 Model for side hannel observablesThe observable, i.e. side hannel information, is modeled as a ombinationof an intrinsi signal, intrinsially generated noise and ambient noise. Whenside hannel samples of several invoations of the same operation are on-sidered, their signal omponent is the same whereas the noise omponent isbest modeled as a random sample from a noise probability distribution thatdepends on the environment and operational onditions.Obviously, an attak's suess rate is limited to some bounds by the imple-mentation of an algorithm on a partiular devie. A perfet model of thenoise probability distribution would lead to a suess rate of the TemplateAttak that meets these bounds in theory. Nevertheless, approximations suhas the multivariate Gaussian model are ought to perform well in pratie (f.[10℄).3.3.3 The pro�ling stepFor eah of the K possible operations9 of the devie a large number L (e.g.one thousand) of side hannel samples has to be obtained using devie A.The subsequent steps determine the K templates from these samples, onefor eah operation.Intrinsi signal The �rst part of eah template is a preise representa-tion of the intrinsi signal that an be observed during an invoation ofthe orresponding operation. The Template Attak's empiri approah togenerate this representation is to suppress the noise within the appropriatesamples and use the remaining signals to determine the typial signal. Bothis ahieved at the same time by omputing the average Mi from the L sam-ples that orrespond to operation Oi for all i = 1, . . . , K operations. In idealase, Mi ontains in fat a very preise estimation of the intrinsi signal asthe noise omponents average out at 0 and the remaining average signal is a9reall that an operation is de�ned by x⊕ k in the AES ontext24



3 THEORYvery good estimator in the absene of outliers10.The next step is optional but highly advisable in pratie beause it sig-ni�antly redues the attak's osts (proessing time, storage) with only asmall loss of auray. It is almost sure that not all moments overed by theside hannel samples are of interest to an attaker, thus this step deals withidenti�ation and seletion of interesting points in time.Computing pairwise di�erenes between the average signals Mi yields a urvethat shows large spikes at points where the underlying signals (and thus oper-ations) di�er. Only these points are of interest to an attaker. The Gaussianmodel applies to W points (P1, ... ,PW ) that were hosen along the spikes.The original publiation does not delare how exatly these points should behosen. Our insights on this issue are given in Setion 5.1.2, Step 4.Multivariate noise model The seond part of eah template is a preiseharaterization of the noise that an be observed during an invoation ofthe orresponding operation. The Template Attak assumes that the noiseapproximately has a multivariate Gaussian distribution, hene the ovari-ane matrix∑Ni
desribing the probability density of the noise is omputedonseutively for all operations in this step.First of all, the noise within the samples has to be extrated. For eah op-eration Oi all L noise vetors Ni(·) of the samples need to be omputed.Thereby one W -dimensional noise vetor Ni(T ) of sample T is the di�ereneof the sample T and the average signal Mi at the hosen W instants. Moreformally:

Ni(T ) = (T (P1)−Mi(P1), . . . , T (PW )−Mi(PW )) (5)Then the noise ovariane matrix ∑Ni
an be omputed using the L noisevetors Ni(T ) for eah operation Oi

11. The elements of the ovariane matrix10The Median might be used to gain better results while its omputation is more ostly.11Reall from 3.2.2 that a ovariane matrix onsists of the pairwise ovarianes of arandom vetor's elements. 25
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∑

Ni
are de�ned as:

∑

Ni

[u, v] = cov(Ni(Pu), Ni(Pv)), (6)where u and v denominate two of the W hosen points in time, e.g. the pair
{Pu, Pv}. Note that omputation of∑Ni

[u, v] for u ≤ v su�es beause∑Niis a symmetri matrix.After this step allK templates (Mi,∑Ni
) are omputed. The expeted signalfor operation Oi is Mi and the noise probability distribution is given by the

W -dimensional multivariate Gaussian distribution pNi
(·). The probability ofobserving a noise vetor n is:

pNi
(n) =

1
√

(2π)W |
∑

Ni
|
exp(−1

2
nT
∑−1

Ni
n

)

, n ∈ R
W (7)where |∑Ni

| denotes the determinant of ∑Ni
and ∑−1

Ni
its inverse.3.3.4 The lassi�ation stepThe situation of the lassi�ation step is as follows: an attaker obtains oneside hannel sample S from the devie under attak (B) and wants to �ndout whih of the K possible operations it desends from.This step primarily omprises a maximum likelihood hypothesis test, hene itis less ostly in omputational e�orts. For eah operation Oi the probabilityof observing S if indeed it originated from Oi is omputed. To do so, �rst the

W -dimensional noise vetor n within S has to be extrated by subtrating Mifrom S at the W seleted instants (Mi is part 1 of templatei). Then equation(7) an be evaluated for n using∑Ni
(part 2 of templatei) to get the atualprobability. Finally, the operation Oi that yields maximum probability isseleted.As one is rather interested in a ranking of the andidates Oi than in theatual probabilities, the formula an be simpli�ed by disregard of onstant
26



3 THEORYterms in (7). If so, the operation that minimises
ln
(

|
∑

Ni

|
)

+ nT
∑−1

Ni

n, n ∈ R
W (8)is seleted.3.3.5 Use of Template Attaks against AESIn the original paper the authors desribe an �expand and prune� strategythat is partiularly useful when analyzing side hannel samples of streamiphers. If the attaker uses this strategy, pro�ling and lassi�ation build areurring yle whih means in partiular that the vast e�ort of the pro�lingstep annot be preomputed.In ontrast, if the attaked key is known to be su�iently small or assail-able in suh bloks (e.g. this is true for all blok iphers with the propertythat eah blok of the �rst roundkey only depends on one original key blok)the pro�ling an be done independently before or after obtaining S from thedevie under attak. This might be of importane for suh ases where theperiod between obtaining the sample S and key reovery is a ritial fator.For example: to reover an 128-bit AES key in the way we present in thisthesis an attaker has to ompute �only� 28 · 16 = 4096 instead of 2128 tem-plates, whih would be learly infeasible. The attaker an preompute allthese templates and - after obtaining S - immediately start the lassi�ationstep whih takes only a few seonds, even on an ordinary home omputer.3.4 Stohasti ModelThe Stohasti Model [11℄ was published by W. Shindler, K. Lemke, andC. Paar at CHES 2005. It is the third attak in the lass of Two-Step SCAssine it de�nitely shows the neessary properties.In this setion we present the Stohasti Model lose to the original on-tribution. As in the previous setion we begin with the attak's fundamentalidea after what we give a short review of its overall proedure in Setion 3.4.127



3 THEORYand explain the mathematial model in Setion 3.4.2. Detailed informationon the approah is then given in Setions 3.4.3 and 3.4.4.The Stohasti Model, as the name leads one to assume, is a fairly so-phistiated approah that uses several statistial methods and is based on awell de�ned, elaborated mathematial model. However, for the sake of om-prehensibleness we will skip all formal proofs and theoreti onsiderationsthat we �nd unneessary for the reader to understand the attaks's onept.Therefore we refer the interested reader to [11℄ for proofs, details and deeperunderstanding.Furthermore, several aspets that we bring forward might sound redundant,like repetitions from Setion 3.3. We do so anyway, rather than pointing tothe Template Attak, in order to give a omplete review of the StohastiModel that an be read on its own. On the other hand we omit the minimum-priniple approah at key extration beause it was already expeted andexperimentally proven to be less e�ient in the original publiation. TheStohasti Model aims at blok iphers, its adaptability to stream iphers isunknown.The Stohasti Model extrats and uses the noise ontained within sidehannel samples to dislose seret information. This stands in sharp ontrastto all known One-Step SCAs whih see noise as a hindrane. More pre-isely: the Stohasti Model uses one preise multivariate haraterizationof the (nondeterministi) noise in onjuntion with an approximation of thedeterministi signal in a hosen vetor subspae to lassify given samples.The authors argue that due to approximation of the deterministi signal theStohasti Model's suess rate is bounded upwards by the Template Attakwhih estimates the signal as good as possible. On the other hand, far less12measurements would be required in the pro�ling step. Our investigation ofe�ieny di�erenes and explanatory approahes are provided in Setion 5and thereafter.12savings in the dimension of up to 100 are mentioned in the ase of AES28



3 THEORY3.4.1 Stohasti Model in a nutshellIn the pro�ling step, a training devie A is used to approximate its realside hannel leakage funtion in a hosen vetor subspae and to generatea multivariate haraterization of the ourring noise. The training urvesare assumed to represent all key dependenies uniformly distributed, in theonrete ase of AES that is they are uniformly distributed for x⊕ k. In thelassi�ation step, the maximum likelihood approah is used to ompare thesample(s) from devie B to the approximated leakage funtion in order todedue its key dependeny.3.4.2 The mathematial modelThe model's underlying setting is as follows: an attaker has aess to sidehannel samples (e.g. of an enryption) and a part of the orrespondingplaintext13 x ∈ {0, 1}p. His task is to dislose a subkey k ∈ {0, 1}s.For any given instant t (overed by the samples) the measurement is regardedas a realization of the random variable
It(x, k) = ht(x, k) + Rt (9)that is omposed of two parts. The �rst part ht(x, k) denotes the portion ofthe sample that depends on x and k and will be referred to as the determin-isti part. The seond part Rt denotes the portion that does not depend on xand k and will be referred to as the random part. Sine both portions (thusthe entire sample) additionally depend on the instant t the random variableould be expanded to the disrete funtion I(x, k, t) = h(x, k, t) + R(t) toover this fat. Nevertheless, to be onsistent with [11℄ we will stik to thenotation in (9) and onsider single instants where not indiated di�erently.The deterministi part an be seen as an unknown mapping ht : {0, 1}p×

{0, 1}s → R that assigns a real value, e.g. power onsumption, to eah om-bination of plaintext and key bits. F := {h′ : {0, 1}p×{0, 1}s → R} denotes13adaption to known-iphertext senarios is feasible29



3 THEORYthe in�nite set of suh mappings. The most preise and ostly approah toattak an implementation learly aims at �nding h′ ∈ F suh that h′ = ht.In other words, the adversary has to �nd all 2p+s assignments to uniquelyidentify h′ = ht. In ase of an attak against the AES targeting one Sbox at atime, whih means x, k ∈ {0, 1}8, this leads to 216 mappings14 per Sbox. TheStohasti Model signi�antly redues this e�ort by approximating ht(x, k)in a vetor subspae and by exploiting an elementary property of the phys-ial observables, if appliable. A full desription of these steps is beyondthe sope of this thesis, therefore we will skip their derivation and straightprovide the results (all details and proofs an be found in [11℄).The idea is as follows: an adversary determines a small u-dimensionalvetor subspae Fu;t ⊂ F whih ontains a mapping h∗ that either is indeedthe searhed mapping ht or at least su�iently lose to it. In this subspae,he only has to �nd u assignments to uniquely identify h∗.
Fu;t is regarded as the set of all mappings h′ ∈ F that an be expressedin the u-dimensional vetor subspae spanned by u known funtions gjt :

{0, 1}p × {0, 1}s → R. In formal notation:
Fu;t :=

{

h′ : {0, 1}p × {0, 1}s → R | h′ =
u−1∑

j=0

βj · gjt

} with βj ∈ R(10)The suess rate of the attak is strongly oupled to the hoie of Fu;t thusthe funtions gjt. One they are hosen, the oe�ients β0, . . . , βu−1 an beestimated for eah instant t. Apparently, the number of required samplesin the pro�ling step inreases with the number of dimensions u, if the samelevel of preision is aspired for the βjt. One might see this as a trade o�problem for a �xed number of samples in the pro�ling step: a small num-ber of dimensions u redues the searhable spae, whih might exlude goodandidates h′ ∈ F but gives better estimators for the best h∗ still inludedin Fu;t; a large number of dimensions u will more likely inlude a very good14This is the approah of a naïve Template Attak. However, our Template Attakrequires 2
s assignments, see EIS on page 31.30



3 THEORYandidate h∗ but its estimators will be less preise.On the hoie of the funtions gjt: if the physial observables show aertain property (f. �Equal Images under di�erent Subkeys (EIS)� in [11℄),an almost lossless redution of F is possible. With lossless we address the fatthat this redution dereases the number of andidates h′ without �loosing� asingle one. This is possible beause the nature of the andidates is hanged.Consider an arbitrary set V and a (surjetive) mapping φ(x, k) → V forwhih the images of φ({0, 1}p, k) ⊆ V are equal for all subkeys k ∈ {0, 1}s.The deterministi portion of the samples ht(x, k) is said to have the propertyEIS, if ht an be expressed as a funtion of φ, i.e. ht = φ◦ht for an appropriatemapping ht. If ht has (or is assumed to have) the invariane property EIS,the authors suggest to selet funtions gjt that an be expressed as gjt =

φ ◦ gjt with gjt : V → R. This leads to the following expression for the bestestimator h∗
t :

h∗
t = φ ◦

u−1∑

j=0

βjt · gjt(y) βjt ∈ R, y ∈ V. (11)The gain of exploiting the EIS property an be illustrated as in Figure 14.
2p+s EIS

−→ V ⊆ 2p loss
−→ uFigure 14: Redution of the vetor spae exploiting the EIS propertyThe deision, whether this property should be assumed or not, an be madeonsidering only the abstrat algorithm. Nevertheless, due to lak of a perfetmodel of the physial devie, a proof of the property an only be adduedempirially by experiment.3.4.3 The pro�ling stepThe number of side hannel samples that is neessary for the pro�ling step islinked to the number of dimensions of the vetor spae in whih the adversaryapproximates the real leakage funtion (see above). However, the original31



3 THEORYontribution does not quote a spei� number but ompares several hoiesin terms of their e�ieny at key extration. Our studies on this are givenin Setion 6.4.2. Let us assume the adversary deides for a u-dimensionalvetor spae and obtains two sets of N1 and N2 side hannel samples usingdevie A. The subsequent steps ompute the approximators h∗
t , in otherwords a funtion h∗(x, k, t), for the deterministi portion of the side hannelinformation and the multivariate haraterization of the noise Rt.Approximation of h∗

t Let xj ∈ {0, 1}
p (j = 1, . . . , N1) be the known partsof the plaintext and it(xj, k) be the side hannel measurement at instant tthat orresponds to xj.The approah uses the Least Squares Method to �nd an optimal approximator

h∗ ∈ Fu;t of it. For any approximator h′ ∈ Fu;t the sum of squared deviationsfrom the real leakage funtion it an be denoted by
N1∑

j=1

(it(xj, k)− h′(xj, k))2 = ‖it − Ab‖2. (12)As it resp. A and it are taken for granted (see below) the optimal approxi-mator h∗ that minimises the left hand side of (12) is uniquely identi�ed byany vetor b that minimises the right hand side of (12). b an be found byevaluating
AT Ab = AT it ⇒ b = (AT A)−1AT it (13)if AT A is invertible.The adversary begins with determining the (N1 × u) - matrix A. Eahmatrix element aij (i = 1, . . . , N1 and j = 0, . . . , u − 1) is de�ned as aij :=

gj(xi, k) resp. gj(φ(xi, k)) exploiting EIS.Hene the adversary traverses all N1 plaintexts whereat he evaluates the ufuntions g eah time. Then he omputes the (u×u) - matrix AT A and (if itis regular) the (u×N1) - system matrix S = (AT A)−1AT . The system matrixis time invariant and needs to be omputed only one wheres the vetor itand hene the vetor b have to be found separately for eah instant t.32



3 THEORY
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Figure 15: Design Matrix A exploiting EIS propertyThe olumn vetor it is de�ned as (it(x1, k), . . . , it(xN1

, k))T . For eah in-stant t, the adversary extrats the measurement for t from all N1 samplesand omputes b = S · it. Every b has dimension u and ontains the oe�-ients (β′
0, . . . , β

′
u−1) for the optimal approximator h∗

t =
∑u−1

j=0 βj gj(x, k).The next step is optional but highly advisable in pratie in order toredue the omputational e�ort of the attak with only a small loss of au-ray. It is almost sure that only some instants overed by the side hannelsamples atually arry valuable information, therefore this step deals withthe identi�ation and seletion of interesting points in time t1, . . . , tm. Theauthors do not make a statement on how these points an be found in thetheoreti part of the publiation. Yet, the experimental analysis part showsseveral approahes based on the eulidean vetor norm ‖(b0,t, . . . , bu−1,t)‖ andompares them in terms of e�ieny at key extration. For the moment wesimply go on with the set t1, . . . , tm provided by an orale. Our experienesin this �eld are given in Setion 5.1.2, Step 4.Multivariate Charaterization of Rt In the Stohasti Model the noisewithin the side hannel is assumed to be independent of x, k, i.e. non-deterministi, and to roughly show properties of a multivariate Gaussiandistribution. The subsequent steps ompute the ovariane matrix C thatharaterizes the noise probability density.Let Rt denote a random vetor (Rt1 , . . . , Rtm) with t1, . . . , tm being the se-leted instants. The adversary uses the approximators h∗
t to extrat thenoise within the j = 1, . . . , N2 side hannel samples it(xj, k) from the seondset. More preisely, he omputes N2 noise vetors of dimension m whereas33



3 THEORYeah noise vetor is the di�erene between a sample and the orrespondingapproximated deterministi part. More formally:
Rt = it(xj, k)− h∗

t (xj, k) (14)Then, the ovariane matrix C is omputed15 using the N2 noise vetors Rt.Eah matrix element cij (1 ≤ i, j ≤ m) is de�ned as
cij = cov(Rt(i), Rt(j)) (15)with i and j being two of the m hosen points in time. Note that the ovari-ane is symmetri and hene omputation of all cij for i ≤ j su�es.The omputation of the matrix C ompletes the pro�ling step. The deter-ministi part ht(x, k) of the side hannel leakage is approximated by h∗

t (x, k)and the random noise Rt is haraterised by the m-dimensional probabilitydensity fC .
fC : R

m → R fC(z) =
1

√

(2π)m|C|
exp(−

1

2
zT C−1z), z ∈ R

m (16)where |C| denotes the determinant of C and C−1 its inverse.3.4.4 The key extration stepThis step basially omprises a maximum likelihood test hene it is less ostlyin omputational e�orts than the pro�ling step. The setting for the key ex-tration step is as follows: the adversary had (limited aess) to devie Band obtained N3 side hannel samples st(xj, k
◦) (j = 1, . . . , N3) with knownplaintexts xj. Now he wants to dislose the seret key k◦ that was used bydevie (B).By assumption the noise in the side hannel did not hange, i.e. thenoise vetor ztj = st(xj, k

