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Abstract

This work presents a case study of accelerating embedded processor

systems by use of additional, reconfigurable hardware. The well known

RSA encryption scheme will be used to demonstrate how to move

computationally intensive operators into hardware to gain a significant

speed-up.
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1 INTRODUCTION

1 Introduction

The security of certain information has been a matter ever since. Means of

communication have changed a lot in the last 30 years and the amount of

information that is beeing communicated, especially by electronic means, is

growing exponentially. To be able to deal with the vast amounts of data

being processed in a secured electronic information system, the system itself

has to be a high-performance system.

Nearly all cryptographic algorithms, being the core component of most se-

curity systems, are based upon the fact that their complexity (= level of

security provided) is superior to present computing power. As - according to

Moore’s Law [7] - computing power doubles every 1.5 years, the comlexity of

cryptographic computations needs to grow at least at the same rate to pro-

vide a consistent level of security. But this does also mean, that the actual

workload of data processing, meaning encryption and decryption, increases.

As a consequence, the demanded amount of computing power of a secured

information system increases at the same speed as cryptographic complexity

and integration level of its hardware components.

One way to deal with these increasing standards is to raise the system’s com-

puting power, eg by simply using a CPU with greater clock speed. Another

approach to meet the challenge of providing sufficient computing power is to

add highly specialised hardware accellerators, satisfying the requirements of

cryptographic components involved, to the system.

The first approach seems to be very easy and feasable in general. This is true

as long as we are just thinking of banal computer systems. The second ap-

proach seems to be far more complex but, as will be explained in detail later,

is very significant if we think of systems with limited ressources of computing

power and/or space, eg PDAs, mobile phones, or onboard units. The main

part of this report will explain the procedure of accellerating an embedded

cryptographic system by specially designed hardware from the evaluation of

the involved algorithms downto designing the accelerator using VHDL 1.

1Very large scale integration Hardware Description Language
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1.1 Cryptography 1 INTRODUCTION

1.1 Cryptography

The word cryptography comes from the Greek kryptos, meaning hidden, and

graphia, meaning writing. Cryptography, thus, literally means the art of se-

cret writing. The art of hiding information therefore is not as modern as one

might guess but is known to be some thousand years old.

Cryptography provides, amongst others, means of hiding and recovering in-

formation called encryption schemes. In general an encryption scheme con-

sists of a set of encryption and decryption operations each associated with a

key, which is supposed to be kept secret.

Upon the relation between the two keys, an encryption scheme can be related

to either main category of encryption: symmetric or public key encryption

(cf [1]).

1.1.1 Symmetric encryption

An encryption scheme is related to symmetric cryptography, when it is com-

putationally easy to discover the second key, knowing one of them. In most

practical cases the two keys will be identical, which is illustrated by the word

symmetric, the shared key is reffered to as secret key (cf [1]).

One advantage of schemes related to this category is their perfomance in

terms of throughput, as these schemes mostly use boolean operations, per-

mutations and shift operations on bit or byte level. A disadvantage is, that

all parties involved in the communication process have to share a common

secret, the secret key. This implicates more difficulties, than might be ob-

vious at first sight. First of all it means, that one can only communicate

securely with another party, if the two have agreed or shared a symmetric

key before. The actual act of sharing or agreeing on a key might be difficult,

if you consider both parties on different continents for example, having in

mind, that the key must not be diclosed to others during transfer.

A common image to explain the idea of symmetric encryption is a safe.

All participating parties own an identic copy of the key to the safe, so every

party can open the safe to either put something inside (encryption), or to
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2 RSA

get something out (decryption).

1.1.2 Public key encryption

An encryption scheme is said to be public key encryption, when it is im-

possible to compute the second key, knowing one of them. In this context

the encryption operation, using the encryption key, can be regarded as a

trapdoor one way function, with the decryption key being the trapdoor, that

allows easy message recovery. Message recovery without knowledge of the

decryption key is computationally infeasible (cf [1]).

A major advantage of a scheme belonging to this category is the fact, that

one cannot compute the decryption key knowing only the encryption key.

This allows distribution of a party’s encryption key over insecure channels,

which simplifies the process of key distribution. Therefore the encryption

key is referred to as public key while the decryption key is called private key.

One of the disadvantages of public key encryption is its bad performance in

terms of throughput. In order to keep the decryption key secure, even though

the encryption key is available in public, the encryption scheme needs to be

more complex than a symmetric one. This denotes that the operations being

performed become more complex and time consuming.

To get an idea of Public Key Encryption, one can imagine a simple mail-

box. Anyone can put a letter into the mailbox (public encryption key), but

only the owner of the mailbox’s key can get the letters out of it (private

decryption key).

2 RSA

The RSA cryptosystem is by far the most used public key encryption sys-

tem. Its name is an abbreviation of the names of R. Rivest, A. Shamir and

L. Adleman, who published it in 1978 [8]. This section provides a short intro-

duction to the underlying mathematical principles, a detailled look at RSA

encryption and decryption operations, followed by a short analysis and some
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2.1 Math background 2 RSA

comments.

2.1 Math background

The security of public key encryption schemes relies on number theoretic

problems which are assumed to be hard, eg factoring and computing disrete

logarithms in finite fields. This introduction to number theory and mod-

ular arithmetic or finite fields follows [1], but does not provide a complete

overview. The author refers to [1] for further reading.

An integer p larger than 1 is called a prime number if its only divisors

are 1 and p, eg p = 2, 3, 5, 7, 11, 13... . There exists an infinite set of prime

numbers and there are several well known algorithms of generating prime

numbers.

Two integers a and b are called relatively prime, if their greatest common

divisor is 1, eg 3 and 4 are relatively prime. Prime numbers play an impor-

tant role in public key encryption as will be seen later on.

Although most people would say they do not know modular arithmetic

or modular reduction they use it in everday life. Modular reduction means

that the set of integer numbers available is limited, the limit is set by the so

called modulus, denoted by n. Modular arithmetic with the modulus being 5

means, that the set of available numbers consists of {0, 1, 2, 3, 4}. Any num-

ber bigger than or equal to the modulus has to be reduced by the modulus

by subtraction until it equals a number within the set of available numbers,

this operation is called modular reduction.

Modular addition is defined by an ordinary addition followed by a modular

reduction operation in order to keep the result within the set of available

numbers. Let n = 5, a = 3 and b = 2 then a + b ≡ 0 (mod n) since

a + b = 5 and 5 ≡ 0 (mod n). People often use modular reduction when

talking about time as 21:00 is reffered to as 9:00, which is nothing else than

21 ≡ 9 (mod 12).

In public key cryptography modular multiplication, exponentiation and in-
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2.2 Encryption / Decryption algorithm 2 RSA

version are the most important operations.

Modular multiplication works exactly the same way as addition: it is an or-

dinary multiplication followed by a modular reduction operation. a · b ≡ 1

(mod 5) since a · b = 6 and 6 ≡ 1 (mod 5). Modular exponentiation works

slightly different, it can be computed as a series of mulitplications followed

by a modular reduction operation. ab (mod n) = a · a · a ... (mod n). In

practice the modular reduction operation will be performed after each mul-

tiplication to keep the intermediate results as small as possible in order to

save memory and to avoid unnecessary big inputs to the next multiplication.

ab (mod n) ≡ (((a · a) (mod n)) · a (mod n) ... ).

The multiplicative inverse of a (mod n) is a number within the set of avail-

able integers satisfying a ·b ≡ 1 (mod n). If b exists, it is unique and denoted

by b = a−1 (mod n). b exists, if a and n are relatively prime. In the ex-

ample, a is invertible and the multiplicative inverse of a modulo n is b, as

3 · 2 = 6 ≡ 1 (mod 5). The well known Extended Euclidean Algorithm can

be used to compute the greatest common divisor of a and n. If it is 1, the

algorithm computes the mulitplicative inverse of a at the same time. The

quantity of numbers within the set of numbers defined by the modulus p for

which a multiplicative inverse exists is denoted by φ(p), which will be the

quantity of numbers being relatively prime to p. If p is prime, φ(p) = p− 1,

otherwise Euler’s φ-function can be used to compute φ(p). The author refers

to [1] for further reading on groups, rings, and finite fields.

2.2 Encryption / Decryption algorithm

In order to set up an RSA encryption scheme, several numbers have to be

either randomly chosen or computed. Every party that wants to participate

in RSA secured communication has to set up an own scheme according to

the steps shown in table 1.

In order to encrypt a message m for Alice, Bob should follow the steps

shown in table 2.

If Alice wants to read the received message, she should decrypt the cipher-

text according to the steps in table 3.

10



2.2 Encryption / Decryption algorithm 2 RSA

Table 1: RSA public key encryption - key generation algorithm

• Generate two large random (and distinct) primes p and q, each roughly
the same size.

• Compute n = pq and φ = (p− 1)(q − 1).

• Select a random integer e, 1 < e < φ, such that gcd(e; φ) = 1.

• Use the Extended Euclidean Algorithm to compute the unique integer
d, 1 < d < φ, such that ed ≡ 1 (mod φ).

• The public key is (n, e), the private key is d. [1]

Table 2: RSA public key encryption algorithm

• Obtain Alice’s authentic public key (n, e).

• Represent the message as an integer m in the interval [0, n - 1].

• Compute c = me (mod n).

• Send the ciphertext c to A. [1]

Table 3: RSA public key decryption algorithm

• Use the private key d to recover m = cd (mod n).

The RSA encryption scheme works, as m = cd (mod n) = med
(mod n) =

med (mod n) = m1 (mod n). A detailed proof that the scheme works can

be found in ([1], p. 286).

2.2.1 Analysis and comments

According to ([1], p. 287) the security of RSA relies on the so called RSA

problem, that is to recover the message m of a ciphertext c knowing only
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3 RSA IN SOFTWARE

public information, the modulus n and the encryption exponent e. The prob-

lem’s core turns out to be computing the decryption exponent d knowing only

n and e. This problem is well studied and is - assuming the RSA scheme

is secure - ought to be computationally equivalent to factoring n, which is

known to be hard, if n is of sufficient size.

There are two main reasons for RSA’s poor performance in terms of through-

put. The first one is the fact that large numbers have to be used in order to

achieve a satisfying level of security. The other one is the repeated use of the

modular reduction operation, which is very costly on general purpose com-

puters. Fortunately there are modular multiplication algorithms that avoid

the costly reduction operation. These will be introduced in section 4.

3 RSA in Software

This section deals with a look at RSA’s performance when implemented in

software only. Advantages, disadvantages and workarounds for the latter

ones will be shown.

RSA’s performance when implemented in software depends on the pro-

cessor being used. As mentioned before, the modular reduction operation

is very costly and as general purpose computers normally do not have spe-

cial hardware to meet this task, the performance of RSA in this case mostly

depends on the processors performance on the reduction operation.

3.1 Advantages and disadvantages

Implementation of RSA always involves the need to find a way how to deal

with multi precision integers. Recent sizes for RSA parameters are 1024

bits and above. One advantage of a software-only implementation is, that a

change of the size of parameters involves only little changes to the code, if

the possible need for this change was well considered during implementation

phase, so that the size of operands can be changed easily.

Another advantage of a pure software solution is simply the fact, that it is
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3.2 RSA acceleration 3 RSA IN SOFTWARE

very easy to change RSA parameters as this only involves editing a few lines

of code. The need for this might arrise by a disclosed decryption key for

example.

When RSA is implemented in software only, there is always the risk of

disclosure of valuable information, especially meaning the decryption key, as

the software will not be run in specially secured environments in general.

Reading the memory of the system the implementation is running on is one

approch to gather valuable information. Another approach is to decompile

the binary RSA program file and to read the decryption key out of the source

code. There are of course means to counteract these approaches, which reach

from secure software environments to access controlled and safely designed

computer centres.

The main disadvantage of a RSA implementation in software has been

mentioned earlier already. The repeated use of the costly modular reduction

operation after each multiplication while performing the modular exponen-

tiation, which is the main RSA operation, makes up the bottleneck. Ways

to cope with the costly operation will be discussed in the next section.

3.2 RSA acceleration

The problem of the costly modular reduction operation needed in RSA ex-

ponentiations has been introduced and discussed in previous sections. This

section will introduce three approaches to counteract the deceleration.

The first approach applies the idea of designing special purpose hardware.

Trial division of a number by the modulus is one way of performing modu-

lar reduction and a piece of hardware especially designed to perform multi

precision modular division will perform far better than a general purpose

processor. Kaihara and Takagi propose a hardware algorithm capable of

performing the modular division operation in O(n) cycles, where n is the

bitlength of the operands [2].

13



3.2 RSA acceleration 3 RSA IN SOFTWARE

The second approach is well known as the Chinese Remainder Theorem

(see table 4).

Table 4: Chinese Remainder Theorem

If the integers n1, n2 . . .nk are pairwise relatively prime, then the system of
simultaneous congruences

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

has a unique solution modulo n = n1 ∗ n2 ... nk ([1], p. 68).