◦) − h∗
t (xj, k) has a multivariate Gaussian distrib-15Reall from 3.2.2 that a ovariane matrix onsists of the pairwise ovarianes of arandom vetor's elements. 34



3 THEORYution with ovariane matrix C. For eah key hypothesis k the probabilityof observing ztj if k is indeed the right key an be evaluated with (16). Theadversary ombines these probabilities for all N3 samples, i.e. he evaluates
N3∏

j=1

fC(ztj) =

N3∏

j=1

fC(st(xj, k
◦)− h∗

t (φ(xj, k))) (17)for all subkeys k ∈ {0, 1}s, and deides for the key k that maximises theterm.As one is rather interested in a ranking of the key hypothesis than the atualprobabilities, the formula an be simpli�ed by disregarding onstant termsin (16). If so, the adversary deides for the key k that minimises
N3∑

j=1

zT
j C−1zj. (18)
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3 THEORY3.5 Compendium of di�erenesThe following table shows the fundamental di�erenes in the approahes ofboth attaks. For orretness we denote, that (non)deterministi shall beunderstood as (non) dependent on the relevant data, e.g. the key.Sample portion Template Attak Stohasti Modelsignal deterministi, estimated deterministi, approximated
→ 256 average signals → 9 sub-signalsnoise deterministi, haraterised non-deterministi, haraterised
→ 256 ov matries → one ov matrixTable 2: Fundamental di�erenes between Template Attaks and the Sto-hasti ModelRemarks of the original authors:The Template Attak extrats all possible information availablein eah sample and is hene the strongest form of side hannelattak possible in an information theoreti sense given the fewsamples that are available. [10℄Though our e�ieny at key extration is limited by templateattaks pro�ling is muh more e�ient whih is highly relevantif the designer of a ryptosystem is bounded by the number ofmeasurements in the pro�ling step. [11℄Our insights on the e�ieny of both attaks are given in Setion 5 andthereafter.
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4 ACQUISITION4 AquisitionThis setion deals with the aquisition of side hannel samples. First, wewill give a general outline of the side hannel measurement work �ow. Then,in the sueeding sub-setions, we will go over the di�erent steps we had toproess and provide detailed information.4.1 Side Channel measurement work �owIn general, Side Channel Cryptanalysis requires a large number of preisemeasurements where eah aquired sample needs to be stored for later analy-sis and all measurements should ideally be done in the same fashion and ina non-hanging environment. Obviously, these requirements in terms of pre-ision, onstane, and speed an be faed by a high degree of automation.Usually, a Personal Computer is a entral point of a setup and used to oper-ate and oordinate all other devies as well as to store obtained measurementdata. A digital osillosope (sope) is needed to perform the atual measure-ments and the neessary A/D onversion. Depending on the type of attak,one or several probes are required to link the sope to the devie that is exam-ined. For ompleteness we mention that further material might be neessaryin order to put the devies into operating state and link them to the PC(power supplies, Smartard reader, boards for I/O ommuniation). Figure60 shows the relations between the devies and the sequene of operations(within one measurement yle).Step 1 Initially, the sope needs to be setup with several parameters, likefor example duration and resolution, and alibrated, suh that the mea-surement range is used to full apaity. Normally, both an be doneeither manually or by software tools that ommuniate with an inter-fae of the sope.Step 2 An instrution to arry out the operation one is sent to the rypto-graphi devie. Optionally, additional ommands are sent to the deviein order to hange parameters as for example the plaintext.37



4 ACQUISITION
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34Figure 16: Side Channel measurement setupStep 3 During the exeution of the operation, the side hannel informationis aquired by the sope. It is highly advisable to synhronise thesope's and the devie's operation, e.g. by means of a trigger signal, inorder to limit storage e�orts.Step 4 One the exeution of the operation is �nished by the devie andthe sample is reallable from the sope's memory, it is transferred tothe PC for storage.For further measurements, Steps 2 to 4 an be repeated in a yli way.4.2 Miro Controller, AES ImplementationWe used a so alled Funard [17℄ for our side hannel measurements. In op-position to �normal� Smartards, the miroontroller (µ) and the memorymodule are not monolithily integrated, but wired, and embedded into theard body. Our Funard ontains an 8-bit RISC ATMega 163 µ [18℄ in Har-vard arhiteture onept (separation of data and program memory). Theinternal memory of the µ is limited to 16KB FlashROM program memory,512 Bytes E2PROM (permanent) memory, and 1KB SRAM (non-permanent)data memory.To bypass the daunting task of low-level I/O-programming we availed usof the Simple Operating System for Smartard Eduation (SOSSE) [24℄, amodular open soure operating system. It abstrats from the hardware layer38



4 ACQUISITIONand provides the ISO standardized T=0 protool (ISO 7816 [25℄) for bytewise half duplex transmission of Appliation Protool Data Units (APDUs).The AES enryption algorithm was implemented straight forward aord-ing to [6℄ in Assembly language using the Atmel AVR Studio 4 IDE [26℄ withonly one modi�ation. We ombined the SubBytes and ShiftRows transfor-mation so that the result of SubBytes would be diretly inserted into theState array at the right position. Furthermore, we added some lines of odethat generate a trigger signal on the Smartard's I/O pin just before theinitial Round Key addition begins, to synhronise the sope.After we veri�ed that the ode works orretly, we integrated the AES en-ryption into SOSSE so that it ould be invoked by an APDU ommand.Furthermore we added an APDU ommand to load a 128-bit key into theE2PROM. Then, SOSSE was ompiled with the avr-g [27℄ open soureross ompiler and the hex-�les programmed onto the ard (FlashROM andE2PROM) with the MasterCrd and MasterBurner software [28℄.4.3 Aquisition setup, Parameters for measurementsIn this setion, we provide details about our aquisition setup and the para-meters we used.Digital Osillosope Agilent In�nium 54832D Mixed Signal Osillosope;key data: Bandwidth 1 GHz, Channels 4+16, max. sample rate 4GSa/s,Aquisition memory 2Mpts/hannel [19℄Probe Agilent 1165AMiniature passive probe; key data: Division ratio 10:1,Input resistane 10MΩ [20℄EM Probe Langer EMV Tehnik near �eld probe RFU 5-2; key data: a-quires surfae and irular magneti �elds (see Figure 58 in appendixA), Resolution ∼ 5mm [21℄Preampli�er Langer EMV Tehnik preampli�er PA 303 onneted to theEM probe; key data: Amplifying 30dB, Noise �gure 4,5dB [22℄39



4 ACQUISITIONCard Reader CHIPDRIVE miro ard reader, dismantled to ease aess(see Figure 59 in appendix A) and to onnet external, low-noise powersupply (see below); key data: ISO 7816-3 onform, lok frequeny 3.57MHz [23℄DC Power Supply Statron diret urrent power supplyTo dismantle the Smartard reader eased aess to its internal wiring. Wesoldered a 47Ω resistor into the ground of the ard's power feed and used anAgilent Probe (hannel A) to measure the potential drop over the resistor.The usual Smartard power supply, whih is done by onneting the readerto a PC's serial port, was disonneted and replaed with the Statron DCpower supply. Aording to [29℄, the ard's supply voltage is 5V ± 10% andthe maximal urrent onsumption is 10mA. Hene, the voltage drop overthe resistor would not exess 10mA · 47Ω = 470mV. Aordingly, we set theStatron devie to supply 5.5V.We onneted an additional wire to the I/O pin of the ard reader and di-reted its other end to the outside so that the seond Agilent probe (hannelB) an detet the trigger signal.The ard holding soket was attahed head�rst, so that the ontat area ofthe Smartard pointed down. Preliminary tests showed that the ontat areapartly shields EM emanation. Furthermore, we unsealed the ard reader'sbakside in the hip area to bring the EM probe as lose to the hip as pos-sible. The EM probe was onneted to the sope (hannel C) through thepreampli�er. Figure 60 in appendix A shows our overall setup.The sope was set to obtain samples of 20000 points at a rate of 200MS/sfrom hannels A and C after deteting the trigger signal on hannel B. Eahpoint was sampled in 8-bit resolution. The 20000 points over 100µs whihmathes the time that the ard needs to ompute the initial Round Keyaddition and the �rst normal round of an AES enryption. With the ardslok frequeny being 3.68MHz, one lok yle takes ∼0.27µs and for eahof the ∼360 overed lok yles ∼55 points are sampled.40



4 ACQUISITION4.4 Fixed key, Variable keyAltogether, we arried out three sets of measurements for our experiments.As our main fous is Two-Step Side Channel Cryptanalysis, we obtained at�rst a pair of sets of measurements. One large set for the pro�ling step andone smaller set for the lassi�ation step.Fixed key We began with arrying out a pair of sets of measurementsusing a �xed key. Our approah aims at reovering the 128bit AES key kin portions of 8 bits, thus we represent the full key as a onatenation of16 subkeys kj (j = 0, . . . , 15). The plaintext x is represented in the samemanner, i.e. x = (x1, . . . , x15). The �rst set of measurements is supposed toserve the pro�ling step. We used a �xed key k and plaintexts x, randomlyhosen from a uniform distribution, to obtain (following the reommendationsin [10℄) ≈1000 samples per operation (xj⊕kj), a total of 231448 samples. Forthe seond set, we loaded a di�erent key k∗ onto the Smartard and againused random plaintexts x to obtain 3000 samples. This set is supposed toserve the lassi�ation step.Figure 17 shows the distribution of the samples within the �rst pro�ling setwith respet to x0, i.e. the �rst plaintext byte. Sine this set was obtainedusing a �xed key, the distribution ould be permuted by ⊕k0 to then illustratethe distribution of x0 ⊕ k0.Variable key Beause of several observations that we made while workingon the samples of the �rst pair of sets of measurements (see Setion 5, step 4,observation 1), we deided to arry out a third measurement set. This timethe plaintext x and the key k were hosen randomly before eah invoation ofthe enryption operation. As before, we obtained a set of ≈256000 samplesfor the pro�ling step. Figure 18 depits the distribution of the samples withinthe seond pro�ling set with respet to x0 ⊕ k0.
41



4 ACQUISITION
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5 EXPERIMENTAL RESULTS - FIXED KEY5 Experimental Results - �xed keyIn this setion we outline our implementations of both attaks, provide on-rete results, and report in detail on the experiene we gained working onthe samples of the �rst pair of sets of measurements.All programs were implemented in C-language and all omputations on sidehannel samples were arried out in 64-bit �oating point preision16.Setion 5.1 deals with the Template Attak and Setion 5.2 with the Sto-hasti Model. In Setion 5.3, we ompare both attaks.5.1 Template AttakThe authors of [10℄ laim, that the Template Attak is the �strongest form ofside hannel attak possible in an information theoreti sense�. The resultswe present later on will, depending on various irumstanes, support anddisprove this statement. Furthermore, the authors argue that within theirassumptions (see later on) Template Attaks are superior to SPA- and DPA-style attaks, as in the former ase all available information in eah sidehannel is used. We agree on the superiority of Template Attaks, see Setion3.5.5.1.1 Remarks and Improvements (1)Remark 1 (onerning the pro�ling step): We point out that if the sampleswere obtained in a way as desribed in Setion 4 (�xed key), devie A doesnot need to be programmable and even knowledge of the employed key isunessential. The amount of samples an adversary possesses after the pro�lingstep is far more than enough to dislose the employed key in a DPA attak.In fat, we were able to extrat the full 128-bit key k both using one thousandsamples from the power hannel and using one thousand samples from the EMhannel. Figure 19 exemplarily shows the resulting peaks in the orrelationurves for the orret subkey k0.16data type double on a 32-bit Intel Proessor with a ported GCC43
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Figure 19: Correlation urves for the orret subkey k0 = 0x3C on the powerhannel (left) and the EM hannel (right)This observation weakens the assumptions about an attaker's minimalpowers in order to suessfully mount a Side Channel Attak against theAES. The remaining minimum requirements are:
• availability of a devie A that is idential to devie B so that an adver-sary an attah the neessary probes and arry out the required amountof measurements
• either knowledge of the plaintexts if their distribution may be assumedto be approximately uniform
• or ability to hose plaintexts so that they are approximately uniformlydistributed.Improvement 1 (onerning the hoie of interesting points in time):Carrying out preliminary tests we quikly disovered that the sum of pair-wise di�erenes of the average signals, i.e. ∑K

i,j=0 mi −mj for j ≥ i, is notan optimal basis for hoosing the interesting points in time. This is due tothe fat, that positive and negative di�erenes add up to 0. While this e�etis desirable to �lter eventually present noise, it hides as well valuable peaksthat derive from signi�ant signal di�erenes with alternating algebrai sign.Therefore we implemented two more measures that served as the basis forthis hoie. 44



5 EXPERIMENTAL RESULTS - FIXED KEYThe �rst one omputes the sum of absolute pairwise di�erenes of theaverage signals ∑K

i,j=0 |mi −mj| for j ≥ i so that the hiding e�et does notemerge anymore for the ost of a noise �oor 6≈ 0.The seond one omputes the sum of squared pairwise di�erenes of the av-erage signals ∑K

i,j=0(mi − mj)
2 for j ≥ i so that large di�erenes beomemagni�ed while very small di�erenes beome redued. Again, a noise �oor

6≈ 0 is the prie.Figures 20 and 21 (see pp. 49) depit the three measures for the ases thatthe average signals mi were omputed from 231448 power hannel samples.Improvement 2 (onerning the lassi�ation step): The original Tem-plate Attak only provides a sample lassi�ation strategy based on a singleavailable sample. While this seems to be a realisti senario in the ontextof stream iphers17, the situation might be less tight in the ontext of blokiphers. To pay tribute to the eventuality that several samples are availablein the lassi�ation step, we developed a di�erential strategy that proessesseveral samples.For every available sample, we ompute the probabilities that the samplerepresents this or the other operation Oi, e.g. x0 ⊕ k0, in the �traditional�way. Then, we purge the o�sets between these probability distributions thatare aused by the di�erent plaintexts so that the probabilities are now as-signed to key hypothesis and �in line�. Finally, we add up the probabilitydistributions and selet the key hypothesis that yields maximum probability.More formally: Let Sn and xn (n = 1, . . . ,m) denote the available samplesresp. the orresponding known plaintexts and Oi (i = 0, . . . , 255) denote theoperations xn ⊕ k◦ where k◦ is the unknown key. First, we ompute:
prob(S1 → O0), prob(S1 → O1), . . . , prob(S1 → O255)

prob(S2 → O0), prob(S2 → O1), . . . , prob(S2 → O255)... ... ... ...
prob(Sm → O0), prob(Sm → O1), . . . , prob(Sm → O255)17[35℄ presents an ampli�ed attak for the ase of several available samples45



5 EXPERIMENTAL RESULTS - FIXED KEYThen, eah line n of the array is permuted by ⊕xn so that it represents keyhypothesis ki instead of operation hypothesis xn ⊕ k◦. Note that eah line nof the array is permuted by its orresponding xn (whih probably di�er fromline to line) so that the olumns in the array below do not math the olumnsin the array above. One olumn represents the orret key hypothesis k = k◦,but its position in the array is unknown so far.
prob(S1 → k0), . . . , prob(S1 → k◦), . . . , prob(S1 → k255)

prob(S2 → k0), . . . , prob(S2 → k◦), . . . , prob(S2 → k255)... ... ... ... ...
prob(Sm → k0), . . . , prob(Sm → k◦), . . . , prob(Sm → k255)Finally, all probabilities pointing to a unique key hypothesis are added up

∑m

n=1 prob(Sn → k0), . . . ,
∑m

n=1 prob(Sn → k◦), . . . ,
∑m

n=1 prob(Sn → k255)and the hypothesis yielding maximal probability is seleted.
max

(
m∑

n=1

prob(Sn → ki)

)

→ k
?
= k◦This strategy has the advantage that the presene of di�ult samples anbe ompensated. Even if the orret key is not the best andidate for anysingle sample, hanes are good that their ombined probability distributionsguide to the right deision.We give a simpli�ed example: Let the orret subkey k◦ = 012 and

x⊕ k◦ → 002 012 102 112

S1 0,1 0,08 0,02 0,03
S2 0,1 0,02 0,01 0,08be the individual probability distributions derived from two samples S1 and

S2 with orresponding plaintexts x = 002 and x = 102. S1 selets x⊕k◦ = 002whih leads to the guess that x ⊕ k◦ ⊕ x = k◦ = 002, whih is wrong. Inthe same manner, S2 selets x ⊕ k◦ = 002 whih leads to the guess that
x⊕ k◦⊕ x = k◦ = 102, whih is again wrong. Purging the o�sets and adding46



5 EXPERIMENTAL RESULTS - FIXED KEYthe probability distributions yields
k◦ → 002 012 102 112

S1 0,1 0,08 0,02 0,03
S2 0,01 0,08 0,1 0,02
∑ 0,11 0,16 0,12 0,05whih leads to the orret guess k◦ = 012.5.1.2 ImplementationThe Template Attak was implemented losely to the desription in 3.3.After some preliminary tests, the implementation was modi�ed aording toimprovements 1 and 2. In the following we desribe our implementation step-by-step and provide data examples to illustrate the proedure. Additionally,we introdue several abbreviations whih will be used throughout the sequel.Pro�ling step The Template Attak aims at generating a template, i.e.an estimation of the signal and a haraterisation of the noise, for eah keydependent operation. As mentioned before, we de�ne a unique operation bythe value of one seleted byte in the AES state array s after the initial RoundKey addition, e.g. s0,0 = x0 ⊕ k0 ∈ {0, 1}

8 and hene we generate 256 tem-plates. The implementation of this byte-wise attak an attak any byte in
s but for the sake of larity we restrit our attention to s0,0.The �rst step aims at generating indexes of the N1 available samples. Foreah value of x0 we reate an index �le that points to all samples that orre-spond to it. Note that indexing in this manner leads to the same partitioningas indexing for x0⊕ k0 or even S-box(x0⊕ k0) beause k0 is �xed. Hene theindex names ould be permuted to represent the other arrangements. Forexample: index255 orresponds to x0 = 255 but as well to operation255⊕k0and to S-box(255⊕ k0). Furthermore, an additional �le distribution is re-ated that ontains the length of eah index �le, i.e. the amount of urvesthat orrespond to eah plaintext x0. Figure 17 in Setion 4.4 illustratesthe ontent of suh a distribution �le. The implemented funtion is named47