The general idea of applying the Chinese Remainder Theorem to RSA is to

solve a system of simultaneous congruences with operands of small size in-

stead of finding the solution of one equation with large operands.

The Chinese Remainder Theorem can be applied to RSA exponentiation, if

the numbers p and q, used to compute the modulus n, are known. This will

most likely be the case for the party that set up the RSA encryption scheme

only, hence in practice the Chinese Remainder Theorem will only be applied

to RSA decryption.

Recall that the message m can be obtained by computing m = cd (mod n).

As n = p · q, while p and q are prime, the Chinese Remainder Theorem can

be applied, leading to the following system of congruences:

mp ≡ c
dp
p (mod p), where cp ≡ c (mod p) and dp ≡ d (mod p− 1)

mq ≡ c
dq
q (mod q), where cq ≡ c (mod q) and dq ≡ d (mod q − 1)

Finally m can be computed as m ≡ ((mq −mp) · (p−1 (mod q)) (mod q)).

Due to the fact, that the decryption exponents dp and dq are half of the size

of d, the decryption exponentiation is accelerated. Furthermore, the solu-

tions to the two congruences can be computed independently and in parallel,

which means a further speed-up.

Although the Chinese Remainder Theorem can only be applied to the RSA

decryption operation it plays an important role in practical implementations

of RSA.
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4 HARDWARE

The third approach is of a different kind as it does not aim to speed up the

modular reduction operation. Instead it avoids the explicit reduction opera-

tion at all. The core technique involved in this approach is called Montgomery

Reduction [6], which replaces the trial division by the modulus with a series

of additions and divisions by a power of 2. Applications of the Montgomery

Reduction technique in multiplication and exponentiation algorithms will be

introduced in the following sections. For the concern of this report the so

called Montgomery Multiplication Algorithm is very important. It combines

multi-precision multiplication and Montgomery Reduction to compute the

reduction of the product of two integers, as will be shown later on.

In practice, the first approach of the three that were introduced is negli-

gible, as mostly a combination of the latter ones is used as follows. First, the

Chinese Remainder Theorem is applied to reduce the size of the operands.

Each congruence of the system is then computed using the Montgomery Mul-

tiplication Algorithm. Finally, the overall result is computed.

4 Hardware

It is common sense that a piece of hardware designed to provide just one

special function will perform much better than a general purpose processor.

In order to accellerate an implementation of the RSA encryption scheme by

special purpose hardware the first step will be the choice of the functional

module to be realised in hardware.

4.1 Choice of hardware module

As it has been mentioned in previos sections, the main operation within

the RSA encryption scheme is the modular exponentiation. The process of

choosing the hardware module should therefore start with an analysis of this

function. Goal of the analysis is to find the main performance bottleneck in

order to specify the hardware module such way that it will result in maximal
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4.2 The Montgomery Multiplication Algorithm 4 HARDWARE

gain in performance.

An efficient algorithm performing modular exponentiation is the repeated

square-and-multiply algorithm ([1], p. 614). It computes the modular ex-

ponentiation in a series of modular multiplications. As previously shown,

modular multiplication consists of a multiplication operation followed by a

modular reduction operation, which has been proved to be the bottleneck.

In the previous section three approaches to counteract the deceleration have

been introduced. Combined usage of the Chinese Remainder Theorem and

the Montgomery Multiplication Algorithm seems an adequate base to start

from.

The Chinese Remainder Theorem has been introduced already and will not

be discussed furtheron.

4.2 The Montgomery Multiplication Algorithm

The Montgomery Multiplication Algorithm makes use of the so called Mont-

gomery Reduction Technique, therefore it will be introduced in the beginning

of this section, followed by an explanation of the Multiplication Algorithm

itself. Next, its application in the Montgomery Exponentiation Algorithm

will be discussed. Finally, the actually used VHDL implementation will be

looked at.

4.2.1 Montgomery Reduction Technique

”Montgomery reduction is a technique which allows efficient implementation

of modular multiplication without explicitly carrying out the clasical reduc-

tion step” ([1], p. 600).

But before the multiplication is being looked at, the reduction will be ex-

plained (see table 5).

The benefit of using this reduction technique does not become obvious at

this stage, but will, when Montgomery Exponentiation is explained.
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4.2 The Montgomery Multiplication Algorithm 4 HARDWARE

Table 5: Montgomery Reduction Technique

The Montgomery Reduction of T modulo m with respect to R is denoted as
T · R−1 (mod m), where m is a positive integer, R is an integer > m with
gcd(R,m) = 1, and T is an integer satisfying 0 ≤ T < m ·R.
Input : T , R, m
Output: T ·R−1 (mod m)

4.2.2 Montgomery Multiplication Algorithm

Montgomery Multiplication combines Montgomery Reduction with multi-

precision multiplication to compute the Montgomery Reduction of the prod-

uct of two integers as shown in table 6 (cf [1], p. 602).

Table 6: Montgomery Multiplication

Input: m = (mn−1 ... m1m0)b, x = (xn−1 ... x1x0)b, y = (yn−1 ... y1y0)b with
0 ≤ x, y < m, R = bn with gcd(m,b) = 1, and m’ = −m−1 (mod b).
Output: x · y ·R−1 (mod m).

Still, the benefit of using the Montgomery technique is innoticeable, but it

will become obvious once multiple multiplications are considered, as in the

next subsection.

4.2.3 Montgomery Exponentiation Algorithm

The Montgomery Exponentiation (see table 7) unites all neccessary steps

to perform modular exponentiatin, eg m ≡ cd (mod n) in RSA, using the

Montgomery Multiplication Algorithm. These are

• mapping the operands into the Montgomery Domain 2

2By multiplying with a specially formed number, it is assured that the multiplication’s
result stays within the Montgomery Domain which means in practice that the factor R
will only appear in its first power.
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4.2 The Montgomery Multiplication Algorithm 4 HARDWARE

• performing the exponentiation operation using the repeated square-

and-multiply algorithm

• using the Montgomery Multiplication Algorithm to perform the multi-

plication operation

• mapping the result back into the ordinary integer domain.

Table 7: Montgomery Exponentiation

Input: modulus m with bitlength l, R = 2l, m′ = −m−1 (mod 2), exponent
e in binary representation of length t, base x satisfying 1 ≤ x < m.
Note that the base x always satisfies 1 ≤ x < m in a RSA encryption
scheme. Output: xe (mod m)

Table 8 shows the Montgomery Exponentiation Algorithm in detail.

Table 8: Montgomery Exponentiation Algorithm

• x̃ = MontMult(x,R2 (mod m)), A = R (mod m)

• For i from t to 0 do:

A = MontMult(A,A)

If ei = 1 then A = MontMult(A, x̃)

• A = MontMult(A, 1)

• return(A)

Now the benefit of using the Montgomery Technique for multiple multi-

plications becomes obvious. Consider the following computation, first done

without mapping of the operands, then with mapping:

w · x · y · z (mod m)

1. compute w · x (mod m) = w · x ·R−1 (mod m)

18



4.2 The Montgomery Multiplication Algorithm 4 HARDWARE

2. compute y · z (mod m) = y · z ·R−1 (mod m)

3. compute w · x · y · z (mod m) = w · x · y · z ·R−2 (mod m)

As it can be seen the power of the factor R will decrease by each multi-

plication performed. If the operands are mapped into Montgomery Domain

before multiplication, the product will be an element of the Montgomery

Domain as well (R in its first power), as shown below. Once the multipli-

cation is done, the result can be mapped to ordinary integer domain by a

Montgomery Multiplication by 1.

1. mapping operands of first multiplication into Montgomery Domain:

w̃ = w ·R (mod m), ỹ = x ·R (mod m)

2. compute w̃ ·x̃ (mod m) = w ·R·x·R·R−1 (mod m) = w ·x·R (mod m)

3. mapping operands of second multiplication into Montgomery domain:

ỹ = y ·R (mod m), z̃ = z ·R (mod m)

4. compute ỹ · z̃ (mod m) = y ·R ·z ·R ·R−1 (mod m) = y ·z ·R (mod m)

5. compute (w̃ · x̃) · (ỹ · z̃) (mod m) = (w ·x ·R) · (y · z ·R) ·R−1 (mod m)

= w · x · y · z ·R (mod m)

6. mapping the result back to ordinary integer domain:

w · x · y · z ·R · 1 (mod m) = w · x · y · z ·R ·R−1 (mod m) = w · x · y · z
(mod m)

4.2.4 VHDL implementation of a Montgomery Multiplier

The implementation of the Montgomery Multiplier used during this project

is part of C. McIvor’s Ph.D. thesis [3] which presents implementations for

128-bit and 256-bit multiplication. As these would not fit on the employed

FPGA chip and for reasons of simplicity, a modified 64-bit multiplier imple-

mentation is set up.
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The following paragraph corresponds to ([3], pp. 71-73). In order to

perform multiplication of two 64-bit numbers, a 64x64-bit multiplier is cre-

ated using several 16x16-bit unsigned multipliers. Figure 1 shows how to use

16x16-bit multipliers to develop multipliers for larger bitlenghts.

Figure 1: Cascading 16x16-bit multipliers

The larger multipliers are created in a systematic way. The 32x32-bit mul-

tiplier, for example, uses 4 16x16-bit multipliers to compute partial products,

which are then added to obtain the 64-bit product. This process can be re-

peated to develop larger multipliers, as shown in figure 1. The multiplier of

the desired bitlength can then be used to implement the Montgomery Mul-
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tiplier.

The present VHDL implementation of a 64-bit Montgomery Multiplier

consists of 5 VHDL-files:

mult 16bits.vhd, mult 32bits.vhd and mult 64bits.vhd are used to create a

64x64-bit multiplier, following the process explained above. mult 16bits.vhd

implements a 16x16-bit multiplier, mult 32bits.vhd instantiates four of these

to implement a 32x32bit multiplier and mult 64bits.vhd finally instantiates

four of them to implement a 64x64-bit multiplier.

main mult counter.vhd implements a counter that, once started by an exter-

nal signal, will start at ’00001’2 and end at ’10100’2, resetting itself to the

start value. The actual counter state is used at several locations to coordi-

nate the multiplication process.

main mult.vhd instantiates one counter and one 64-bit multiplier. Along

with a clock and a reset signal, which are passed to its components, it reads

5 more input and writes two more output signals. These are as follows:

load data is passed through to the counter, starting it as the signal goes low

a operand one of the factors (a) to compute the product (64bits)

b operand one of the factors (b) to compute the product (64bits)

n modulus the modulus (m) (64bits)

nprime m′ = −m−1 (mod b) as explained in 4.2.2 (64bits)

mod ab the Montgomery Reduction of a operand · b operand (64bits)

ready output signal to indicate that the multiplication process has finished.

Once the load data signal is set to low externally, the whole process

begins, as the counter is being started. During the first six clock cycles the

64-bit multiplier is used to compute a operand · b operand. The next six

clock cycles use the 64-bit multiplier to compute the product of n prime

and the 32 least significant bits of the previous computation. In the next

period of six cycles the result of the previous computation is multiplied by

n modulus. Overall, these three multiplications are done in 18 clock cycles.
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During the 19th clock cycle, the 64 most significant bits of the sum of the

results of multiplication one and three are stored to be written to the output

in the next cycle. If the stored value is smaller than n modulus, it will be

written to mod ab immediately, otherwise it will be reduced by n modulus

before that. In addition to this, ready is set to high in cycle 20, too.

step clock cycle(s) computation

I 1 - 6 a operand · b operand

II 7 - 12 n prime · 32 LSB of previous result

III 13 - 18 n modulus · result of previous result

IV 19 64 MSB of I + III are stored

V 20 mod ab = result of IV (mod m)
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5 DEVELOPMENT BOARD

5 AVNET Xilinx VirtexII Pro Development

Board

The AVNET Xilinx VirtexII Pro Development Board (Figure 2) used in this

project has the following features (cf [4], p. 4):

• Xilinx VirtexII Pro Chip FPGA: XC2VP7-FF896 and 1 PowerPC 405

Microprocessor

• High-speed Serial Communication

– Eight SMA connectors (TX/RX pairs for two Rocket I/Os)

– Board configurable loop-back for two Rocket I/Os

– Pads for four additional Rocket I/Os

• Board I/O Connectors

– Two 140-pin general purpose I/O expansion connectors (AvBus)

– Up to 30 LVDS pairs

– 50 Pin 0.1´´ Header

• Memory: Micron DDR SDRAM (64MB)

• Communication: RS-232 serial ports

• Power

– 22.5 Watt AC/DC +5.0V power supply

– Texas Instruments 3.3V 6A Module

– National Linear regulators

• Configuration

– Two Xilinx XC18V04-VQ44 PROMs

– Parallel IV Cable support for JTAG

– Fly-wire support for Parallel-III and MultiLINK
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Figure 2: AVNET Xilinx VirtexII Pro Development Board

This project does only make use of the Xilinx VirtexII Pro chip, which will

be introduced in the next section. The other components will not be looked

at in detail.