5 EXPERIMENTAL RESULTS - FIXED KEYassign_diretory_ontents(har *byte). It reates all the �les men-tioned above for the seleted byte ∈ (0, . . . , 15). We foused on byte = 0and will from now on omit this parameter.Step 2 omputes the average signal for eah operation (part 1 of eahtemplate). We implemented a funtion average_urves(*value,*no_of_files) that omputes the average of all no_of_�les samples whih orre-spond to x = value and used it in a loop as follows:for 0 ≤ i < 255beginvalue ← ino_of_�les ← distribution of byte[value℄average_urves(byte, value, no_of_�les)endThe resulting average signals will be referred to as averagevalue.Step 3 omputes the basis for the hoie of interesting points in time. Asdesribed in [10℄ we ompute the sum of pairwise di�erenes (sod) of theaverage signals. Additionally, with respet to improvement 1, we omputethe sum of absolute pairwise di�erenes (soad) and the sum of squared pair-wise di�erenes (sosd). All three measures are omputed by the funtionompute_differenes() at the same time as follows:for 0 ≤ k < data_length (eah point in time)beginfor 0 ≤ i < 256beginfor i+1 ≤ j < 256beginsod[k℄ = sod[k℄ + averagei[k℄ - averagej [k℄soad[k℄ = soad[k℄ + |averagei[k℄ - averagej [k℄|sosd[k℄ = sosd[k℄ + (averagei[k℄ - averagej [k℄)2endendend 48



5 EXPERIMENTAL RESULTS - FIXED KEYFigure 20 shows the resulting urves sod (red, lower urve) and soad(green, upper urve) for N1 = 231448 samples from the power hannel. Onean notie that soad magni�es peaks (∼ 4000) and even more importantmakes peaks visible (8000-10000) that do not appear in sod. On the otherhand the �strongest peak to noise �oor� ratio dereases from ∼30:1 for sodto ∼ 4:1 for soad. Figure 21 shows the same soad urve (green, lower urve)
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Figure 20: sod and soad urves for N1 = 231448 (power hannel) as fun-tions of timetogether with the resulting sosd urve (red, upper urve). Note that the salefor the vertial axis hanged. One an see that sosd magni�es peaks evenstronger than soad and that the �strongest peak to noise �oor� ratio inreasesfrom ∼ 4:1 for soad to ∼ 20:1 for sosd.Step 4 omprises the atual hoie of interesting points in time. [10℄ givesno more advise on how to hoose the points than �identify and selet onlypoints at whih large di�erenes show up�. We developed a funtion find_49
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Figure 21: soad and sosd urves for N1 = 231448 (power hannel) as fun-tions of timepoints_of_interest(urve,p) that reursively identi�es the p strongestpeaks in urve ∈ {sod, soad, sosd} and stores their positions. The list ofthese points will be referred to as poi[℄ (Points Of Interest). Figure 22depits the resulting seletion for p = 20 and urve = sosd (derived from
N1 = 231448 power samples). Apparently, the strong peak in the area of4000 in Figure 21 atually onsists of three peaks that now beome visiblebeause of the limited range of the x axis. As expeted, the funtion hosethe 20 highest points on the urve. From the ratiosampling frequeny of the sopelok frequeny of the ard =

200MS/s

3.68MHzwe know that eah lok yle of the ard is represented by ∼55 points onthe urve. (If the lok frequeny is unknown, it an be easily estimated byapplying an FFT to a sample, see Figure 23 where the highest peak indiatesa lok frequeny of ∼3.6 MHz.) One an dedue that the three peaks inFigure 22 represent three lok yles but that only two of them are overed50
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Figure 22: sosd urve for N1 = 231448 (power hannel) and the seleted 20points
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Figure 23: Disrete Fourier Transform of a sample from the power hannel51



5 EXPERIMENTAL RESULTS - FIXED KEYby the seleted points. We assumed this to be suboptimal and modi�ed thefuntion suh that it would not onsider the nearest δ = 54 points to the leftand right of every seleted point. In other words, the funtion would nowselet at most 1 point per lok yle.Observation 1From preliminary tests and onsideration of both the AES' struture and thesamples' nature we onluded that although all three di�erential urves showpeaks in the area 0-1000 we should prevent the seletion of those instants.Reall that eah average urve represents a unique value of x0 and that ourimplementation of the AES begins with the initial Round Key addition whihomputes x⊕ k where k is �xed. Given that the di�erential urves are om-puted as desribed above, e.g. ∑255
i=0,j>i averagei − averagej, their part thatovers the initial Round Key addition basially represents

average0−average1

︷ ︸︸ ︷

(0⊕ k0)− (1⊕ k0) +

average0−average2

︷ ︸︸ ︷

(0⊕ k0)− (2⊕ k0) + . . . +

average0−average255

︷ ︸︸ ︷

(0⊕ k0)− (255⊕ k0)

+

average1−average2

︷ ︸︸ ︷

(1⊕ k0)− (2⊕ k0) + . . . +

average1−average255

︷ ︸︸ ︷

(1⊕ k0)− (255⊕ k0). . . . . . ...
+

average254−average255

︷ ︸︸ ︷

(254⊕ k0)− (255⊕ k0)so that the peaks in this area are only aused by the di�erenes in x0. Inother words: due to the fat that for our sample set 1, sorting the samples by
x0 yields the same partitioning as sorting by x0⊕k0, we get notieable peaksin the di�erential urves at those points in time when the algorithm proesses
x0 or x0 ⊕ k0. Obviously, the peaks for x0, that is during the initial RoundKey Addition, do not indiate operation-dependent di�erenes in whih weare interested. This hypothesis was empirially proven by experiment, seeSetion 5.4 and result table 6 at the end of this setion. We modi�ed thefuntion aordingly suh that it would ignore the �rst 3300 points18.18This boundary was estimated using the sosd urve omputed for the �fteenth byte inthe AES State array and veri�ed by the lok yle ount of the simulated µ.52



5 EXPERIMENTAL RESULTS - FIXED KEYFurthermore, we added a feature that would prevent the seletion ofpoints in the noise �oor. More preisely, the funtion �xes a noise limitat 10% of the highest peak's value and onsiders any point below this limitas not seletable. Figure 24 depits the revised seletion for urve = sosd(N1 = 231448) and p = 9, whih is the maximum number of points thatful�ll all requirements.
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Figure 24: sosd urve for N1 = 231448 (power hannel) and the seleted 9pointsThe steps 5 and 6 jointly perform the haraterisation of the noise. Theformer is a preparatory step that supplies required data to the latter whihgenerates the noise haraterisation.Step 5 extrats the noise within all samples that orrespond to one opera-tion. We implemented a funtion ompute_noise_vetors(*value,*no_of_files) that extrats the noise vetors from the no_of_files samplespointed to by indexvalue. For eah sample, it omputes the di�erene of theaveragevalue and the sample at the p seleted points. An example is depitedin Figure 25. It shows a sample from the power hannel (red, upper urve)53



5 EXPERIMENTAL RESULTS - FIXED KEYorresponding to x0 = 106, the appropriate average106 (green, middle urve),and the entire extrated noise (blue, lower urve). Note that we atuallyompute and store only the noise values at the seleted points, indiated bya blue ross.
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Figure 25: A sample, the orresponding average, and the extrated noiseOne the loop within the funtion terminates, it has generated a (p×no_of_files)- array that holds the noise values, see Figure 26.sample / poi[℄ 0 1 . . . 81 -2.9067702553 -14.5615982242 . . . 0.13984461712 . . . . . . . . . . . .... ... ... . . . ...901 . . . . . . . . . . . .Figure 26: Layout of the �noise array�Step 6 generates a (p × p) - ovariane matrix (part 2 of eah template)that haraterises the noise orresponding to one operation with the help ofthe noise array. Reall that, given a vetor R = (R0, . . . , R8) of random54



5 EXPERIMENTAL RESULTS - FIXED KEYvariables, the matrix layout is
cov(R) =









σ2
R0

cov(R0, R1) . . . cov(R0, R8)

cov(R1, R0) σ2
R1

. . . cov(R1, R8)... ... . . . ...
cov(R8, R0) cov(R8, R1) . . . σ2

R8
)









,that the matrix is symmetri, and that one matrix element, e.g. cov(R0, R1),is omputed as cov(R0, R1) = E((R0 − R0)(R1 − R1)). As the true valuesof R are unknown (we only know no_of_�les realisations of the randomvetor) the matrix elements have to be omputed using the sample ovarianeformula, see Setion 3.2. Under the assumption, that the noise vetor has amultivariate Gaussian distribution (f. [10℄) with mean vetor R = (0, . . . , 0)the formula an be simpli�ed so that
cov(R0, R1) =

1

n− 1

n∑

i=1

(R0i
−R0)(R1i

−R1) =
1

n− 1

n∑

i=1

R0i
R1i

.Funtion ompute_ov_matrix(*value,*no_of_files) omputes the ma-trix element by element as follows:for 0 ≤ i < pbeginfor i ≤ j < pbegintemp ← 0for 0 ≤ k < no_of_�lesbegintemp ← temp + noise_array[k℄[i℄ * noise_array[k℄[j℄endtemp ← temp / (no_of_�les - 1)ov_matrix[i℄[j℄ ← temp (assign value to matrix element i,j)ov_matrix[j℄[i℄ ← temp (and to element j,i)endendThe two outermost loop variables i, j onseutively selet all elements in theupper triangle of the ovariane matrix resp. selet eah pair of olumns55



5 EXPERIMENTAL RESULTS - FIXED KEYof the noise array one. The innermost loop omputes the ovariane foreah seletion (the loop variable runs through all rows of the noise array)whih is then assigned to both appropriate positions in the symmetri o-variane matrix. One all three loops have terminated, the matrix is storedas ovariane_matrixvalue.Steps 5 and 6 are repeatedly invoked in a loop so that a ovariane matrixis omputed for eah operation. The pro�ling step is ompleted with thetermination of this loop.Classi�ation step The goal of the lassi�ation step is to lassify a singleside hannel sample S from devie B. This means to orretly dedue the op-eration that was exeuted by B while the sample was measured from the sam-ple's properties. The approah is as follows: for eah templatevalue, the noisein S is extrated as in step 5 using the estimated signal averagevalue. Then,the probability of observing suh noise if indeed it derives from operationvalueis omputed with (7) resp. (8). We used a sample from our measurement set2 to serve as S.Step 7 randomly selets one of the 3000 samples in measurement set 2 toserve as S.Step 8 extrats the noise within sample S for the onsidered hypothesis.Funtion ompute_noise_vetor_for_lassifiation(*hypothesis,*S)does this in exatly the same way as it was done in step 5. It omputes thedi�erene of averagehypothesis and S at the p seleted points in time.Step 9 then omputes the probability of observing suh noise under thegiven hypothesis using the appropriate ovariane matrix (CM) and storesthe probability for later omparison. We developed a set of funtions to om-pute eah probability as provided in the pseudo ode of step 10, innermostloop.Step 10 identi�es the best hypothesis. Funtion sort_desending(prob-56



5 EXPERIMENTAL RESULTS - FIXED KEYabilities, identifiers) sorts the probabilities in desending order whilesimultaneously sorting the hypothesis' identi�ers in the same order so thatthe identi�er of the best hypothesis (x0 ⊕ k0) is the �rst one in the list. Thekey hypothesis is then be omputed by XOR addition of the plaintext x0that orresponds to the sample.Steps 7, 8, 9, and 10 are (repeatedly) invoked by a superior funtionlassify() to ompute the 256 probabilities and hoose the best andidate.rand ← gen_rand()
S ← load_urve(rand)
x0 ← load_urve_plaintext(rand)for 0 ≤ hypothesis < 256beginompute_noise_vetor_for_lassi�ation(*hypothesis, *S)CM ← load_ovariane_matrix(hypothesis)Det ← ompute_determinant(CM)CM ← ompute_inverse(CM)probability[hypothesis℄ ← ompute_probability(*CM, *Det, *S)endsort_desending(probabilities, identi�ers)seletion ← identi�er[0℄ ⊕ x0To attain a ertain degree of preision for the suess rate, we deided tolassify 1000 randomly seleted samples and ount in the variable orret,how often the best andidate is indeed the orret key. The suess rate isthen given by orret

1000
. Note that this is quite a strong measure as we do notonsider any other ase where the orret key is for example on the 2nd or3rd plae in the hypothesis ranking. Doing so would ertainly inrease thesuess rate but soften its signi�ane.

57



5 EXPERIMENTAL RESULTS - FIXED KEYorret ← 0for 0 ≤ k < 1000beginrand ← gen_rand()
S ← load_urve(rand)
x0 ← load_urve_plaintext(rand)for 0 ≤ hypothesis < 256beginompute_noise_vetor_for_lassi�ation(*hypothesis, *S)CM ← load_ovariane_matrix(hypothesis)Det ← ompute_determinant(CM)CM ← ompute_inverse(CM)probability[hypothesis℄ ← ompute_probability(*CM, *Det, *S)endsort_desending(probabilities, identi�ers)seletion ← identi�er[0℄ ⊕ x0if (seletion = key) orret ← orret + 1endoutput ← orret / 1000With respet to improvement 2, we futher modi�ed the funtion lassify()so that an analysis based on several N3 samples S would be possible. By theway we implemented this funtionality we would be able to observe both thehange of suess probability aused by an inreased number of samples andthe development of the separation between the di�erent andidates. Notethat the probability distributions now need to be permuted in order to purgethe e�et of the random plaintexts x0 and retrieve a probability distributionfor key hypothesis, see improvement 2. We extended the array probabil-ity[hypothesis℄ so that it would keep trak of the harateristis mentionedabove: probability[key_hypothesis℄[no_of_sample℄. For the �rst sample Sthe probabilities are omputed as before and stored after permutation. Foreah sueeding sample, we ompute its probability distribution, permute it,add it to the one of the preeding sample, and store it in the appropriateline of the array. After the N3 samples have been lassi�ed, the aggregatedprobabilities in the last row of the array are sorted to identify the best keyhypothesis in the usual way.The �nal version of lassify(*byte) is:58



5 EXPERIMENTAL RESULTS - FIXED KEYorret ← 0for 0 ≤ k < 1000beginfor 0 ≤ i < no_of_�les_for_lassifybeginrand ← gen_rand()
S ← load_urve(rand)
x0 ← load_urve_plaintext(rand)for 0 ≤ hypothesis < 256 (hypothesis = x0 ⊕ k0)beginompute_noise_vetor_for_lassi�ation(*hypothesis, *S)CM ← load_ovariane_matrix(hypothesis)Det ← ompute_determinant(CM)CM ← ompute_inverse(CM)if (i == 0)probability[i℄[hypothesis ⊕x0℄ ← ompute_probability(*CM, *Det, *S)elseprobability[i℄[hypothesis ⊕x0℄ ← probability[i-1℄[hypothesis⊕x0℄+ ompute_probability(*CM, *Det, *S)endendsort_desending(probability, identi�ers)seletion ← identi�er[0℄if (seletion = key) orret ← orret + 1endoutput ← orret / 1000One this loop terminates, the lassi�ation step is omplete and all re-sults are stored for later omparison.In fat we invoked the funtion lassify() several times per lassi�ationyle for a varying number of points p. Knowing that find_points_of_interest() �nds the interesting points in a desending order of impat, wewere interested in quantifying this impat. The guiding question was: Is ahigher number of points always desirable or is it possible, that an additionalpoint, with minor impat, worsens the suess rate?The way we implemented all steps above, in partiular the handling of theovariane matries, makes it possible to go into this matter with very little59



5 EXPERIMENTAL RESULTS - FIXED KEYe�ort. We use a global variable P to ontrol how many of the p points thatwere found are atually onsidered during the probability omputation. Bydereasing the value of P we are able to omit the last p−P points that werefound.5.1.3 Results for various parameter settingsCarrying out the experimental analysis we notied that there are three pa-rameters that have major impat on the suess rate of a Template Attakagainst AES. They are:1. the number of urves available during the pro�ling step N12. the number of interesting points that an be found in the pro�ling step
p respetively that are used in the lassi�ation step P3. the number of urves available in the lassi�ation step N3.We test all ombinations N1× P ×N3 for N1 ∈ {10k, 20k, 25k, 30k, 40k, 50k,

231448}, P ∈ {9, 6, 3}, and N3 ∈ {1, 2, 5, 10}.The proedure of the experiments is always the same: we hoose a value for
N1 and arry out the pro�ling step to generate templates based on the ppoints that are found. Then we arry out the lassi�ation step using N3 =10,5,2,1 samples from the devie under attak at whih, eah time, we startusing all P = p points and then redue their number by 3 until this numberbeomes smaller than 1. Below we only present the results re�eting thoseparameter values, that we �nd most signi�ant. Appendix B provides allresult tables for the Template Attak.Due to our inability of presenting the results in a four-dimensional table,whih would be the optimal hoie, we have to deide for another strategy.We present several tables where eah table represents a �xed value N1 andvariations of P and N3. N1 varies from table to table.Table 3 presents the results based on the best possible hoie for N1. Theseletion algorithm found 9 points whose positions in time are given in the60



5 EXPERIMENTAL RESULTS - FIXED KEY
N1 = 231448 p = 9 hannel = powerpoi[℄ 3771, 3828, 3883, 8218, 8551, 9440, 9496, 9551, 9607SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 20,5 56,0 97,8 99,9 19,7 60,3 98,6 100,06 14,2 43,1 94,3 100,0 16,7 47,2 97,6 99,93 8,5 29,2 82,1 99,2 9,7 25,0 81,1 99,6Table 3: Suess rates (SR) for N1 = 231448 and hannel = powerseond line of the table. This distribution of seleted points will be referredto as optimal distribution in the further analysis of the Template Attak.From the two bloks ontaining the suess rates for real and trial lassi�-ation, one an observe that samples from devie B are lassi�ed as good asthe samples from devie A that were used during the pro�ling step. Thisindiates an optimal pro�ling. Apparently, both parameters (P, N3) havediret impat on the suess rate. The orrelation of a parameters valueand the suess rate is best desribed as logarithmi19, whih is also true forsimultaneous hanges of both parameters' values. The parameter N3 has astronger in�uene on the suess rate than P as one an observe that for eahvalue of P a suess rate ∼ 100% an be attained while a �xed (small) N3sets an upper limit for the sues rate.Table 4 presents the results for N1 = 50000. The �rst striking observa-tion is, that although N1 has been redued by a fator > 4 the suess rates'order of magnitude is the same. The seletion algorithm found 7 points fromthe optimal distribution, one that is slightly displaed but still in the orretproessor yle (9552 instead of 9551), and one that is not related to theoptimal distribution at all and in fat is a bad seletion. This is aused byan inreased noise �oor in sosd whih in turn is aused by more noise in theindividual averages. Figure 27 illustrates, how the peak at 8218 �sinks� inthe noise �oor and a slightly higher �noise peak� at 19235 is seleted instead.19We rather desribe a tendeny of an imagined urve's run than preisely omparingit to a given logarithm. 61