5.1 Xilinx VirtexII Pro Chip

Figure 3 provides an overview of the VirtexII Pro architecture. The main

Figure 3: Xilinx VirtexII Pro architecture [3]

processing units are Configurable Logic Blocks (CLBs), which are spread
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over the face of the device in an rectangular shape. One CLB consists of

four slices, which each contain two Look-Up Tables (LUTs), two flip-flops

and fast carry look-ahead logic. Between each two columns of CLBs, there

is a column of dedicated 18x18-bit multiplier blocks and Block Select Ram.

The outside of the CLB array is surrounded by input/output pins. A Virtex

Pro device may contain up to four PowerPC Processors, the one used during

this project contains one PowerPC Processor.

5.2 Tools involved: XPS

The entire process of wiring dedicated hardware on to the PowerPC Processor

and using it as an accellerator was completed using only the Xilinx Platform

Studio (XPS, Version 6.2i). It provides all necessary tools for the creation

of a basic system, development of user cores in VHDL and development of

software in C language as well as all necessary compilers and tools to finally

programm the FPGA and transferring the compiled C programm into the

memory. The worklow will mostly be like this:

• create a basic system using the base system wizard (Processor, Busses,

JTAG)

• import user cores into the system

• connect user core pins to the system

• develop C application to use with processor

• compile hardware code into a bitstream for programming the CLBs

• compile C source code

• update bitstream, so it contains the compiled application code for pro-

gramming memory units

• download bitstream into the Xilinx chip
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6 Wiring FPGA to PowerPC: a Roadmap

This section desribes how the user core is connected to the PowerPC in

order to allow interaction. An important goal is to design this connection

as being efficient and easy to use. Different methods of connecting FPGA

and PowerPC will be introduced and discussed in regards of this design

goal. Next, all neccessary steps to use the method meeting this design goal

are explained in detail as well as their realization in practice. Finally an

overview of the entire system is given and its general function is explained.

The VHDL code of the user core can be found in the appendix.

6.1 Starting from “Hello World”

The process of creating the connection between the FPGA and the PowerPC

starts with a “Hello World” example, provided by AVNET in their example

projects shipped together with the board. This example system is ought to

be as simple as possible, meaning to use as little components as possible, and

consists of the following:

PowerPC 405 is a RISC microprocessor [18].

Processor Local Bus is a high-performance synchronous bus designed for

connection of processors to high-performance peripheral devices ([9],

[10]).

On Chip Peripheral Bus is one element of IBM’s CoreConnect architec-

ture and is a general-purpose synchronous bus designed for easy con-

nection of on-chip peripheral devices [11].

PLB 2 OPB Bridge The On-Chip Peripheral Bus (OPB) to Processor Lo-

cal Bus (PLB) Bridge module translates OPB transactions into PLB

transactions. It functions as a slave on the OPB side and as a master

on the PLB side [12].

OPB UARTLite is a full duplex UART interfacing to the OPB [13].
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PLB BRAM IF Controler is the interface between the PLB and the bram block

peripheral [14].

BRAM Block is a parameterizable memory module that attaches to a va-

riety of BRAM Interface Controllers [15].

Proc Sys Rst allows the customer to tailor the design to suit their appli-

cation by setting certain parameters to enable/disable features [16].

JTAGPPC Controller allows the PowerPC in a Virtex-II Pro to be con-

nected to the JTAG chain of the FPGA [17].

This project uses the PowerPC 405 and the OPB UART Lite components

directly. All other components involved are either neccessary to connect those

two or to get the entire system up und running.

Figure 4 provides an overview of the system that is used. The PowerPC

Figure 4: Screenshot - system layout of “Hello World” example by AVNET

405 is used, to send the string ”Hello World” to the UART Lite component,

which cannot be connected to the PowerPC 405 straight ahead. Two busses
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can be connected to the PPC: the PLB, used in this example, and the On

Chip Memory (OCM) Bus. The UART component can only be connected to

the OPB, which can be interfaced through the PLB. So the PLB is connected

to the PowerPC 405, the PLB2OPB bridge is used to connect PLB and OPB

and finally the UART component is connected to the OPB. The UART sends

the string “Hello World” to the RS232 socket on the board.

The BRAM Block is used to store the compiled C application so that the

PowerPC 405 can read and execute the instructions later on. To connect the

BRAM Block to the system, the PLB BRAM IF Controller is needed.

All other components will not be looked at in detail as they have to be part

of every system in order to be able to communicate with the FPGA and to

reset the system.

In the last paragraph, all three available bus systems of the Virtex de-

vice, PLB, OPB, and OCM bus, have been mentioned. This paragraph will

provide a short analysis of these and lead to a choice of the bus sytem, that

will be used to connect the user core to the system.

The Processor Local Bus is 64-bit wide, but 32-bit wide slave compatible,

and has separate address, write and read data path units that can be arbi-

trated in only 3 cycles. It can be used by up to 16 masters and 16 slaves

and is connected directly to the PowerPC 405 [10]. Therefore it seems to be

designed to be used as a quickly accessible and high-bandwidth capable bus.

The On-chip Peripheral Bus is 32-bits wide and can be used by up to 16

masters and an unlimited number of clients (up to hardware ressources). As

it cannot be connected to the PowerPC 405, it needs to be combined with

a processor-connected bus. This will mostly be done using the PLB2OPB

bridge, as in the “Hello World” example. Using that bridge, the OPB be-

comes a slave of the PLB and the bridge becomes a master of the OPB.

Therefore it seems, that this bus is ought to connect low bandwidth compo-

nents to the system, that do not need quick processor access.

The On Chip Memory bus consists of the Data Side On Chip Memory Bus

(DSOCM) and the Instruction Side On Chip Memory Bus (ISOCM). OCM in

general can be used to provide Memory access to the processor. In the present
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case it is rather neccessary to provide memory to store pure data than proces-

sor instructions, that is why only the DSOCM will be looked at in detail. ”A

typical usage is to connect PowerPC405 and DSBRAM IF CNTRL modules

(both can be found in the EDK Infrastructure Library) to the DSOCM V10

Bus” [19]. The OCM can only be used to access On Chip Memory, therefore

no arbitration is needed at all. Furthermore, the connected BRAM Block

can be accessed by the processor as well as by the FPGA [18]. This seems to

meet the requirements very well, so the DSOCM and the anticipated Block

RAM will be used for the communication between processor and user core.