5 EXPERIMENTAL RESULTS - FIXED KEY
N1 = 50000 p = 9 hannel = powerpoi[℄ 3828, 3771, 3883, 9496, 9607, 9552, 8551, 9440, 19235SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 15,9 45,8 92,5 99,6 23,5 61,9 99,4 100,06 13,5 44,4 93,3 99,7 15,4 52,9 97,6 100,03 9,5 27,5 77,2 98,2 8,0 28,6 83,0 98,5Table 4: Suess rates for N1 = 50000 and hannel = power
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Figure 27: sosd urves for N1 = 50000 (red) and N1 = 231448 (blue), powerhannelBut apparently, this mis-seletion does not have a big e�et on the suessrates, in partiular for inreased values of N3. The badly seleted point isonly used for omputing suess rates in the ase P = 9. By omparing thisline of the table to the appropriate line of the table above one an see thatthe suess rates of the trial lassi�ation did not hange whereas those ofthe real lassi�ation dereased by up to 23% espeially for N3 = 1 and 2.This happens due to the reason that the well seleted 8 points, onstantlyguiding to the right seletion, outweigh the single mis-seletion, whih guidesto random key andidates so that the probabilities do not add up for N3 > 1.62



5 EXPERIMENTAL RESULTS - FIXED KEYTable 5 whih provides the results for N1 = 25000 shows that a furtherbisetion of the number of urves used in the pro�ling step has a strongimpat on the results. The seletion algorithm found only one point from
N1 = 25000 p = 9 hannel = powerpoi[℄ 3828, 3772, 3884, 9509, 9620, 8564, 17790, 19235, 15289SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 3,4 9,5 32,3 61,5 13,4 42,8 93,7 100,06 6,6 21,0 65,9 96,3 11,4 35,9 89,0 100,03 8,5 24,4 78,1 97,6 9,0 30,7 85,4 99,0Table 5: Suess rates (SR) for N1 = 25000 and hannel = powerthe optimal distribution, four points are more or less displaed but still inthe orret proessor yle, and four points are not related to the optimaldistribution at all. Figure 28 illustrates the further inreased noise �oor insosd that is responsible for the poor seletion. By looking at the suess rates
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Figure 28: sosd urves for N1 = 25000 (red) and N1 = 231448 (blue), powerhannelone an observe that the orrelation of the parameter P and the suess ratehas hanged for the ase of real lassi�ation, in partiular the algebraisign is reversed so that an inreased number of points yields a worse suess63



5 EXPERIMENTAL RESULTS - FIXED KEYrate. For the ase of trial lassi�ation, the orrelation's diretion remainsthe same. Our approah to explain this observation, where we fous on thebadly seleted points, is as follows:the training urves �randomly� di�er at those points, whih is indiated bythe peaks in sosd, so that even these points identify and ontribute to aorret lassi�ation of a training urve. The samples from devie B prob-ably di�er as well at these points, but the �randomness� in the di�erene isanother, so that the points do not identify a sample. One might name thebadly seleted points false positives. They are indeed a riterion to distin-guish the training samples, but they are not a harateristi riterion, thatan be applied to distinguish samples 6∈ the training set.For a redued number of points P = 3 one an observe that the suess ratesare still similar to the orresponding rates in the tables above.The general tendenies of all observations desribed above are illustratedin Figure 29.
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Figure 29: Suess rates as funtions of N3 and P for N1 = 231448 and 25000Table 6 presents the results for N1 = 231448 and a non-bounded point se-letion algorithm (see Observation 1). The point seletion algorithm seletedfour instants whih over the initial Round Key addition. From omparisonof the suess rates to those in Table 3 one an learly observe the negativeimpat of the false positives in ase of real lassi�ation. Comparing thesuess rates of real and trial lassi�ation leads to the same onlusion: the64



5 EXPERIMENTAL RESULTS - FIXED KEY
N1 = 231448 p = 9 hannel = powerpoi[℄ 3828, 771, 3883, 437, 9496, 659, 9607, 326, 9551SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 0,7 1,5 0,7 0,2 38,9 79,0 99,6 100,06 1,9 2,6 2,4 0,3 26,1 63,2 97,9 99,93 8,8 25,6 81,7 99,2 6,8 25,6 80,7 99,2Table 6: Suess rates (SR) for N1 = 231448, hannel = power, and a non-bounded point seletionseleted points overing the initial Round Key addition ontribute well in thetrial lassi�ation, i.e., one an observe the usual logarithmi dependeny ofthe suess rates, while the algebrai sign of the dependeny is reverted inthe ase of real lassi�ation. Less points, whih means as well less false pos-itives, lead to better suess rates. Furthermore, the assumption is justi�edby omparing the suess rates of trial lassi�ation in Tables 6 and 3.5.2 Stohasti ModelAs stated in Setion 3.1 the AES algorithm operates on an array of 16 bytes,the State. After the initial RoundKey Addition, eah byte of the state rep-resents x⊕k for the orresponding bytes of the key and the plaintext. In the�rst normal round, the SubBytes transformation and the ShiftRow transfor-mation both operate on these bytes separately. Therefore, it is su�ient forany attak that targets on one of these three transformations, to onsider

ht(state) with state ∈ {0, 1}8 as the real leakage funtion (f. invarianeproperty 'Equal Images under Di�erent Subkeys' on page 31. This step re-dues the e�ort to �nding 28 mappings to R in the ase of AES and shouldbe appliable for many blok iphers.5.2.1 Preliminary notesBefore an attak an be arried out, an adversary has to ome to a oupleof deisions in whih he has a higher degree of freedom, than for the Tem-65



5 EXPERIMENTAL RESULTS - FIXED KEYplate Attak. More preisely, one has to selet � onsidering all onsequenesstated in Setion 3.4.2 (trade o� problem) � a vetor subspae Fu and the ufuntions gjt : {0, 1}p×{0, 1}s → R. As mentioned before, [11℄ does not giveonrete advie or assistane for the proedure, but several di�erent hoies,based on AES, are presented and their results ompared. We start our inves-tigation with the most promising hoie that is presented so that the settingfor our attak is as follows:We deide to attak the 128-bit key in steps of one byte thus for any giveninstant t the samples are modeled as It(x, k) = ht(x, k) + Rt with x and k

∈ {0, 1}8 being the appropriate sub-plaintext and -key. We exploit the EISproperty of the deterministi sample portion, whih stands for a virtuallylossless redution of the vetor spae in whih h∗
t (x, k) has to be approxi-mated. With φ(x, k) = x⊕k the e�ort is redued from 216 to 28 and samplesare regarded as It(x, k) = h∗

t (φ(x, k)) + Rt. The strategy to attak the AESState s after the initial RoundKey addition equals the strategy we applied inSetion 5.1. The following hoie, whih is a further redution of the vetorspae, is the most di�ult one and this is where we heavily rely on [11℄. Wehoose the nine-dimensional bit-wise oe�ient model that is referred to asvetor subspae F9. This impliates a further redution from 28 to 9 dimen-sions. For the usual reason that (non-linear) di�usion of key andidates ishighly desired the funtions gj(j = 1, . . . , 8) aim at the S-box output, i.e.
gj(φ(x, k)) ∈ {0, 1} is the j-th bit of S-box(φ(x, k)). g0(·) always returns 1.Note that we use the following assignment to address bits:MSB = 8 7 6 5 4 3 2 1 = LSBAltogether, the deterministi sample portion is approximated by

h∗
t (x, k) =

8∑

j=0

bjt · gj(x⊕ k) = b0t +
8∑

j=1

bjt · gj(x⊕ k). (19)The oe�ients bjt with j 6= 0 estimate the bit-wise data dependent sampleportions and b0t is an estimator for a non data dependent part.66



5 EXPERIMENTAL RESULTS - FIXED KEY5.2.2 ImplementationWe implemented the Stohasti Model losely to the desription in 3.4. Inthe following we desribe our implementation step-by-step and provide dataexamples to illustrate the proedure. Furthermore, we introdue some ab-breviations that will be used for larity and when the results are presented.As before in Setion 3, we would like to mention that parts of the desriptionof our implementation of the Stohasti Model resemble the orrespondingparagraphs in Setion 5.1. Sine both attaks are Two-Step SCAs that usedevie haraterisations, there obviously are similarities. Nevertheless, forompleteness and the sake of readability we will give an almost entire de-sription of our implementation and only point to Setion 5.1 in ase ofontinuous onsisteny.Pro�ling Step The Stohasti Model aims at generating an approxima-tion of the deterministi sample portion in a hosen vetor subspae anda haraterisation of the noise. We approximated the deterministi sampleportion in F9 (see 5.2.1) so that, for the deterministi part, this byte-wiseattak aims at estimating the data dependent sample portion of eah bit inS-box(x⊕ k) and a non data dependent ontribution. These will be referredto as sub-signals.Our implementation of the Stohasti Model attaks one byte of the AESstate array s resp. one sub-key at a time. It an attak any byte in s butfor the sake of larity and omparability to the Template Attak we fous on
s0,0 respetively the �rst keybyte.The Stohasti Model uses one half of the available samples for the approx-imation of the deterministi sample portion and the other half for the har-aterisation of the noise. These amounts of samples will be referred to as N1and N2.The �rst step aims at determining the N1 × 9 design matrix A that on-tains the omposition of sub-signals for all N1 samples. Sine k is �xed, A isimpliitly given by the distribution of the plaintexts xi. Figure 30 shows the67



5 EXPERIMENTAL RESULTS - FIXED KEYlayout of A for this onrete senario. Reall that gj(x⊕ k) ∈ 0, 1 is the j-thbit of S-box(x⊕ k).
A =








1 g1(x1 ⊕ k) · · · g8(x1 ⊕ k)
1 g1(x2 ⊕ k) · · · g8(x2 ⊕ k)... ... . . . ...
1 g1(xn1

⊕ k) · · · g8(xn1
⊕ k)






Figure 30: Design Matrix A for the bit-wise oe�ient model (F9) exploitingEIS propertyTo determine A, we implemented a funtion reate_matrix_a() that sansthrough all N1 plaintexts and determines the 9 neessary bits for eah plain-text xi as follows. The S-box is implemented as a table lookup.for 0 ≤ i < N1beginA[i℄[0℄ ← 1for 0 ≤ bitpos < 8begina[i℄[bitpos + 1℄ ← ( S-box(xi ⊕ k) >> bitpos ) & 1endendThe seond step omputes the 9 × N1 system matrix S = (AT A)−1ATwhih is only possible, if the 9 × 9 matrix AT A is regular, thus invertible.During our experimental analysis this was always the ase, as long as wehose N1 ≥ 2000.Step 3 aims at determining the b-vetors whih will be the essential oreof the estimator h∗

t . Reall that a b-vetor ontains the ontribution of eahof the 9 sub-signals to the approximated deterministi sample portion foran instant t. Whether a sub-signal atually ontributes to the approximator
h∗

t (x, k), depends on the orresponding bit in S-box(x ⊕ k) being set. Oursamples ontain m = 20000 points, thus t = 0, 1, . . . ,m − 1. The b-vetors68



5 EXPERIMENTAL RESULTS - FIXED KEYare omputed separately for eah instant t by evaluating bt = S · it with itbeing a olumn vetor that holds the measured value for instant t of all N1samples. That is
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For instant t, b0,t ontains the non data dependent sub-signal's ontributionand the bj,t with j 6= 0 ontain the ontribution of sub-signal j.A straight forward implementation of this step is eminently ostly, par-tiularly for a large number of samples N1, beause for eah omputationof a b-vetor all samples have to be read from hard disk 20. Therefore weimplemented the funtion ompute_b_vetors() to embark the followingstrategy: load as many instants t from all N1 samples as free memory isavailable, ompute the b-vetors for these instants, then again, read as manyof the remaining instants as possible et.Step 4 deals with the generation of the approximated deterministi sam-ple portion.For the remainder of this setion, we �rotate� the representation of theb-vetors, so that a b-vetor now has dimension m = 20000 and thereare 9 of them. The bene�t of this hange of notation is that it eases toaddress the ourse of a sub-signal in the overall time frame. Instead of(b0,0, b0,1, b0,2, . . . , b0,m−1) we an simply use b0. To address the ontributionof sub-signal 0 at a spei� instant, we write b0(t) as if it was a funtion.20In the onrete senario where eah sample overs 20000 instants and e.g. N1 = 1000samples, the e�ort adds up to 20 million sample read operations. If su�ient RAM isavailable, all samples an be loaded into it prior to the omputations in order to reduethis e�ort. For our analysis with N1 inreasing up to 115724 samples with a �lesize of20KB, neither the �rst approah (2.3 billion read operations) nor the seond (2.3 GB freeRAM) were feasible. 69



5 EXPERIMENTAL RESULTS - FIXED KEYFigure 31 exemplarily shows the estimated power onsumption of the nondata dependent sub-signal (b0) and of the sub-signal that ontributes, if theleast signi�ant bit of S-box(x⊕k) is set (b1) for the overall time frame. Bothwere omputed from N1 = 115724 power samples.
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Figure 31: Non data dependent sub-signal b0 and sub-signal b1 that on-tributes for LSB(S-box(x⊕ k)) = 1 as a funtion of tIn opposition to the previous presentation h∗
t (x, k), e.g. in (19) and withrespet to the �rotated� representation, we implemented one disrete funtion

h∗(t, x, k) = b0(t) +
8∑

j=1

bj(t) · gj(x⊕ k). (20)whih seemed to be more onvenient. Funtion double h(t, x, k) assem-bles the approximation in exatly this way:temp ← b0(t)for 0 ≤ i < 8begintemp ← temp + bi+1(t) · ( (S-box(x⊕ k) >> i) & 1 )endoutput ← tempStep 5 omputes the basis for the hoie of interesting points in time.Instead of omputing the Eulidean vetor norm ||b0,t, . . . , b8,t|| =
√
∑8

i=0 b2
i,t70



5 EXPERIMENTAL RESULTS - FIXED KEYfor all instants t as proposed in [11℄, we omputed another measure for thesake of omparability. The sum of squared pairwise di�erenes (sosd) of
h∗(t, x, k) for all possible values of x whih yields the same result as theEulidean vetor norm, apart from a onstant fator, is omputed by fun-tion ompute_differenes():for 0 ≤ t < data_length (eah point in time)beginfor 0 ≤ i < 256begin

h1 ← h(t, i, k)for i+1 ≤ j < 256begin
h2 ← h(t, j, k)sosd[t℄ = sosd[t℄ + (h1− h2)2endendendFigure 32 shows the resulting urve sosd and an example of the Eulideanvetor norm as a funtion of time. Both urves were derived from N1 = 10000power samples. Note that the sale for the vertial axis is omitted to under-line their analogousness in terms of onlusion.
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Figure 32: sosd and Eulidean vetor norm derived from N1 = 10000 powersamples as a funtion of t 71



5 EXPERIMENTAL RESULTS - FIXED KEYStep 6 omprises the atual hoie of interesting points in time. [11℄ givesno more advise on how to hoose the points than �hoose instants� and aomparison of several seletion strategies. An optimal strategy, if existent,seems to be unknown.Sine the basis for the seletion of points (sosd) is the same as during ourexperiments with the Template Attak, we deided to re-use the seletionalgorithm as well for enhaned omparability. The seletion algorithm is im-plemented in funtion find_points_of_interest(urve, p). For detailson the strategy we refer to Setion 5.1.2 Step 4 whereat for the StohastiModel it is not neessary to prevent the seletion of points in the range 0 -3300.Steps 7 and 8 jointly perform the haraterisation of the noise in the sidehannel Rt. The former is a preparatory step that supplies required data tothe latter whih generates the noise haraterisation.Step 7 extrats the noise within the N2 samples that were not used so far.We implemented a funtion ompute_noise_vetors(N2) that onseutivelyomputes the di�erene of a sample and the appropriate approximator at thep seleted instants for all N2 samples. In the following pseudoode, poi[℄ isthe set of seleted instants.for 0 ≤ i < N2beginsample ← load_urve(i)
x ← load_urve_plaintext(i)for 0 ≤ j < pbeginnoise_array[i℄[j℄ ← sample[poi[j℄℄ - h(poi[j℄, x, k)endendFor an illustrative example of a noise vetor we refer to Figure 25 Setion5.1.2. 72



5 EXPERIMENTAL RESULTS - FIXED KEYStep 8 generates the p × p ovariane matrix that haraterises the noisein the side hannel. The theoreti approah of the ovariane matrix genera-tion is exatly the same as for the Template Attak, desribed in 5.1.2. Theruial di�erene is that during a Template Attak one generates a ovari-ane matrix for eah data dependeny whereas in the Stohasti Model thenoise is not assumed to depend on x, k and hene only one ovariane matrixis generated. The implemented funtion ompute_ovariane_matrix(N2)equals the funtion ompute_ovariane_matrix(*value, *no_of_files)presented in Setion 5.1.2 exept for simply storing the matrix as ovari-ane_matrix sine there is only one.The pro�ling step is ompleted with the generation of the matrix.Classi�ation Step The lassi�ation step aims at lassifying N3 sidehannel samples S(xj, k
◦) from devie B. This means to orretly deduethe seret key k◦ that was used for enryption by B while the samples weremeasured from the samples' properties. The approah is as follows: foreah key hypothesis k ∈ {0, . . . , 255} the noise in the �rst sample S(x1, k

◦)is extrated at the seleted p instants using the appropriate approximator
h∗(t, x1, k) as in step 7. The probability of observing suh noise if indeed itderives from x1, k is omputed aording to Equation (16). Then, the proe-dure is repeated for the remaining N3 − 1 samples, thereby multiplying theprobabilities for one key hypothesis as indiated in Equation (17). We usedsamples from our measurement set 2 to serve as S.Step 9 randomly selets one of the 3000 samples from measurement set 2as S(xj, k

◦).Step 10 extrats the noise within S(xj, k
◦) for a given hypothesis k us-ing the appropriate approximator h∗(t, x1, k). Funtion ompute_noise_vetor_for_lassifiation(*hypothesis,*S) does this in exatly the sameway as it was done in step 7. That is, it omputes the di�erene of S(xj, k

◦)and h∗(t, x1, k) at the seleted instants. The resulting noise vetor will bereferred to as z. 73



5 EXPERIMENTAL RESULTS - FIXED KEYStep 11 omputes the probability of observing suh noise using the ovari-ane matrix CM and stores the result for later omparison. We omposed aset of funtions to ompute the probability as follows:CM ← load_ovariane_matrix()CM ← ompute_inverse(CM)probability ← ompute_probability(CM)Sine we are rather interested in a ranking of the key hypothesis than inthe atual probabilities, ompute_probability(CM) omits onstant terms inEquation (16) whih results in zT CM−1z (see Equation (18)). This savesimplementation e�ort and speeds up the proedure as in partiular the de-terminant of the ovariane matrix need not be determined.Step 12 identi�es the best hypothesis. The implemented funtion sort_desending(probabilities,identifiers) sorts the probabilities in de-sending order while simultaneously sorting the hypothesis' identi�ers (valuesof k) in the same order so that the identi�er of the best hypothesis is the�rst in the list.The last four steps are invoked by a superior funtion lassify() toompute the probabilities for the 256 key hypothesis using N3 samples andhoose the best andidate.