6.2 Using the OCM-Controller: DSOCM

Figure 5 provides an overview of a usage proposal by Xilinx, that is obeyed in

this project. In order to access the Block RAM that is located in the FPGA

chip from the processor using the DSOCM bus, three components have to be

added to the system: the DSOCM bus, an interface between DSOCM bus

and BRAM Block, and the BRAM Block itself.

Figure 5: Using DSOCM V10 and EDK Infrastructure Lib in a PowerPC
System. [19]
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The bus itself is fairly simple, as it only multiplexes all present signals.

The PowerPC 405 OCM Controller serves as a dedicated interface between

the block RAMs in the FPGA and OCM signals available on the embedded

PPC405 core. It is capable of addressing up to 16MB of DSBRAM and reads

and writes through separate 32-bit read and write busses. A load instruction

from the processor will result in the address being passed through to the

associated BRAM Block by the controller, on a store instruction, the address

and the data to be stored will be passed on. Several controller attributes

(observable in Figure 6), can be set in specific registers using system software,

details can be found in [18]. Figure 6 shows a block diagramm of the DSOCM

controller and essential signals:

Input signals:

BRAMDSOCMCLK clocks the DCM controller

BRAMDSOCMRDDBUS [0:31] 32-bit read data

Output signals:

DSOCMBRAMABUS [8:29] 22-bit read or write address from DSCOM con-

troller to BRAM block; for a write operation, the appropriate write

enable signals need to be set (see DSOCMBRAMBYTEWRITE).

DSOCMBRAMWRDBUS [0:31] 32-bit data to be written

DSOCMBRAMBYTEWRITE [0:3] 4 byte write enable signals allowing byte-

wide write operations

DSOCMBRAMEN needs to be enabled to read from or write to block RAM

DSOCMBUSY optional signal to provide information of block RAM status

to the processor

6.3 Block RAM (BRAM) Block

The BRAM block is a customizable memory module that can be attached to

a variety of BRAM Block controllers. In this project DSBRAM IF CNTRL
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Figure 6: DSOCM Controller Block Diagramm [19]

is used. Memory of the specified size within the range of 2KB up to 128KB

will be provided using 4 to 64 of the dual-ported Block Ram cells spread

over the FPGA chip. Each of the two ports can be connected to independent

BRAM Block controllers, providing great flexibilty, as both ports can be used

simultaneously. Several features of the Block RAM block may be customized

using system software. For customization of Block RAM blocks, further

reading of [15] is recommended.

Figure 7 shows a block diagramm of a dual-ported BRAM block, where

the signals are defined as follows:

Input signals

BRAM Rst A BRAM BRAM Reset, active high

BRAM Clk A BRAM BRAM clock

BRAM EN A BRAM BRAM enable, active high

BRAM WEN A BRAM [0:3] BRAM write enable, 4 bit for enabling byte-wide

writing

BRAM Addr A [0:C PORT AWIDTH-1] BRAM address, bitwidth depends

on amount of memory

BRAM Din A [0:C PORT DWIDTH-1] BRAM data output, referenced

from point of view of the controller, bitwidth defaults to 32
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Figure 7: Block Ram Block Block Diagramm [15]

Output signals

BRAM Dout A [0:C PORT DWIDTH-1] BRAM data input, referenced

from point of view of the controller, bitwidth defaults to 32

The signals on the B Port are defined accordingly, further details can be

found in [15]. Figure 8 shows a DSOCM to BRAM block interface example,

where one controller is connected to Port A of the BRAM block.

6.4 Faults in XPS 6.2i

Several difficulties were experienced while using the DSOCM during the

project. Analysis of the VHDL code created by Xilinx Platform Studio

showed, that the software did not work as expected. Even though the soft-

ware did not report any errors, some of the DSOCM wrapper’s signals were

not properly connected to the PowerPC 405, which prevented the system

of working as supposed (BRAMDSOCMRDDBUS ⇒ open, DSARCVALUE ⇒ open,

DSCNTLVALUE ⇒ open). These signals had to be connected by hand editing
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Figure 8: DSOCM to Block Ram Block Diagramm [18]

sytem master definition files. Furthermore the PowerPC 405 hardware ver-

sion had to be changed to 2.00a in order to be able to assign it as a master of

the DSOCM bus. Sometimes the project file had to be closed an re-opened

to make the software realize changes in system definition files.

6.5 Interfacing BlockRAM on the B-Side

In order to access the BRAM block from the FPGA fabric using Port B,

the user core needs to contain a BRAM Block controller. Its main function

is to provide and handle the seven signals described in section 6.3 (clock,

reset, enable, write enable, address, data in, data out), that are necessary to

control and access the BRAM block.

In this project the BRAM block is only used as a means of data exchange

between processor and FPGA fabric or to be more specific, the BRAM block

is used to transfer the input data to the multiplier and the result back to the

processor. These read and write operations on the BRAM block are highly
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predictable, as the sequence of communication is fixed.

Therefore it seems to be adequate, to implement the controller as a Finite

State Machine. Because every transition of the state machine is predictable

it is deterministic and as the output depends on the present state and the

input, the state machine is classified as a Mealy machine [5].

For reasons of simplicity, the following permanent signal assignments were

made:

BRAM Rst B <= rst; connects the BRAM block reset signal to the system

wide reset

BRAM Clk B <= clk; connects the BRAM block clock signal to the system

clock (100MHz default)

BRAM EN B <= ’1’; enables the BRAM block for operation permanently

The activities of the controller will be limited to either loading data, writ-

ing data or ideling, thus, the state machine has to comprise several different

states, each associated with one of the three activities. For the purpose of us-

ing the Montgomery Multiplier, it is neccessary to pass four values from the

processor to the multiplier: factorA, factorB, modulus, R. After the multi-

plier has completed the computation, the value result needs to be passed

from the FPGA to the processor.

To perform a read operation, a valid address must be assigned to BRAM Addr B.

The 32-bit value stored at that address can then be fetched from BRAM Din B,

see code example I. In order two write a value into the BRAM block, a valid

address must be assinged to BRAM Addr B as well. Furthermore, the value to

be written must be present at BRAM Dout B and the BRAM WEN bit(s) must be

set to high.

As already mentioned in section 4.2.4, the implemented Montgomery Mul-

tiplier uses 64-bit operands. These have to be transferred to and from the

BRAM block in two separate steps, because the DSOCM read and write

busses are only 32-bit wide. VHDL code example II shows how to write a

64-bit value from a 64-bit signal a into the BRAM block starting at address

0x31000100.
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Table 9: VHDL code example I

read write
BRAM_Addr_b <= X"31000100"; BRAM_Addr_b <= X"31000100";

a <= BRAM_Din_B; BRAM_Dout_B <= result;

BRAM_WEN_B <= "1111";

Table 10: VHDL code example II

cycle command
1 BRAM_Addr_B <= X"31000100";

BRAM_Dout_B <= a(31 downto 0);

BRAM_WEN_B <= "1111";

2 BRAM_Addr_B <= X"31000120";

BRAM_Dout_B <= a(63 downto 32);

BRAM_WEN_B <= "1111";

6.6 Further aspects: timing, memory addressing, latch

vs. register, etc.