74



5 EXPERIMENTAL RESULTS - FIXED KEYCM ← load_ovariane_matrix()CM ← ompute_inverse(CM)for 0 ≤ i < N3 beginrand ← gen_rand()
S ← load_urve(rand)
x ← load_urve_plaintext(rand)for 0 ≤ hypothesis < 256beginompute_noise_vetor_for_lassi�ation(*hypothesis, *S)if (i==0)probability[i℄[hypothesis℄ ← ompute_probability(CM)elseprobability[i℄[hypothesis℄ ← probability[i-1℄[hypothesis℄+ ompute_probability(CM)endendsort_desending(probability[N3℄, identi�ers)seletion ← identi�er[0℄Note that probability[℄[℄ is now a two-dimensional array. The one-dimensionallist probability[N3℄ based on whih the seletion is performed ontains exatlythe aggregated probabilities desribed in Equation (18). The motivation toimplement a two-dimensional array is the same as for the Template Attak.The rest of the proedure during the lassi�ation step is idential to ourimplementation of the Template Attak. Rather than reapitulating, we referto Setion 5.1.2 for details and only provide the essentials here.To attain a ertain preision, funtion lassify() was further modi�ed toarry out the lassi�ation step 1000 times while ounting in the variableorret, how often the seleted andidate was indeed k◦. The suess rateis then given by correct

1000
. Furthermore, the �nal version of lassify() wasinvoked several times per lassi�ation yle. Before eah invoation wevaried the number of points P whih would omit onsideration of some of theleast signi�ant points seleted in step 6 during the probability omputationsin step 11. The motivation for this deision was to observe and possiblyquantify the impat of seleted points on the suess rate.75



5 EXPERIMENTAL RESULTS - FIXED KEY5.2.3 Results for various parameter settingsCarrying out our experimental analysis we notied, that four parameters havemajor impat on the Stohasti Model's e�ieny in terms of suess rates.The �rst parameter is the vetor subspae Fu in whih the deterministileakage portion is approximated. The omparison of several hoies withrespet to suess rates in [11℄ indiated the bitwise oe�ient model (F9) tobe most e�ient, hene the results presented in this setion are all based onthat hoie. The other three parameters are the same as presented in Setion5.1.3, i.e.,1. the number of urves available during the pro�ling step N1 + N12. the number of interesting points that an be found in the pro�ling stepp respetively that are used in the lassi�ation step P3. the number of urves available during the lassi�ation step N3.We tested all ombinations N1+N2× P ×N3 for N1+N2 ∈ {2k, 10k, 20k, 25k,

30k, 40k, 50k, 231448}, P ∈ {9, 6, 3}, and N3 ∈ {1, 2, 5, 10}.The proedure of the experiments was always the same as for the TemplateAttak. The results presented below re�et only those parameter values,that we �nd most signi�ant. Appendix C provides all result tables for theStohasti Model.The presentation format of the results is the same as in setion 5.1.3, i.e. wepresent several tables where eah table represents a �xed value N1 + N2 andvariations of P and N3.Table 7 presents the results for the best possible hoie of N1 + N2. Theseletion algorithm found 9 points whose positions are provided in the seondline of the table. We will refer to this distribution of points as the optimaldistribution in the further analysis. From the two bloks ontaining the su-ess rates for real and trial lassi�ation one an observe that lassi�ationof samples from devie B is - in tendeny - less suessful than lassi�ationof samples from devie A. This fat atually indiates a non optimal pro�ling76



5 EXPERIMENTAL RESULTS - FIXED KEY
N1 + N2 = 231448 p = 9 hannel = powerpoi[℄ 9496, 9607, 9551, 8551, 9440, 8218, 3828, 9385, 3883SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 4,3 12,6 52,1 90,7 3,3 12,2 63,1 96,36 1,9 8,1 43,0 91,2 3,1 9,4 55,2 94,43 1,9 4,9 23,6 68,5 1,0 6,1 34,1 80,0Table 7: Suess rates (SR) for N1 and N2 = 115724 and hannel = powerstep sine we assume balaned suess rates for an optimal (lossless) pro�l-ing. The results provided further below will motivate, why we still refer tothis value of N1 + N2 as best possible and regard the non-optimal pro�lingas a result of the approximation.Both of the bloks learly show, that the parameters P and N3 have diretimpat on the suess rate. For eah of the parameters, the orrelation ofits value and the suess rate is best desribed as logarithmi, whih is alsotrue for simultaneous hanges of both parameters' values. There are no morelearly visible tendenies in the orrelations, in partiular we annot state onwhih parameter's in�uene is stronger.Table 8 shows the results based on N1 + N2 = 25000. Although we re-due the number of training urves in the pro�ling step by a fator ∼10 onean, in the ase of real lassi�ation, still observe suess rates in the sameorder of magnitude. The suess rates of trial lassi�ation do not seem tobe a�eted at all, there is no visible tendeny of hange. The seletion algo-rithm found seven points from the optimal distribution and two points thatare slightly displaed but still in the orret proessor yle (9552 insteadof 9551 and 9441 instead of 9440). The bad seletion must be an implia-tion of the deterministi part's worse approximation. At least we an notie,as Figure 33 shows, that it is not aused by a substantially inreased noise�oor. Sine all omputed suess rates are a�eted by at least one badly se-leted point, a statement quantifying the e�et of these points is not feasible.77



5 EXPERIMENTAL RESULTS - FIXED KEY
N1 + N2 = 25000 p = 9 hannel = powerpoi[℄ 9496, 9607, 9552, 8551, 9441, 8218, 3828, 9385, 3883SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 4,4 8,0 39,8 85,3 3,1 13,9 64,1 97,66 2,3 7,1 33,8 80,6 2,4 10,5 57,8 97,13 0,9 4,2 19,2 61,4 1,2 4,6 34,4 81,6Table 8: Suess rates (SR) for N1 and N2 = 12500 and hannel = power
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Figure 33: sosd for N1 + N2 = 231448 and 25000 as a funtion of timeTable 9 shows the results for N1 + N2 = 10000. The further redutionof N1 + N2 by a fator 2.5 learly has an impat on the suess rates in thease of real lassi�ation. As before, the suess rates of trial lassi�ationseem not to be a�eted, there is no visual tendeny of deline. The seletion
N1 + N2 = 10000 p = 9 hannel = powerpoi[℄ 9496, 9605, 8551, 9441, 8218, 3828, 15845, 12677, 13344SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 1,0 1,9 16,6 46,9 4,0 10,8 58,3 96,16 1,1 2,4 15,5 49,5 3,2 11,4 53,8 93,63 0,4 1,7 9,7 34,0 2,0 5,2 38,8 88,9Table 9: Suess rates (SR) for N1 + N2 = 10000 and hannel = poweralgorithm found only 4 points from the optimal distribution, two are slightlydisplaed but still in the orret proessor yle and three points are not78



5 EXPERIMENTAL RESULTS - FIXED KEYrelated to the optimal distribution at all. The bad seletion is partly a resultof �unluky� irumstanes, as an be seen by looking at Figure 34 and thedistribution of poi[℄ in Tables 7 and 9. The point at 9496 is well seleted,
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Figure 34: sosd for N1 + N2 = 231448 and 10000 as a funtion of timethe peaks of both sosd urves show a similar shape at that instant. Sinethe shape of the peak for the third proessor yle is slightly di�erent thanoptimal, the point for this yle is seleted a little bit to the left (9605) fromthe optimal position (9607). This �unlukily� eliminates the hane to seleta point during the middle yle at all, beause the algorithm disregards anentire yle before and after every seleted point. The three badly seletedpoints past 10000 are a result of a pereivably inreased noise �oor. Theirnegative in�uene on the suess rate for real lassi�ation an be observedby omparing the table rows for P = 9 and P = 6.5.3 ComparisonIn this setion, we ompare the e�ieny of the pro�ling and the lassi�ationstep of our implementations of the Template Attak and the Stohasti Modelas they were introdued in Setions 5.1 and 5.2. The determination of allnumbers was performed as objetive as possible, that is in partiular:
• idential mathematial operations, e.g. the omputation of a ovarianematrix, are performed by the same ode to exlude di�erenes in theomputational approah 79



5 EXPERIMENTAL RESULTS - FIXED KEY
• both attaks use sosd as basis for the seletion of interesting points; assosd is omputed from the averaged resp. approximated deterministisignal portions, it an be regarded as a measure for an attaks abilityto deal with noise
• both attaks used the same point seletion algorithm with onstantparameters (δ = 54, p=9), we do not adapt any settings to spei�situationsWe fous on omparing the e�ieny of the attaks against the three para-meters, whih showed to have strong in�uene on both of them, i.e.,:1. What is the impat of N1 resp. N1 + N2?2. What is the impat of N3?3. What is the impat of P?The attaks had to ompete with eah other in all possible parameter om-binations of N1 resp. N1 + N2 ∈ {10k, 20k, 25k, 30k, 40k, 50k, 231k}, P

∈ {9, 6, 3} and N3 ∈ {10, 5, 2, 1}. For the sake of larity, we perform theomparison by means of graphs here, the interested reader an �nd all indi-vidual numbers in the result tables in Appendixes B and C.Profiling EffiienyFor a start, we ompare the e�ieny of the attaks during the pro�ling step.As before, we de�ne the set of points whih was found for N1 resp. N1 + N2= 231448 as the optimal distribution with respet to eah attak. For de-reasing numbers N1 resp. N1 + N2 we determine how good the seleted setof points is by omparing it to the optimal distribution. If a seleted point isin the optimal set, it has weight 1. If it is not in the optimal set but still inthe orret proessor lok yle, it has weight 0.5. All other seleted pointshave weight 0.More formally: let poi_opt[℄ be the optimal distribution and poi[℄ be theset of p seleted points Pi (i = 1, . . . , p). We say:80



5 EXPERIMENTAL RESULTS - FIXED KEY
• Pi has weight wi = 1, if Pi ∈ poi_opt[℄
• Pi has weight wi = 0.5, if Pi ± x ∈ poi_opt[℄, with x ≤ δ

• Pi has weight wi = 0, if Pi ± x 6∈ poi_opt[℄, with x ≤ δwhere δ is the limit of tolerane, see Setion 5.1.2, Step 4. We use the sum ofthese weights, i.e., ∑p

i=1 wi, as a measure for pro�ling e�ieny for a givennumber of training urves N1 resp. N1 + N2.The performane at point seletion is an adequate measure for the overallpro�ling e�ieny, beause it is based on sosd, thus on the averaged resp.approximated data depended sample portions. On the other hand, the per-formane at noise haraterisation depends straight on the quality of sosd,thus on the averages resp. approximator, and the seleted points and istherefore �overed� by the above measure.Figure 35 shows a plot of the sum of these weights as a funtion of thenumber of samples used in the pro�ling step (N1 resp. N1 + N2). Note that
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5 EXPERIMENTAL RESULTS - FIXED KEYthe superiority of the Stohasti Model in terms of seleting the right hara-teristis and hene, in pro�ling e�ieny. The di�erene probably originatesfrom the way, in whih eah attak uses the samples to estimate resp. ap-proximate the deterministi sample portion.In an alternative approah for the Stohasti Model, one may use N1+N2samples to obtain the relevant points of the deterministi leakage funtion,before a re-run is done with the usual on�guration.Classifiation EffiienyIn the following, we ompare the lassi�ation suess rates of the attaks.We restrit our attention to real lassi�ation, thus lassi�ation of samplesfrom devie B, sine it is the more interesting ase and N3 ∈ {1, 10} for thesake of larity. Again, all individual numbers are provided in Appendixes Band C.First, we ompare the suess rates of both attaks for �xed parame-ters. The graphs show, how good eah attak deals with a given situation.Thereafter, we ompare the suess rates for variations of N1 resp. N1 + N2,
N3 ∈ {1, 10}, and, eah time, the optimal hoie of P. The graph shows themost, that eah attak an make of a given number of urves during thepro�ling step when lassifying one resp. ten samples from devie B.Figure 36 shows the suess rates plotted as a funtion of N1 resp N1+N2for �xed P = 9 and N3 ∈ {1, 10}. As expeted, one an observe, that both aninreasing number of urves for the pro�ling step and an inreasing numberof urves for the lassi�ation step have a positive impat on both attaks'suess rates. Additionally, the positive impats intensify eah other whene�etive simultaneously. As observed before, the inrease of the suess ratesan be desribed as logarithmi. For both attaks it seems, there exists asaturation threshold with respet to N1. One the threshold is reahed, ad-ditional urves in the pro�ling step only yield a small positive inrease of thesuess rates. 82
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Figure 36: Plot of the Template Attak's and the Stohasti Model's suessrates as a funtion of the number of urves during the pro�ling step. It isP=9 and N3 ∈ {1, 10}.Another observation is, that the Stohasti Model is more e�ient than theTemplate Attak for small N1, more preisely for N1 < 30000 if N3 = 10 and
N1 = 25000 if N3 = 1. This supports, in aordane with our argumenta-tion for the superiority of the Stohasti Model during the pro�ling step, thefollowing assumption: for a given value of N3, there exists a threshold valuefor N1 so that for smaller N1 the superiority of the Stohasti Model in thepro�ling step (aused by the approximation) outweighs its inferiority in thelassi�ation step. Or, with respet to the Template Attak: for N1 largerthan the threshold value, the e�ort of the more omplex but as well more pre-ise pro�ling step pays o� and yields superior results in the lassi�ation step.Figure 37 shows the suess rates plotted as a funtion of N1 resp N1+N2for �xed P = 6 and N3 ∈ {1, 10}. For the Template Attak, one an observethat for N1 < 40000 the hoie P = 6, thus disregard of the three least sig-83
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Figure 37: Plot of the Template Attak's and the Stohasti Model's suessrates as a funtion of the number of urves during the pro�ling step. It isP=6 and N3 ∈ {1, 10}.ni�ant points, yields better suess rates than P = 9. As this is true for alltested values of N3 it indiates a general trend. For N1 = 40000 there is nosigni�ant di�erene in the suess rates, it an be seen as an in�exion pointof the trend. For N1 > 40000 the trend is inverted, i.e., P = 9 yields betterresults than P = 6, but beomes less obvious for inreasing N3 beause thesuess rates get very lose to the boundary of 100%.The Stohasti Model shows a similar behavior, but the in�exion point ismuh lower. Espeially for small N3, the trends are easier to see in the resulttables than in the graphs. For N1 > 10000, the hoie P = 9 yields betterresults than P = 6. For N1 < 10000, P = 6 is the better hoie.These observations give further support to our assumption. For N1 smallerthan the in�exion point, the entropy21 of the least signi�ant seleted pointsis so small, that to involve them in the (real) lassi�ation proess worsens21or signi�ane, fore of expression 84



5 EXPERIMENTAL RESULTS - FIXED KEYthe suess rates. For N1 larger than the in�exion point, their entropy is goodenough to improve the suess rates. In aordane with our argumentationfor the superiority of the Stohasti Model in the pro�ling step, its in�exionpoint (∼ 10000) is reahed earlier than the Template Attak's (∼ 40000).Figure 38 shows the suess rates plotted as a funtion of N1 resp N1+N2for �xed P = 3 and N3 ∈ {1, 10}. For the Template Attak, the plot basially
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Figure 38: Plot of the Template Attak's and the Stohasti Model's suessrates as a funtion of the number of urves during the pro�ling step. It isP=3 and N3 ∈ {1, 10}.shows a ontinuation of the observations made above. For N1 < 40000 thehoie P = 3 yields even better suess rates than P = 6, while the oppositeis notieable for N1 > 40000. This observation again supports the argumen-tation that for small N1 the entropy in the least signi�ant points is too lowand exluding them from the (real) lassi�ation step yields better results.For the Stohasti Model, the hoie P = 3 always22 results in worse suess22within the boundaries of our experiments85



5 EXPERIMENTAL RESULTS - FIXED KEYrates than for P = 6 . We give a autious explanatory approah: due to theapproximation of the deterministi sample portion it might be true that thefore of expression of eah single point is bounded upwards. In this ase,three points, even though their entropy meets this boundary, might simplybe not enough to reliably distinguish key andidates.Figure 39 shows the suess rates plotted as funtions of N1 resp N1 +N2for N3 ∈ {1, 10}. For eah attak and eah instant, P was seleted to max-imise the suess rates. One an observe, that eah pair of plots intersets at
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Figure 39: Plot of the Template Attak's and the Stohasti Model's suessrates as a funtion of the number of urves in the pro�ling step. It is N3 ∈
{1, 10} and P hosen optimally.least one. Hene, a general statement on whih attak yields better suessrates is not feasible as this depends on the number of urves that are avail-able in the pro�ling step.If a large number of samples is available (e.g. > 20000), the Template Attakyields higher suess rates due to its higher preision. If only a small number86



5 EXPERIMENTAL RESULTS - FIXED KEYof samples is available (e.g. < 20000), the Stohasti Model is the betterhoie, beause of its superior ability to �lter noise.We want to point out expliitly that these results refer to our
• implementation of the AES enryption algorithm
• hoie of aquisition equipment
• measurement parameters
• implementations of the attaksand should not be generalized. Due to the problemati of side hannel infor-mation quality, the general observations only remain valid for slightly modi-�ed proedures whih will, very likely, already yield di�erent absolute num-bers. Nevertheless, for a methodial omparison a ase study has to be basedon idential starting onditions. This ase study aimed at giving a system-ati and fair omparison and at the determination of ritial parameters forfurther improvements.5.4 Fixed key vs. variable keyAs mentioned earlier in Setion 4.4, we arried out a third measurement se-ries. Eah of the 256000 samples represents AES enryption of a randomlyhosen plaintext with a randomly hosen key. Figure 40 whih illustrates thesosd urve omputed from all samples of this third set on�rms our obser-vation 1 from Setion 5.1, Step 4. The sosd urve omputed from samplesthat represent random plaintexts and random keys shows far smaller peaksduring the initial Round Key addition than the sosd urve omputed fromsamples that represent a �xed key.
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Figure 40: sosd urve omputed from N1 = 256000 samples representingrandom plaintexts and keys
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6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONS6 Analysis of Results, Overall observationsWe learly showed, that the two statementsThe Template Attak extrats all possible information availablein eah sample and is hene the strongest form of side hannelattak possible in an information theoreti sense given the fewsamples that are available. [10℄Though our e�ieny at key extration is limited by templateattaks pro�ling is muh more e�ient whih is highly relevantif the designer of a ryptosystem is bounded by the number ofmeasurements in the pro�ling step. [11℄are not true in a universal way, but that one has to onsider the irum-stanes.Due to the approximation of the deterministi sample portion, the StohastiModel is more e�ient in the pro�ling step, whih is highly relevant if thenumber of training samples is limited. This leads to superior suess rates inthe lassi�ation step. On the other hand, the approximation sets an upperboundary for the Stohasti Model's entropy, whih limits its e�ieny inthe lassi�ation step, if �enough� samples are available.Due to its higher preision, the Template Attak is less e�ient in thepro�ling step, if only a small number of training samples is available. Thisleads to inferior suess rates in the lassi�ation step. On the other hand,the Template Attaks's greater entropy pays o� and yields superior suessrates, if �enough� samples are available.6.1 Weaknesses and strengthsTemplate Attak The strength of the Template Attak is, that it in fatextrats far more information from the samples than the Stohasti Model.Given enough samples in the pro�ling step, it is learly superior to the Sto-hasti model in the lassi�ation step, due to the preise estimation of theaverage signal and the 256 ovariane matries. On the other hand, that is89



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSits weakness as well. Beause it �learns� so detailed, it requires muh moresamples in the pro�ling step than the Stohasti Model, to reah the samelevel of preision (see Figure 35). Due to the �ne partitioning of the samples,the Template Attak needs many samples to redue the noise in the sidehannel.Stohasti Model The Stohasti Model's strength is the ability to �learn�quikly from a small number of samples. One weakness lies in the reduedpreision due to the approximation in a vetor subspae. We reall fromSetion 3.4.2:Apparently, the number of required samples in the pro�ling step inreaseswith the number of dimensions u, if the same level of preision is aspiredfor the βjt. One might see this as a trade o� problem for a �xed numberof samples in the pro�ling step: a small number of dimensions u reduesthe searhable spae, whih might exlude good andidates h′ ∈ F but givesbetter estimators for the best h∗ still inluded in Fu;t. A large number ofdimensions u will more likely inlude a very good andidate h∗ but its esti-mators will be less preise.So far, no better vetor subspae (whih is signi�antly smaller than 28) than
F9, the bitwise oe�ient model, has been disovered. A seond weakness isthe usage of only a single ovariane matrix.6.2 Average vs. ApproximatorIn this setion, we determine, how good the Stohasti Model an approx-imate the deterministi sample portion, whih is ideally estimated by theTemplate Attak. The approah is as follows: we assume that the averagesignals omputed by the Template Attak are the optimal estimation and usethem as referene value. For eah key dependeny, we generate the StohastiModel's approximated deterministi sample portion, ompute the di�ereneto the referene value, and average these di�erenes over all key dependen-ies. The resulting average di�erene, whih we present below for seleted90



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSvalues of N1, show how good the Stohasti Model approximates in average.Figure 41 shows plots of the average di�erene between the approximated(Stohasti Model) and the averaged (Template Attak) deterministi signal,that were omputed from N1 = 10k, 50k, 231448 samples. Considering the
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Figure 41: Average di�erenes between the approximated deterministi sam-ple portions of the Stohasti Model for N1 = 10k, 50k, 115k and 231448and the referene valuesvarying sale of the vertial axis, one an observe how the approximationdereasingly di�ers from the referene value for an inreasing numbers ofsamples N1. We assume, that this tendeny is aused by the average signal,that beomes preise more slowly than the approximator, but �nally is morepreise for a large number N1. The peaks espeially visible in the plot on thelower right hand side (N1 = 231448) are addressed in Setion 6.4.2.
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6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONS6.3 One vs. 256 Covariane MatriesIn this setion, we exemplarily determine the in�uene of the number of o-variane matries, that are used, on the e�ieny in the lassi�ation step.The approah is as follows: First, we generate the approximated deterministisample portion of the Stohasti Model for N1 = 20000. Then, we feed theminto a Template Attak (N1 = 20000), where we use them instead of the av-erage signals. Table 10 opposes the derived suess rates (real lassi�ation)of an attak with the original Stohasti Model (N1 + N2 = 20000) and ofthe modi�ed attak based on approximated signals derived from N1 = 20000samples, whih are re-used during the noise haraterisation. Both attaksseleted an idential set of points.
N1 resp. N1 + N2 = 20000 p = 9 hannel = powerOne ovariane Matrix 256 ovariane matriesP \ N3 1 2 5 10 1 2 5 109 3,0 6,2 27,2 66,7 4,2 10,5 46,4 90,16 2,0 4,5 21,5 61,8 1,7 4,4 29,6 74,43 0,9 1,9 8,8 27,6 1,7 5,4 27,7 75,2Table 10: Suess rates of Stohasti Model attaks with one and 256 ovari-ane matriesEspeially for P = 3, thus onsideration of only the most signi�antpoints, one an observe a lear superiority of the attak that uses 256 ovari-ane matries.6.4 Improvements (2)In this setion we present improvements to the Template Attak and theStohasti Model whih we developed after longterm examination of eahattak's harateristis.6.4.1 Template Attak with T-TestThe Template Attak's weakness is its poor ability to redue the noise in theside hannel samples if the adversary is bounded in the number of samples in92



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSthe pro�ling step. For small N1, the remaining noise distorts the sosd urve,whih we used as the basis for the seletion of interesting points so far (thee�et is even worse for the originally suggested sod urve).Reall that sosd represents the sum of squared pairwise di�erenes of theaverage signals∑K

i,j=0(mi−mj)
2 with j ≥ i. Although sosd is learly supe-rior to sod (see Figures 20 and 21) its signi�ane is limited if the underlyingaverage signals disperse beause of remaining noise. Figure 42 illustrates theproblem.

Figure 42: Distributions with equal mean and di�erent dispersion [33℄Obviously, the (equal) mean value is not a su�ient riterion to distinguishthe distributions in presene of varying dispersion (noise).The T-Test is an advaned statistial tool to meet the hallenge of dis-tinguishing noisy signals. When omputing the signi�ant di�erene of twosets, it does not only onsider the distane of their means but as well theirvariability in relation to the number of samples.
t =

x− y
√

σ2
X

nx
+

σ2
Y

nyIn other words: the higher the dispersion is in two sets, the less the distanebetween their means is weighted. Figure 43 depits the T-Test's approah.We added a step 2b to our implementation of the Template Attak thatomputes the variane for eah operation from all orresponding samplesand their previously omputed average. Its ore is funtion ompute_93



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONS

Figure 43: T-Test onsiders means' distane and variability [33℄varianes(*byte,*value,*no_of_files) whih is invoked for eah opera-tion one:average_urve ← load_average_urve(value)for 0 ≤ curve < no_of_�lesbeginfor 0 ≤ instant < 20000beginvariane[instant℄ ← variane[instant℄+ (urve[instant℄ - average_urve[instant℄)2endendfor 0 ≤ instant <no_of_�lesbeginvariane[instant℄ ← variane[instant℄ / (no_of_�les)endFurthermore, we modi�ed step 3 of our implementation to ompute thesum of squared pairwise t-di�erenes (sost) for all instants instead of sosd.Figure 44 illustrates the striking di�erene between sosd and sost for
N1 = 50000 and 10000 samples. The sale of the vertial axis is not the samefor all plots, but as one is not interested in omparing the absolute height ofthe peaks, this an be disregarded. What is important, and this is why wehose to present the plots in the way we do, is the relative distane betweenthe peaks and the noise �oor in eah urve. While the redution of N1 by afator 5 leads to a very distorted sosd signal, the signi�ane of sost in terms94
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Figure 44: sosd (left) and sost (right) as funtions of time, N1 = 50000 (top)and 10000 (bottom)of where to �nd interesting points does not hange. Apart from the di�erentsale, the peaks have a virtually idential shape. One an observe as wellthat sost generates a signi�antly better highest peak to noise �oor distanethan sosd by just looking at the upper two plots while paying attention tothe di�erent sales.6.4.2 High-Order Stohasti Model with F17One weakness of the Stohasti Model with F9, the bitwise oe�ient model,is the redued preision due to the approximation of the deterministi sam-ple portion. Even if enough samples are provided to estimate the bitwiseontribution as good as possible, the overall e�ieny is bounded by theapproximation itself. In other words: it exists a threshold from whih onadditional samples in the pro�ling step do not inrease the entropy of theapproximator anymore, one might all this saturation. But beause even aperfetly estimated approximator is only an approximator, preision is lim-95



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSited.The obvious solution to this problem is to inrease the number of dimensionsof the vetor subspae in order to generate a more preise approximator forthe ost of needing more samples in the pro�ling step (trade o� problem).But as the authors of [11℄ already analysed several high-dimensional vetorsubspaes and onluded that F9 seems to be most e�ient, we deide tofollow a di�erent attempt.Our approah arises from omparing the sosd urves of the StohastiModel and the Template Attak, see Figure 45 (left). As one an see, thepeaks on the right hand side of the plot are idential for both attaks, whereasthe peaks at prior instants are not alike. Due to the fat that the underlying
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Figure 45: sosd urve of the Template Attak (red) and the Stohasti Model(blue) as funtions of timesamples represent only one �xed key, the Template Attak's sosd urve showspeaks for x, x ⊕ k, and Sbox(x ⊕ k). Knowing that our AES implementa-tion unites the SubBytes and the ShiftRows transformation, we onludedan assignment of AES transformations to sosd peaks, whih is depited inFigure 45 (right). The peaks indiate, from left to right, the initial RoundKey addition, the ombined SubBytes and ShiftRows transformation, andthe MixColumns transformation.Sine the Stohasti Model only approximates the deterministi sample por-tion at Sbox(x ⊕ k), it an not trak bits �through� the Sbox and hene weonlude, that its most signi�ant peaks (at the right hand side of the plot)96



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSindiate the MixColumns transformation, whih supports the assumed as-signment.Our approah aims at the fat that the Stohasti Model �overlooks� instantsovering the Sbox lookup whih yield the strongest peaks in the sosd urveof the Template Attak. We inrease the number of dimensions of the vetorsubspae, but rather than inreasing the level of detail at one instant of theAES enryption, we add onsideration of a seond instant. We (re-)de�ne theseletion funtions gj of the 17-dimensional vetor subspae F17 as follows:
• as for F9, g0(·) always returns 1

• as for F9, gj(j = 1, . . . , 8) aim at the S-box output, i.e. gj(φ(x, k)) ∈

{0, 1} is the j-th bit of S-box(φ(x, k))

• gj(j = 9, . . . , 16) aim at the S-box input, i.e. gj(φ(x, k)) ∈ {0, 1} isthe j-th bit of φ(x, k)In formal notation that is:
gj(φ(x, k)) =







1 if j = 0

j-th bit of S-box(φ(x, k)) if 1 ≤ j ≤ 8

j-th bit of φ(x, k) if 9 ≤ j ≤ 16







(21)Although the general idea of the adaption of our implementation of theStohasti Model is simple, steps 1 - 4 of the implementation are involved.We will restrit our attention to the essential modi�ations of steps 1 and 4while steps 2 and 3 basially have to be upgraded to over 17 instead of 9dimensions.Step 1 is modi�ed to determine the (N1× 17) - matrix A whose layout isillustrated in Figure 46.
97



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONS
A =






1 g1(x1 ⊕ k) · · · g8(x1 ⊕ k) g9(x1 ⊕ k) . . . g16(x1 ⊕ k)
1 g1(x2 ⊕ k) · · · g8(x2 ⊕ k) g9(x2 ⊕ k) . . . g16(x2 ⊕ k)... ... . . . ... ... . . . ...
1 g1(xN1

⊕ k) · · · g8(xN1
⊕ k) g9(xN1

⊕ k) . . . g16(xN1
⊕ k)






Figure 46: Design Matrix A for F17 exploiting EIS propertyStep 4, keeping our �rotated� representation of the b-vetors, is modi�edto approximate the deterministi sample portion by:

h∗(t, x, k) = b0(t) +

seletion at Sbox output
︷ ︸︸ ︷

8∑

j=1

bj(t) · gj(x⊕ k) +

seletion at Sbox input
︷ ︸︸ ︷
16∑

j=9

bj(t) · gj(x⊕ k) .(22)Funtion double h(t, x, k) assembles the approximation in exatlythis way:temp ← b0(t)for 0 ≤ i < 8begintemp ← temp + bi+1(t) · ((S-box(x⊕ k) >> i) & 1 )endfor 0 ≤ i < 8begintemp ← temp + bi+9(t) · (((x⊕ k) >> i) & 1 )endoutput ← tempFigure 47 illustrates the onsiderable di�erene in the sosd urves om-puted by the Stohasti Model with F9 and with F17. Eah time, the sosdurve of the Template Attak is provided as means of omparison. It is N1resp. N1 +N2 = 231448. The sosd urve of the High-Order Stohasti Modelwith F17 omprises additional lear peaks. The peaks on the left hand sideof the plot indiate the initial Round Key addition and have a shape similarto the peaks in the sosd urve of the Template Attak. They arise due to98
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Figure 47: sosd urves the Stohasti Model (red) with F9 (left) and with
F17 (right) and the Stohasti Model with F17 (blue) as funtions of timethe same reasons as for the Template Attak (see observation 1). We addedinlusion of the instant x ⊕ k but sine the underlying samples represent a�xed k and the ⊕ operation is linear, the peaks indiate the di�erent plain-texts x. As prior for the Template Attak, we modify the point seletionalgorithm to disregard all instants overing the initial Round Key addition,beause they do not indiate key-dependent di�erenes.The peaks in the middle of the plot indiate parts of the ombined SubBytesand ShiftRows transformations. The Template Attak an trak an entirebyte from x ⊕ k to ShiftRows(Sbox(x ⊕ k)) and we are expeting the mod-i�ed Stohasti Model to have the same ability, sine it regards x ⊕ k andSbox(x⊕k) while ShiftRows() is linear and should be overed automatially.But, as one an observe in the plots, the sosd urve of the Stohasti Modelwith F17 does not omprise all the peaks (in the middle of the plot) whihan be seen in the sosd urve of the Template Attak. Sine we impliitlyadded regard of x ⊕ k, we assume that the high peak in the middle of theplot indiates the Sbox input. An explanatory approah for this di�erene:The ShiftRows transformation an be disregarded beause �rstly it is linearand seondly, in the present ase where we look at the �rst byte of the statearray s0,0, the transformation does not rearrange the bytes in the State.The SubBytes transformation omprises the inversion of s0,0 in GF(28) andan a�ne transformation that involves several bits of s−1

0,0 per output bit. Sineboth sub-transformations ompute eah output bit from at least several in-99



6 ANALYSIS OF RESULTS, OVERALL OBSERVATIONSput bits, we assume that this is the di�ulty and plan further researh, seeSetion 9.1.Another possible reason for the di�erene is the fat, that we implementedthe Sbox as a table lookup and that the table's elements' addresses in theE2PROM are not neessarily linear dependent on the lookup value. If so,the bit-wise attak an not orrelate Sbox input bits to Sbox output bits, seeSetion 9.1.
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7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS7 Experimental Results - improved attaks7.1 T-Test Template AttakThe enhaned signal to noise ratio in sost does nod lead to a higher numberof seleted points for a non-modi�ed point seletion algorithm. This is dueto the fat that the algorithm still regards all points underneath 10% of thehighest peak's value23 as noise and hene disregards even peaks underneaththat limit. A modi�ed point seletion algorithm whih exploits the enhanedsignal to noise ratio identi�es up to 13 points.The performane analysis whih we subjet the T-Test Template Attakto follows the usual proedure. We test all ombinations N1× P ×N3 for
N1 ∈ {3k, 5k, 10k, 20k, 30k, 40k, 50k, 231448}, P ∈ {13, 9, 6, 3}, and N3 ∈

{1, 2, 5, 10}. Note in partiular that due to the results of preliminary tests
• we inrease the maximum value of P to 13
• we extend the interval of N1 toward smaller values beause the attakreahes the 100% boundary earlier than the original version.For the sake of omparability, we provide results based on the non-modi�edpoint seletion algorithm (9 points) and the adapted version (13 points).Furthermore, we only provide results for N1 = 231448 resp. 10000, to stressthe attaks reation to a redued N1, as the overall observations are similarto those of the original attak.The results are provided in the usual format. Table 11 presents the resultsfor N1 = 231448. The seletion algorithms identify 9 resp. 13 points. Asbefore, this set of points will be referred to as the optimal distribution. Fromthe bloks ontaining the suess rates one an observe the same behavior ofthe attak as for its original version, in partiular the logarithmi inrease ofthe suess rate for inreased values of P and N3 and the fat that N3 hasbigger in�uene on the suess rates than P.23reall that sost generates a better highest peak to noise �oor distane101



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS
N1 = 231448 p = 13 hannel = powerpoi[℄ 3771, 8551, 9607, 3832, 3894, 9545, 9434, 9490, 3494, 3716, 8218, 9379, 9829SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1013 22,9 62,2 98,9 100,0 24,1 68,4 99,5 100,09 18,4 57,2 98,9 100,0 18,9 58,4 99,3 100,06 15,0 48,4 95,9 100,0 16,1 48,9 97,2 100,03 4,8 17,4 67,9 96,4 5,5 20,7 73,3 98,0Table 11: Suess rates (SR) for N1 = 231448 and hannel = powerTable 12 presents the results for N1 = 10000. The seletion algorithms �nd5 resp. 8 points from the optimal distribution and 4 resp. 5 points that areslightly displaed but still in the orret proessor yle. Note in partiularthat all seleted points are related to the optimal distribution, there are nobad seletions. From looking at the suess rates one an observe that the
N1 = 10000 poi = 13 hannel = powerP 3772, 8551, 9607, 3832, 3888, 9546, 9435, 9490, 3494, 3716, 8218, 9379, 9826SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1013 9,1 20,5 58,5 85,4 47,7 93,4 100,0 100,09 8,4 24,1 68,4 94,6 31,0 79,8 99,7 100,06 9,4 31,5 83,0 98,6 21,8 66,4 99,7 100,03 3,7 14,3 54,2 89,6 4,0 22,5 81,1 99,5Table 12: Suess rates (SR) for N1 = 10000 and hannel = powerorrelation of the parameter P and the suess rate has hanged for the aseof real lassi�ation. While the step from P = 3 to P = 6 yields an inreasedsuess rate, the algebrai sign is reversed for further steps to P = 9 and