This section provides further technical details: timing models and memory

address mappings used during the project. Furthermore, details on the im-

plementation style are provided.

Figure 9 shows the data load timing for DSOCM in single-cycle mode, which

is used in this project. It means that the controller on processor-side and

BRAM block run at the same clock speed. It can be observed, that a

read operation needs at least two BRAM block clock cycles to complete.

If BRAM Addr B is assigned with a valid address at the beginning of cycle n,

the value stored at that memory address will be present at BRAM Din B in

the beginning of cycle n+1. Therefore address- and data -bus commands

for loading data from a BRAM block will be offset by one cycle, as follows.

VHDL code example III shows how to read a 64-bit value from the BRAM

block starting at address 0x31000100 into a 64-bit signal a.

Figure 10 shows the data store timing for DSOCM in single cycle mode.

35



6.6 Further aspects 6 WIRING FPGA TO POWERPC

Figure 9: Data Load Timing in single cycle mode [18]

Table 11: VHDL code example III

cycle command comment
1 BRAM_Addr_B <= X"31000100";

2 BRAM_Addr_B <= X"31000120";

BRAM_Dout_B <= a(31 downto 0); reads data from address, set in cycle 1
3 BRAM_Dout_B <= a(63 downto 32); reads data from address, set in cycle 2

Note that a data store operation can be completed in two BRAM block clock

cycles. If BRAM Addr B is assigned with a valid address at the beginning of

cycle n, the 32-bit value present at BRAM Dout B at the beginning of cycle n

will be stored in the BRAM block in cycle n+1. The next store operation

must not start before the beginning of cycle n+2.

During this project, the amount of block RAM to be used was set to

8KB. This is far more memory than actually needed to exchange the 64-bit

operands, but it would be well dimensioned, if it comes to 1024-bit operands.

The 8KB were mapped into processor address space from 0x31000000 to

0x31001fff and used according to the following tableau:
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Figure 10: Data Store Timing in single cycle mode [18]

address value address value

0000 A1 0020 A2

0040 B1 0060 B2

0080 MOD1 00A0 MOD2

00C0 PRIME1 00E0 PRIME2

0100 RESULT1 0120 RESULT2

03E0 CTRL

Note that all memory adresses are prefixed by 0x3100. The 64-bit val-

ues A, B, MOD, PRIME and RESULT are gained by a merge of A1, A2

. . . RESULT1, RESULT2 32-bit values, respectively.

The 32-bit word CTRL is used to communicate processor and FPGA state to

each other.

CTRL = 0x00000000 processor active, FPGA inactive

CTRL = 0x00000001 processor inactive, FPGA multiplying

CTRL = 0x00000002 processor active, FPGA done

Another important matter of fact is, that VHDL signal values should only be

changed by clocked processes in order to actually use clocked registers rather

than latches, which would be used if the process was not clocked.
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6.7 The final hardware design

In this section the final hardware implementation is introduced. To ease

understanding certain design decisions, several graphics are used.

Figure 11 introduces the concept of the deterministic Mealy state machine

as it is implemented. Figure 12 shows the three main functional blocks of

Figure 11: Deterministic Mealy state machine

the implementation, their ports, internal signals, systemwide signals, and

indicates their coa-ction.

Figure 13 gives an overview of the entire hardware system implemented

in this project.

6.8 VHDL code

The VHDL code implementing the controller Finite State Machine is printed

in appendix A. Appendix B contains the VHDL code implementing the 64-bit

Montgomery Multiplier [3].
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Figure 12: Model of functional blocks’ co-action

7 Processor Application

The main part of this report deals with the implementation of a hardware

multiplier and its interface to the PowerPC 405, although the report is titled

Hardware-Software CoDesign: a case study on an accelerated implementation

of RSA. This is due to the fact that, as explained in sections 3 und 4, only the

part that makes up the bottleneck in RSA encryption is put into hardware.

The RSA Framework remains in software, is written in C language, and

cross-compiled for the target processor within the Xilinx Platform Studio

Software. The source code developed in this project is printed in appendix

C.

8 Results

The following is a performance estimation of the hardware accellerator.

The 64-bit Montgomery multiplier computes the result within 20 clock cy-
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Figure 13: Screenshot - system hardware layout

cles, where the clock speed is not limited up to 100 MHz (default board clock

speed).

The designed interface needs ten clock cycles to read all operands into the

BRAM block and another four clock cycles, to write the result into the BRAM

block after multiplication.

In total, the entire interfaced Montgomery multiplier needs 34 clock cycles to

complete one multiplication operation, which equals 340ns per multiplication

or 2.94 million multiplications per second at 100MHz clock speed.

Assuming that the 64-bit RSA encryption exponent consists of as many

ones as zeros, 96 64-bit multiplications have to be computed. This can be

done in 3264 clock cycles which equals 32.64 µs per exponentiation or 30637

exponentiations per second at 100 MHz.

Note that additional time for processor operations has been neglected.
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In section 3.1 it was mentioned, that the main disadvantage of a pure

software implementation of RSA is the costly modular reduction operation

which decelerates the performance dramatically.

In the course of this report one way to counteract this fact has been presented

and shown to be efficient. By moving computationally intensive operators

into hardware the performance of an application can normally be speeded up

by several hundred percent. In this project not only the modular reduction

operation is moved into hardware, but the entire modular multiplication op-

eration. This is done due to the fact that the Montgomery Multiplier is the

best hardware architecture known, so far, to perform modular multiplication

and that moving the entire multiplication instead of only the reduction op-

eration results in a further speed-up.