P = 13 so that an inreased number of points yields a worse suess rate.For the ase of trial lassi�ation, the orrelation's diretion remains thesame (p. original attak). 102



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS7.1.1 Comparison Template Attak vs. T-Test Template AttakIn this setion, we ompare the e�ieny of the original Template Attakand T-Test Template Attak with respet to the pro�ling step and the las-si�ation step, following the proedure introdued in Setion 5.3.Profiling EffiienyFigure 48 shows the e�ieny of both attaks in the pro�ling step. The ap-plied measure is equal to the one in Setion 5.3. The plot learly indiates the
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correct_points_ttest_13Figure 48: Well seleted points in the pro�ling stepsuperiority of the improved version, the T-Test Template Attak, in termsof seleting the right instants and hene, in the pro�ling step. ConsideringFigure 44 again, the improved pro�ling e�ieny obviously derives from theenhaned ability to suppress noise.Classifiation EffiienyIn the following, we ompare the lassi�ation suess rates of the attaks.We restrit our attention to real lassi�ation, thus lassi�ation of samplesfrom devie B, sine it is the more interesting ase, N3 ∈ {1, 10} for the sakeof larity, and, eah time, the optimal hoie of P. The graph shows the most,that eah attak an make of a given number of urves in the pro�ling stepwhen lassifying one resp. ten samples from devie B.103



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSAgain, all individual numbers are provided in Appendixes B and D.Figure 49 shows the suess rates plotted as funtions of N1 for N3 ∈

{1, 10} and optimal hoie of P . For the sake of omparability, we providea plot of the T-Test Template Attak's suess rates for N3 = 1 where therange of points P is bounded by 9. For N3 = 10, this is not neessary, as thesuess rates for a bounded and a non-bounded range of points are idential.
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Figure 49: Plot of the Template Attak's and the T-Test Template Attak'ssuess rates as a funtion of the number of urves in the pro�ling step. Itis N3 ∈ {1, 10} and P hosen optimally.7.2 High-Order Stohasti Model with F17The additional peaks in the sosd urve of the High-Order Stohasti Modelwith F17 lead to additionally seleted points. The non-modi�ed24 point sele-tion algorithm identi�es p = 10 instead of 9 points. Figure 47 indiates, why24the noise border remains at 10%; it omits instants 0 - 3300104



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSa single additional point makes a signi�ant di�erene. The tenth point isseleted at an instant, whih overs the ombined SubBytes and ShiftRowstransformation. That instant yields the strongest peak in the sosd urvewhih means that it is a very good riterion to distinguish key hypothesis.We do not onsider a redution of the noise border in the point seletionalgorithm, beause the basis, on whih the hoie is made, remains the same(sosd).The performane analysis of the High-Order Stohasti Model follows theusual proedure. We test all ombinations N1 + N2 × P ×N3 for N1 + N2 ∈

{2k, 10k, 20k, 30k, 40k, 50k, 231448}, P ∈ {10, 9, 6, 3}, and N3 ∈ {1, 2, 5, 10}.Note in partiular that due to the results of preliminary tests
• we inrease the maximum value of P to 10
• we extend the interval of N1 toward smaller values beause the attakreahes the 100% boundary earlier than the original version.We only provide results for N1 + N2 = 231448 resp. 10000, to stress the at-taks reation to a redued N1 and for omparability with the T-Test Tem-plate Attak. The overall observations are similar to those of the originalattak with F9. All result tables are provided in Appendix E.The results are provided in the usual format. Table 13 presents the resultsfor N1 + N2 = 231448.

N1 + N2 = 231448 p = 10 hannel = powerpoi[℄ 3774, 9496, 9607, 9551, 8551, 3829, 9440, 8218, 3884, 9385SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 9,8 26,6 84,0 99,5 10,2 33,8 88,9 99,49 9,1 29,7 83,2 99,8 8,8 30,3 88,0 99,96 4,7 22,3 76,6 99,2 8,4 23,6 79,6 99,33 3,1 13,0 55,1 92,1 4,8 15,3 61,7 96,4Table 13: Suess rates (SR) for N1 and N2 = 115724 and hannel = power105



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSThe point seletion algorithm identi�ed p = 10 points, whih will be re-ferred to as the optimal distribution, as usual. From the bloks ontainingthe suess rates, one an observe the usual logarithmi dependeny betweenP resp. N3 and the suess rates. Furthermore and in ontrast to the originalversion, the attak shows a property similar to the Template Attaks. N3learly has a stronger impat on the suess rates than P.Table 14 presents the results for N1 + N2 = 10000, hene less than 5%of the training samples. The point seletion algorithm found �ve points
N1 + N2 = 10000 poi = 10 hannel = powerpoi[℄ 3774, 9496, 3829, 9605, 8551, 9441, 8218, 17679, 18346, 19791SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 5,2 14,6 54,5 88,3 7,9 29,7 89,1 99,89 3,3 12,0 56,8 89,1 8,3 28,1 86,1 99,66 2,6 8,2 38,7 76,4 6,2 23,3 82,1 99,13 4,3 11,1 35,4 71,3 3,4 10,6 40,5 73,2Table 14: Suess rates (SR) for N1 + N2 = 10000 and hannel = powerfrom the optimal distribution, two that are slightly displaed but still inthe orret yle, and three that are not related to the optimal distribution.As expeted, the suess rates for trial lassi�ation remain in the sameorder of magnitude. The suess rates for real lassi�ation show the desiredtendeny. In opposition to the original attak, whose e�ieny delines to ∼50% for suh a redution of training samples, the e�ieny of the improvedattak delines less, partiularly for higher values of N3 and P.7.2.1 Comparison Stohasti Model vs. High-Order StohastiModelIn this setion, we ompare the e�ieny of the Stohasti Model with F9and the High-Order Stohasti Model with F17 with respet to the pro�lingstep and the lassi�ation step, following the usual proedure.106



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSProfiling EffiienyFigure 50 shows the e�ieny of both attaks in the pro�ling step. The ap-plied measure is equal to the one in Setion 5.3. Sine we did not modify
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correct_points_smf17Figure 50: Well seleted points in the pro�ling stepthe basis, upon whih the point seletion algorithm operates (sosd), the twourves basially show a similar run. The di�erent absolute values derive fromthe additional point that an be identi�ed by The High-Order Attak dueto the higher-dimensional vetor subspae. As expeted, the entropy of sosdand hene of eah b-vetor does not hange. The analysis of the e�ienyin the lassi�ation step will show, if additional b-vetors yield better results.Classifiation EffiienyIn the following, we ompare the lassi�ation suess rates of both attaks.We restrit our attention to real lassi�ation, thus lassi�ation of samplesfrom devie B, sine it is the more interesting ase, N3 ∈ {1, 10} for the sakeof larity, and, eah time, the optimal hoie of P. The graph shows the most,that eah attak an make of a given number of urves in the pro�ling stepwhen lassifying one resp. ten samples from devie B.Figure 51 shows the suess rates plotted as funtions of N1 for N3 ∈

{1, 10} and optimal hoie of P. 107



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKS
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Figure 51: Plot of the Stohasti Model's and the High-Order StohastiModel's suess rates as a funtion of the number of urves in the pro�lingstep. It is N3 ∈ {1, 10} and P hosen optimally.The bene�t of generating 8 more b-vetors with respet to the Sbox inputis learly visible. In opposition to the pro�ling e�ieny, the e�ieny inthe lassi�ation step is signi�antly inreased. For N1 + N2 ≤ 25000, theimproved attak reahes the same e�ieny than the original attak, with atmost the half amount of the training samples. This is in partiular important,if one is bounded in the number of available samples in the pro�ling step.Furthermore, for N1 + N2 > 25000 and N3 = 10, the High-Order StohastiModel learly exeeds the 90% suess rate boundary and gets very lose to100% suess.7.3 Comparison of all four attaksIn this setion we only provide two �gures illustrating the e�ieny of allfour attaks in the pro�ling and lassi�ation step and a short summary ofthe observations. We provide them to give an overall survey of our work, the108



7 EXPERIMENTAL RESULTS - IMPROVED ATTACKSindividual plots will not be disussed in detail.Figure 52 ontrasts the pro�ling e�ieny of all four attaks with respetto their individually optimised point seletion algorithms and point seletionbasis. The T-Test Template Attak seems to be the best possible hoie.
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Figure 53: Plots of the individually optimised lassi�ation performane ofall four attaks as funtions of N1 resp. N1 + N2, it is N3 ∈ {1, 10} and Phosen to maximise the suess rate
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8 EM CHANNEL AND MULTI-CHANNEL ATTACKS8 Template Attaks, Stohasti Models, EMand Multi- Side Channel AttaksAll results reported so far are based on the side hannel power onsumption.In this setion, we provide insights in our experiene with the EM side han-nel and multihannel attaks.In ontrast to many publiations, e.g. [16, 35, 36, 37, 34℄, we do nottransform the EM samples into the frequeny domain in order to isolatearrier frequenies and demodulate signi�ant signals. We treat the EMsamples and apply the attaks in exatly the same way as we did for thesamples from the power hannel. One might say, we perform a MagnetiFlux Attak, sine the EM probe only aquires magneti �elds.8.1 Eletromagneti AttaksApparently, our samples from the EM side hannel are muh more noisy thanthose of the power hannel. Neither the Template Attak nor the StohastiModel (both using sosd) are able to su�iently suppress the noise and toextrat the signi�ant harateristis. Figure 54 shows the resulting sosdurves of the Stohasti Model F9 for N1 = 50000 and 115724 samples.
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Figure 54: sosd urves of the Stohasti Model F9 derived from 50000 resp.115724 samples of the EM hannelAlthough the plots show three signi�ant peaks, the e�ieny in the las-si�ation step does not exeed a suess rate of 4.8%, whih is ahieved for111



8 EM CHANNEL AND MULTI-CHANNEL ATTACKSP = 6 and N3 = 10. The reason for the low e�ient pro�ling step is the highnoise level in the samples, whih probably derives from the bad resolutionof the EM probe. With the probe overing an area of 5mm × 5mm, it is adaunting task to point at the part of the hip, that does the omputationwhile keeping it away from the I/O busses and the power feed (p. [16℄).The non-e�ient pro�ling (onsider the low highest peak to noise �oor ratio)explains the low suess rates in the lassi�ation step.We omit details on the original Template Attak's performane, beausethe derived sosd urves do not show any signi�ant peaks and the suessrates in the lassi�ation step do not exeed 1%.Furthermore, we omit details on the High-Order Stohasti Model as well, asits performane does not onsiderably exeed the one of the original attak(it uses sosd as well) and fous on the most promising approah.The T-Test Template Attak proved to be the most e�ient attak op-erating on a small number of training samples whih is equivalent to theability of �ltering noise in the pro�ling step. Hene, we fous on examiningthis attak's e�ieny here.Figure 55 shows the derived sost urves for N1 = 50000 and 231448.One an see lear visible peaks and a reasonable highest peak to noise �oor
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Figure 55: sost urves of the T-Test Template Attak derived from 50000resp. 231448 samples of the EM hannel112



8 EM CHANNEL AND MULTI-CHANNEL ATTACKSdistane. Figure 56 ompares the sost urves for the power hannel and theEM hannel derived from N1 = 50000 samples. Note that the vertial axis issaled logarithmi and we zoomed in on the Sbox lookup. One an observe
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Figure 56: sost urves of the T-Test Template Attak derived from 50000power and EM samplesvery learly that the eletromagneti radiation is related to the derivation ofthe power onsumption.8.1.1 Experimental ResultsWe apply the T-Test Template Attak to the samples of the EM side han-nel25 in the same way as we did for the power hannel. In partiular, dueto our experienes with the attak and preliminary tests, we use the reduednoise border in the point seletion algorithm, that is 1% of the highest peak'svalue (p. Setion 7.1).25measurement sets 1 and 2, �xed key 113



8 EM CHANNEL AND MULTI-CHANNEL ATTACKSWe test all ombinations of N1 × P × N3 for N1 ∈ {50k, 231448}, P
∈ {34, 24, 14}, and N3 ∈ {1, 2, 5, 10}. The results are presented in the usualformat.Table 15 presents the results for N1 = 231448. The point seletion al-
N1 = 231448 p = 34 hannel = EMpoi[℄ 3819, 3874, 3764, 9489, 8208, 3486, 3706, 8544,9375, 9545,9600, 9434, 3986, 5931, 8321, 4484, 8043, 8432, 10043, 7374, 6429,5429, 7985, 8376, 9988, 4539, 5484, 8487, 5987, 6487, 7429, 9822,3319, 9266SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1034 3,2 8,1 25,9 51,2 8,1 23,4 67,3 96,124 3,4 8,4 23,3 46,4 6,0 16,2 54,2 89,314 1,9 5,7 17,2 37,4 3,0 9,9 34,0 68,9Table 15: Suess rates (SR) for N1 = 231448 and hannel = EMgorithm identi�ed 34 points, the optimal distribution. The two bloks ofsuess rates indiate a non-optimal pro�ling, beause the suess rates fortrial and real lassi�ation are not in the same order of magnitude. Whethera further inrease of N1 would yield a better pro�ling, is unknown. Sine wedo not have more than 231448 samples, we an not investigate this matter.A further indiation for a non-optimal pro�ling is the fat, that in ase ofreal lassi�ation the suess rates barely inrease from P = 24 to P = 34.Nevertheless, we want to investigate, what is possible under these irum-stanes although it is obvious, that the results an not ompete against thosefrom the power hannel.Table 16 presents the results for N1 = 50000. The point seletion algo-rithm found 19 points from the optimal distribution, 13 points are slightlydisplaed, and 2 are not related to the optimal distribution. Applying ourde�ned measure, it yields a sore of 26.5 orret points. The e�et of the falsepositives is notieable, sine the suess rates of trial lassi�ation inreasewhile the ones of real lassi�ation derease.114



8 EM CHANNEL AND MULTI-CHANNEL ATTACKS
N1 = 50000 p = 34 hannel = EMpoi[℄ 3819, 3874, 3764, 3486, 9489, 9434, 8208, 8545, 9601, 9545,3985, 10043, 9377, 8043, 3706, 8377, 5986, 8432, 7431, 6486, 8487,4541, 5931, 7932, 8322, 9988, 4486, 5429, 7988, 7375, 5484, 6429,9822, 9266SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1034 1,1 2,5 4,0 7,6 35,0 73,0 99,7 100,024 1,8 2,7 5,8 8,6 17,5 47,8 93,1 100,014 1,4 1,4 5,2 9,4 9,4 22,0 71,5 96,8Table 16: Suess rates (SR) for N1 = 50000 and hannel = EM8.2 Multi-hannel AttaksFor the reasons provided in Setion 8.1, we fous on Multi-hannel attakswith the T-Test Template Attak. The implementation e�ort is rather small,as we simply onatenate the side hannel samples from the power hannel(20000 points) and the EM hannel (20000 points) to form a multi-hannelsample (40000 points).Figure 57 shows the sost urve derived from 231448 multi-hannel samplesand stresses the signi�antly lower signal to noise ratio in the EM samples(instants 20000 to 40000). Obviously, we will have to use a large numberof points to selet p and an even lower noise border in order to fore theseletion algorithm to identify points on the EM hannel portion.8.2.1 Experimental resultsWe apply the T-Test Template Attak using a redued noise border at 0.1%of the highest peak's value for the point seletion algorithm. Sine we knowthat p = 13 for the power hannel and p = 34 for the EM hannel, we forethe algorithm to identify up to p = 47 points. With respet to the (bad)suess rates provided in 8.1, we restrit our attention to N1 = 231448.We test all ombinations of N1 × P×N3 for N1 = 231448, P ∈ {47, 40, 37,115



8 EM CHANNEL AND MULTI-CHANNEL ATTACKS
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Figure 57: sost urve of the T-Test Template Attak derived from 231448multi-hannel samples
30, 16}, and N3 ∈ {1, 2, 5, 10}. The results are presented in the usual format.As expeted, the point seletion algorithm only identi�es instants fromthe power hannel portion in the beginning. The �rst eleven seleted pointsare the same as for a pure power attak. Only three points from the EMhannel portion are seleted, before the last point of the optimal distributionfrom a power attak (13 points) is seleted. Hene, in order to be able toompare the results to those from the power attak, we provide results for
P = 16 whih re�ets the seletion for a noise border at 1%.The two bloks of suess rates indiate a non-optimal pro�ling. The dif-ferene between the suess rates of trial and real lassi�ation is smallerthan for a pure EM attak, but bigger than for a pure power attak. Obvi-ously, the interating e�ets of the power and EM pro�ling anel eah otherout and reah an intermediate pro�ling e�ieny. Nevertheless, the absolutevalues of the suess rates indiate learly, that the multi-hannel attak is116



8 EM CHANNEL AND MULTI-CHANNEL ATTACKS
N1 = 231448 p = 47 hannel = Multipoi[℄ 3771, 8551, 9607, 3832, 3894, 9545, 9434, 9490, 3494, 3716,8218, 23819, 9379, 23874, 23764, 9829, 29489, 28208, 23486, 7606,23706, 28544, 29375, 29545, 29600, 29434, 10045, 23986, 25931, 834028321, 24484, 28043, 9773, 28432, 30043, 8410, 9885, 27374, 26429,25429, 7951, 27985, 28376, 8006, 29988, 24539SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1047 26,6 68,5 96,2 99,9 48,5 88,7 100,0 100,040 26,9 69,2 98,4 99,8 41,3 84,3 99,9 100,037 24,7 67,6 98,1 100,0 40,6 84,6 100,0 100,030 26,6 69,5 98,3 100,0 36,6 81,2 99,9 100,016 25,1 66,0 99,5 100,0 29,9 69,9 99,8 100,0Table 17: Suess rates (SR) for N1 = 231448 and hannel = Multisuperior to the pure power attak. Partiularly for N3 = 1, one an observea gain of up to 17% in the more interesting ase of real lassi�ation. Evenif we (theoretially) use the same noise border as for the power attak andompare the results for P = 16 to those of the power attak for P = 13, onean observe a gain of up to 10%.
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9 CONCLUSION9 ConlusionIn the ourse of this thesis, we profoundly analysed the Template Attakand the Stohasti Model. We identi�ed relevant parameters for eah attak,analysed their impat and explained their in�uenes on the attaks' e�ien-ies. For eah attak, we elaborated weaknesses and strengths.Furthermore, we suggested improvements to both attaks with respet to atleast one of their weaknesses and proved the inreased e�ieny.We demonstrated that one of the improved attaks, even though appliedto noisy EM side hannel measurements in a non-sophistiated manner, yieldsremarkable results. Due to this inreased e�ieny, we were able to mount amulti-hannel attak whih an yield results that are notieable superior tothose of single-hannel attaks.We were able to show that the assumptions on an adversary's powersshould be weakened in the ontext of two-step side hannel attaks on blokiphers like the Advaned Enryption Standard. In partiular we demon-strated, that the training devie does not need to be programmable by theadversary, if the utilisation of a �xed key may be assumed.9.1 Further ResearhWe have ommened promising researh on further extensions of the ve-tor subspae of the High-Order Stohasti Model. We add more dimensionswhose seletion funtions aim at the entre of the Sbox lookup, that is theintermediate result after (x⊕ k)−1 in GF(28) and before the a�ne funtion.Another approah, whih we analyse at the moment, are vetor bases thatevaluate the logi AND sum of several Sbox input or output bits.Sine we developed powerful attaks whih yield suess rates of more than25% given a single sample in the lassi�ation step, we plan to analyse theire�ieny against proteted implementations, in partiular AES with booleanand arithmeti masking. 118



9 CONCLUSIONDuring the ourse of this work, we used a point seletion algorithm thatselets at most one point per proessor yle. First experiments have shown,that the hoie of several points per yle, hene haraterisation of its shape,an yield improved results under ertain onditions.Topis that need further investigation are:
• the determination of harateristi di�erenes, is sost optimal?
• point seletion algorithms, one an imagine self learning solutions
• hoies for the vetor subspae with respet to Stohasti Models
• determination of a measure for side hannel quality
• evaluation of the improved attaks in EM- and multihannel settings,when applied in more sophistiated attaks (demodulation)
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A MEASUREMENT SETUP ILLUSTRATIONSA Measurement setup illustrations

Figure 58: Langer EMV Tehnik RFU 5-2 near �eld probe

Figure 59: Dismantled Smartard reader
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A MEASUREMENT SETUP ILLUSTRATIONS

Figure 60: Side Channel measurement setup at COSY lab
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B RESULT TABLES - TEMPLATE ATTACKB Result tables - Template Attak
N1 = 231448 p = 9 hannel = powerpoi[℄ 3771, 3828, 3883, 8218, 8551, 9440, 9496, 9551, 9607SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 20,5 56,0 97,8 99,9 19,7 60,3 98,6 100,06 14,2 43,1 94,3 100,0 16,7 47,2 97,6 99,93 8,5 29,2 82,1 99,2 9,7 25,0 81,1 99,6
N1 = 50000 pp = 9 hannel = powerpoi[℄ 3828, 3771, 3883, 9496, 9607, 9552, 8551, 9440, 19235SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 15,9 45,8 92,5 99,6 23,5 61,9 99,4 100,06 13,5 44,4 93,3 99,7 15,4 52,9 97,6 100,03 9,5 27,5 77,2 98,2 8,0 28,6 83,0 98,5
N1 = 40000 p = 9 hannel = powerpoi[℄ 3828, 3771, 3883, 9496, 9620, 8564, 9552, 9441, 19235SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 7,0 25,9 75,3 98,0 15,8 53,1 97,3 100,06 9,2 29,9 80,8 98,9 13,5 38,2 92,0 100,03 8,3 26,6 76, 99,0 8,2 28,7 83,7 99,2
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B RESULT TABLES - TEMPLATE ATTACK
N1 = 30000 p = 9 hannel = powerpoi[℄ 3828, 3771, 3884, 9509, 9620, 8564, 9441, 17790, 19235SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 5,3 15,5 55,0 87,8 13,0 46,1 93,8 100,06 6,2 18,7 68,4 95,2 10,4 32,2 87,2 99,73 6,1 24,0 77,1 98,2 9,9 29,1 85,0 98,9
N1 = 25000 p = 9 hannel = powerpoi[℄ 3828, 3772, 3884, 9509, 9620, 8564, 17790, 19235, 15289SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 3,4 9,5 32,3 61,5 13,4 42,8 93,7 100,06 6,6 21,0 65,9 96,3 11,4 35,9 89,0 100,03 8,5 24,4 78,1 97,6 9,0 30,7 85,4 99,0
N1 = 20000 p = 9 hannel = powerpoi[℄ 3840, 9509, 3774, 9620, 8564, 17790, 19235, 14900, 13066SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 0,7 1,5 2,4 3,6 6,7 22,3 74,1 97,86 1,8 1,5 3,1 4,3 5,3 15,5 54,8 89,93 1,4 2,8 6,0 8,5 2,7 7,3 27,4 57,7
N1 = 10000 p = 9 hannel = powerpoi[℄ 3840, 9509, 4896, 13066, 12677, 10176, 7397, 10565, 10954SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 0.5 0.5 0.1 0.6 0.3 1.0 0.6 1.66 0.8 0.7 0.7 0.8 0.5 0.5 1.0 0.93 1.6 0.2 0.7 0.4 0.4 0.4 1.1 0.8127



C RESULT TABLES - STOCHASTIC MODELC Result tables - Stohasti Model
N1 + N2 = 231448 p = 9 hannel = powerpoi[℄ 9496, 9607, 9551, 8551, 9440, 8218, 3828, 9385, 3883SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 4,3 12,6 52,1 90,7 3,3 12,2 63,1 96,36 1,9 8,1 43,0 91,2 3,1 9,4 55,2 94,43 1,9 4,9 23,6 68,5 1,0 6,1 34,1 80,0
N1 + N2 = 50000 p = 9 hannel = powerpoi[℄ 9496, 9607, 8551 ,9552, 9441, 8218, 3828, 9385, 3883SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 3,5 8,7 37.6 82.6 3.3 10.6 61.7 98.26 2,1 5,9 37.1 79.3 3.2 9.6 55.6 95.93 1.1 6.0 30.8 77.6 2.0 6.7 43.1 88.2
N1 + N2 = 40000 p = 9 hannel = powerpoi[℄ 9496, 9607, 8551, 9552, 9441, 8218, 3828, 9385, 3883SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 2,1 9,4 36,9 83,0 3,2 11,8 61,7 97,76 2,6 6,3 33,9 80,4 3,1 9,4 59,5 97,03 1,4 5,0 28,4 77,7 3,2 5,7 40,4 91,0
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C RESULT TABLES - STOCHASTIC MODEL
N1 + N2 = 30000 p = 9 hannel = powerpoi[℄ 9496, 9607, 9552, 8551, 9441, 8218, 3828, 9385, 3883SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 3,4 7,0 42,2 85,7 3,7 13,4 66.5 97.56 1,8 8,2 36,6 83,0 2,7 9,5 59,1 96,53 1,2 3,5 17,9 57,9 1,7 3,6 35,1 81,0
N1 + N2 = 25000 p = 9 hannel = powerpoi[℄ 9496, 9607, 9552, 8551, 9441, 8218, 3828, 9385, 3883SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 4,4 8,0 39,8 85,3 3,1 13,9 64,1 97,66 2,3 7,1 33,8 80,6 2,4 10,5 57,8 97,13 0,9 4,2 19,2 61,4 1,2 4,6 34,4 81,6
N1 + N2 = 20000 p = 9 hannel = powerpoi[℄ 9496, 9608, 9552, 9441, 8551, 8218, 3828, 9385, 3883SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 3,0 6,2 27,2 66,7 3,9 13,9 66,3 98,16 2,0 4,5 21,5 61,8 2,0 9,0 58,0 96,03 0,9 1,9 8,8 27,6 1,8 3,6 31,2 83,5
N1 + N2 = 10000 p = 9 hannel = powerpoi[℄ 9496, 9605, 8551, 9441, 8218, 3828, 15845, 12677, 13344SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 1,0 1,9 16,9 46,9 4,0 10,8 58,3 96,16 1,1 2,4 15,5 49,5 3,2 11,4 53,8 93,93 0,4 1,7 9,7 34,0 2,0 5,2 38,8 88,9129



C RESULT TABLES - STOCHASTIC MODEL

N1 + N2 = 2000 poi = 9 hannel = powerpoi[℄ 9497, 9439, 8564, 9605, 8230, 3828, 5396, 5118, 4729SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 109 0,6 1,2 3,2 8,9 3,0 6,9 26,7 61,06 1,3 2,3 4,9 12,9 1,9 6,8 32,3 76,13 0,8 1,9 4,1 10,1 0,7 2,2 7,1 20,5
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D RESULT TABLES - T-TEST TEMPLATE ATTACKD Result tables - T-Test Template Attak
N1 = 231448 p = 13) hannel = powerpoi[℄ 3771, 8551, 9607, 3832, 3894, 9545, 9434, 9490, 3494, 3716, 8218, 9379, 9829SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1013 22,9 62,2 98,9 100,0 24,1 68,4 99,5 100,09 18,4 57,2 98,9 100,0 18,9 58,4 99,3 100,06 15,0 48,4 95,9 100,0 16,1 48,9 97,2 100,03 4,8 17,4 67,9 96,4 5,5 20,7 73,3 98,0
N1 = 50000 p = 13) hannel = powerpoi[℄ 3771, 8551, 9607, 3838, 3894, 9545, 9434, 9490, 3494, 3716, 8218, 9379, 9829SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1013 17,6 53,3 96,7 100,0 32,9 75,7 99,9 100,09 15,0 48,1 96,7 100,0 23,8 67,3 99,6 100,06 12,2 44,0 93,8 100,0 16,0 52,9 98,4 100,03 5,3 16,0 66,5 95,5 5,7 21,0 77,9 98,3
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D RESULT TABLES - T-TEST TEMPLATE ATTACK
N1 = 40000 p = 13 hannel = powerpoi[℄ 3767, 8551, 9607, 3838, 3894, 9546, 9435, 9490, 3494, 8218, 3710, 9379, 9835SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1013 13,7 32,1 85,9 99,6 29,1 71,4 99,9 100,09 10,9 35,2 90,8 99,9 24,5 63,1 99,3 100,06 10,4 37,3 89,8 99,9 18,4 51,7 97,5 100,03 4,9 14,1 64,0 95,0 4,7 23,2 75,8 98,6
N1 = 30000 p = 13 hannel = powerpoi[℄ 3767, 8551, 9607, 3832, 3888, 9546, 9435, 9490, 3494, 8218, 3710, 9379, 9835SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1013 13,4 31,8 85,8 99,5 31,1 76,7 99,6 100,09 13,3 37,8 88,7 100,0 21,6 66,0 98,8 100,06 9,6 36,3 89,6 99,8 19,6 55,7 98,3 99,93 4,3 12,6 60,0 93,5 6,6 21,3 75,3 98,3
N1 = 20000 p = 13 hannel = powerpoi[℄ 3771, 8551, 9607, 3832, 3888, 9546, 9435, 9490, 3494, 3716, 8218, 9379, 9826SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1013 12,6 33,0 83,2 99,2 36,7 84,5 99,9 100,09 11,1 33,2 87,1 99,4 26,6 70,9 99,6 100,06 12,9 34,9 89,4 99,6 18,3 57,4 98,4 100,03 3,3 14,6 59,7 93,8 6,4 21,0 78,6 98,9
N1 = 10000 p = 13 hannel = powerpoi[℄ 3772, 8551, 9607, 3832, 3888, 9546, 9435, 9490, 3494, 3716, 8218, 9379, 9826SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1013 9,1 20,5 58,5 85,4 47,7 93,4 100,0 100,09 8,4 24,1 68,4 94,6 31,0 79,8 99,7 100,06 9,4 31,5 83,0 98,6 21,8 66,4 99,7 100,03 3,7 14,3 54,2 89,6 4,0 22,5 81,1 99,5132



D RESULT TABLES - T-TEST TEMPLATE ATTACK
N1 = 5000 p = 13 hannel = powerpoi[℄ 3771, 8551 ,9607, 3839, 3894, 9546, 9435, 9490, 3499, 3716, 8218, 9379, 9826SR of real lassi�ation SR of trial lassi�ationnot omputable not omputable

N1 = 3000 p = 13 hannel = powerpoi[℄ 3771, 8551, 9607, 3839, 3894, 9545, 9434, 9490, 3494, 3716, 8218, 9379, 9826SR of real lassi�ation SR of trial lassi�ationnot omputable not omputable
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E RESULT TABLES - HIGH-ORDER STOCHASTIC MODELE Result tables - High-Order Stohasti Model
N1 + N2 = 231448 p = 10 hannel = powerpoi[℄ 3774, 9496, 9607, 9551, 8551, 3829, 9440, 8218, 3884, 9385SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 9,8 26,6 84,0 99,5 10,2 33,8 88,9 99,49 9,1 29,7 83,2 99,8 8,8 30,3 88,0 99,96 4,7 22,3 76,6 99,2 8,4 23,6 79,6 99,33 3,1 13,0 55,1 92,1 4,8 15,3 61,7 96,4
N1 + N2 = 50000 p = 10 hannel = powerpoi[℄ 3774, 9496, 9607, 8551, 9552, 3829, 9440, 8218, 3884, 9385SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 7,9 27,6 82,9 99,2 9,9 32,0 89,2 99,99 8,7 28,3 80,5 99,1 9,6 30,9 87,6 99,66 5,0 19,3 75,1 97,3 5,1 23,6 81,2 99,13 3,5 11,7 55,9 90,8 4,8 14,8 63,3 95,7
N1 + N2 = 40000 p = 10 hannel = powerpoi[℄ 3774, 9496, 9607, 3829, 8551, 9552, 9441, 8218, 3884, 9385SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 7,6 24,3 77,2 97,5 10,0 32,3 91,6 99,69 6,6 23,2 72,6 97,6 9,5 36,1 88,1 99,86 6,7 18,6 69,7 96,9 6,7 25,2 83,3 98,83 3,4 12,1 49,9 89,8 4,0 16,4 66,3 96,0
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E RESULT TABLES - HIGH-ORDER STOCHASTIC MODEL
N1 + N2 = 30000 p = 10 hannel = powerpoi[℄ 3774, 9496, 9607, 3829, 9552, 8551, 9441, 8218, 3884, 9385SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 9,3 25,1 73,7 97,7 10,2 33,4 90,2 99,89 8,4 22,5 74,0 98,1 10,1 33,1 90,2 99,96 5,1 22,4 68,3 95,6 6,3 23,0 82,4 99,93 4,2 10,2 52,0 88,1 4,8 16,5 65,6 96,4
N1 + N2 = 20000 p = 10 hannel = powerpoi[℄ 3774, 9496, 9608, 3829, 9441, 9552, 8551, 8218, 3884, 9385SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 6,6 20,0 65,0 95,49 6,9 18,4 65,1 94,8 10,2 33,4 89,2 99,56 3,3 10,1 41,3 75,7 5,6 21,8 80,3 98,13 2,5 8,2 33,5 73,6 4,1 17,0 64,8 96,7
N1 + N2 = 10000 p = 10 hannel = powerpoi[℄ 3774, 9496, 3829, 9605, 8551, 9441, 8218, 17679, 18346, 19791SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 5,2 14,6 54,5 88,3 7,9 29,7 89,1 99,89 3,3 12,0 56,8 89,1 8,3 28,1 86,1 99,66 2,6 8,2 38,7 76,4 6,2 23,3 82,1 99,13 4,3 11,1 35,4 71,3 3,4 10,6 40,5 73,2
N1 + N2 = 2000 p = 10 hannel = powerpoi[℄ 9453, 3784, 3840, 9564, 8564, 6841, 3562, 5396, 5118, 4729SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1010 1,0 0,2 0,2 0,6 1,3 2,1 7,4 9,59 2,1 0,8 0,5 0,8 1,9 2,2 5,1 9,36 0,3 0,7 0,4 0,8 1,0 1,9 3,9 7,63 0,8 0,7 0,9 1,3 0,7 1,3 1,8 3,5135



F RESULT TABLES - T-TEST TEMPLATE ATTACK, EMF Result tables - T-Test Template Attak, EM
N1 = 231448 p = 34 hannel = EMpoi[℄ 3819, 3874, 3764, 9489, 8208, 3486, 3706, 8544,9375, 9545,9600, 9434, 3986, 5931, 8321, 4484, 8043, 8432, 10043, 7374, 6429,5429, 7985, 8376, 9988, 4539, 5484, 8487, 5987, 6487, 7429, 9822,3319, 9266SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1034 3,2 8,1 25,9 51,2 8,1 23,4 67,3 96,124 3,4 8,4 23,3 46,4 6,0 16,2 54,2 89,314 1,9 5,7 17,2 37,4 3,0 9,9 34,0 68,9
N1 = 50000 p = 34 hannel = EMpoi[℄ 3819, 3874, 3764, 3486, 9489, 9434, 8208, 8545, 9601, 9545,3985, 10043, 9377, 8043, 3706, 8377, 5986, 8432, 7431, 6486, 8487,4541, 5931, 7932, 8322, 9988, 4486, 5429, 7988, 7375, 5484, 6429,9822, 9266SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1034 1,1 2,5 4,0 7,6 35,0 73,0 99,7 100,024 1,8 2,7 5,8 8,6 17,5 47,8 93,1 100,014 1,4 1,4 5,2 9,4 9,4 22,0 71,5 96,8
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G RESULT TABLES - T-TEST TEMPLATE ATTACK,MULTI-CHANNELG Result tables - T-Test Template Attak, Multi-hannel
N1 = 231448 p = 47 hannel = Multipoi[℄ 3771, 8551, 9607, 3832, 3894, 9545, 9434, 9490, 3494, 3716,8218, 23819, 9379, 23874, 23764, 9829, 29489, 28208, 23486, 7606,23706, 28544, 29375, 29545, 29600, 29434, 10045, 23986, 25931, 834028321, 24484, 28043, 9773, 28432, 30043, 8410, 9885, 27374, 26429,25429, 7951, 27985, 28376, 8006, 29988, 24539SR of real lassi�ation SR of trial lassi�ationP \ N3 1 2 5 10 1 2 5 1047 26,6 68,5 96,2 99,9 48,5 88,7 100,0 100,040 26,9 69,2 98,4 99,8 41,3 84,3 99,9 100,037 24,7 67,6 98,1 100,0 40,6 84,6 100,0 100,030 26,6 69,5 98,3 100,0 36,6 81,2 99,9 100,016 25,1 66,0 99,5 100,0 29,9 69,9 99,8 100,0
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