The Montgomery Multiplier and the interface that is needed to wire it to

the main system, created by the Xilinx Platform Studio software, are de-

signed in VHDL and implemented on a Xilinx VirtexII pro FPGA. The RSA

Framework application remains in software and is run on the Power PC 405

microprocessor which is located within the same FPGA chip.
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A VHDL Code implemeting the controller

Finite State Machine
-------------------------------------------------------------------------------

-- Controller for user cores connected to OCM via B-side of Block RAM

-- Benedikt Gierlichs, Ruhr-Universität Bochum

-- Institute for electronics, communications, and information technology

-- Queen’s University Belfast

-------------------------------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

-------------------------------------------------------------------------------

-- Port Declarations

-------------------------------------------------------------------------------

-- Definition of Generics:

-- C_MEMSIZE -- Memory Size

-- C_PORT_DWIDTH -- Data bus width

-- C_PORT_AWIDTH -- Address bus width

-- C_NUM_WE -- Number of write enables

-- C_FAMILY -- Target FPGA architecture

--

-- Definition of Ports:

-- BRAM Port B

-- BRAM_Rst -- BRAM Port B reset

-- BRAM_Clk -- BRAM Port B clock

-- BRAM_EN -- BRAM Port B enable

-- BRAM_WEN -- BRAM Port B write enable

-- BRAM_Addr -- BRAM Port B address

-- BRAM_Din -- BRAM Port B data in

-- BRAM_Dout -- BRAM Port B data out

-- clk -- System Clock

-- rst -- Reset

-------------------------------------------------------------------------------

entity controler is

generic

(

C_MEMSIZE : integer := 2048;

C_PORT_DWIDTH : integer := 32;

C_PORT_AWIDTH : integer := 32;

C_NUM_WE : integer := 4;

C_FAMILY : string := "virtex2"

);

port
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(

BRAM_Rst_B : out std_logic;

BRAM_Clk_B : out std_logic;

BRAM_EN_B : out std_logic;

BRAM_WEN_B : out std_logic_vector(0 to C_NUM_WE-1);

BRAM_Addr_B : out std_logic_vector(0 to C_PORT_AWIDTH-1);

BRAM_Din_B : in std_logic_vector(0 to C_PORT_DWIDTH-1);

BRAM_Dout_B : out std_logic_vector(0 to C_PORT_DWIDTH-1);

clk : in std_logic;

rst : in std_logic

);

end entity controler;

architecture dfl of controler is

-------------------------------------------------------------------------------

-- Signals

-------------------------------------------------------------------------------

signal s_a_operand :std_logic_vector(63 downto 0);

signal s_b_operand :std_logic_vector(63 downto 0);

signal s_n_modulus :std_logic_vector(63 downto 0);

signal s_n_prime :std_logic_vector(63 downto 0);

signal s_load_data :std_logic;

signal s_ready_mult :std_logic;

signal s_result :std_logic_vector(63 downto 0);

signal clock2 :std_logic;

signal cnt4clk :std_logic_vector(3 downto 0);

-------------------------------------------------------------------------------

-------------------------------------------------------------------------------

-- FSM stuff

-------------------------------------------------------------------------------

type fsm_state is (IDLE, START, LOAD_A1, LOAD_A2, LOAD_B1, LOAD_B2, LOAD_MOD1,

LOAD_MOD2, LOAD_PRIME1, LOAD_PRIME2, WAIT_FOR_USER_CORE,

WRITE_1, WRITE_2, SET_DONE, DONE);

signal state, next_state : fsm_state;

-------------------------------------------------------------------------------

-------------------------------------------------------------------------------

--Component Declaration

-------------------------------------------------------------------------------

component main_mult is

port
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(

clk :in std_logic;

reset :in std_logic;

load_data :in std_logic;

a_operand :in std_logic_vector(63 downto 0);

b_operand :in std_logic_vector(63 downto 0);

n_modulus :in std_logic_vector(63 downto 0);

n_prime :in std_logic_vector(63 downto 0);

ready :out std_logic;

mod_ab :out std_logic_vector(63 downto 0)

);

end component main_mult;

-------------------------------------------------------------------------------

begin

BRAM_Rst_B <= rst;

BRAM_Clk_B <= clk;

BRAM_EN_B <= ’1’;

-------------------------------------------------------------------------------

--Component Instantiation

-------------------------------------------------------------------------------

Main_Mult_1:main_mult port map(clk => clk,

reset => rst,

load_data => s_load_data,

a_operand => s_a_operand,

b_operand => s_b_operand,

n_modulus => s_n_modulus,

n_prime => s_n_prime,

ready => s_ready_mult,

mod_ab => s_result);

-------------------------------------------------------------------------------

-- FSM init

-------------------------------------------------------------------------------

state_change: process(clk, rst)

begin

IF ( rst = ’1’) THEN

state <= IDLE;

ELSIF (clk’event and clk = ’1’) THEN

state <= next_state;

END IF;

end process;
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-------------------------------------------------------------------------------

state_compute : process(state, BRAM_Din_B, s_result, s_ready_mult)

begin

-- Default values--

next_state <= IDLE;

BRAM_WEN_B <= "0000";

BRAM_Addr_B <= X"310003E0";

BRAM_Dout_B <= X"00000000";

-- /Default values--

case state is

when IDLE =>

IF ( BRAM_Din_B(31) = ’1’ ) THEN

BRAM_WEN_B <= "1111"; -- this sets control

next_state <= START; -- bit back to 0

END IF;

-------------------------------------------------------------------------------

-- to read from block RAM the address must be set one cycle

-- before the actual read operation, writing to block RAM is a

-- one cycle operation

-------------------------------------------------------------------------------

when START =>

BRAM_Addr_B <= X"31000000";

next_state <= Load_A1;

when LOAD_A1 =>

BRAM_Addr_B <= X"31000020";

next_state <= LOAD_A2;

when LOAD_A2 =>

BRAM_Addr_B <= X"31000040";

next_state <= LOAD_B1;

when LOAD_B1 =>

BRAM_Addr_B <= X"31000060";

next_state <= LOAD_B2;

when LOAD_B2 =>

BRAM_Addr_B <= X"31000080";

next_state <= LOAD_MOD1;

when LOAD_MOD1 =>
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BRAM_Addr_B <= X"310000A0";

next_state <= LOAD_MOD2;

when LOAD_MOD2 =>

BRAM_Addr_B <= X"310000C0";

next_state <= LOAD_PRIME1;

when LOAD_PRIME1 =>

BRAM_Addr_B <= X"310000E0";

next_state <= LOAD_PRIME2;

when LOAD_PRIME2 =>

-- address was set in last cycle --

next_state <= WAIT_FOR_USER_CORE;

when WAIT_FOR_USER_CORE =>

IF (s_ready_mult = ’1’) THEN

next_state <= WRITE_1;

ELSE

next_state <= WAIT_FOR_USER_CORE;

END IF;

when WRITE_1 =>

BRAM_Addr_b <= X"31000100";

BRAM_WEN_B <= "1111";

BRAM_Dout_B <= s_result(63 downto 32);

next_state <= WRITE_2;

when WRITE_2 =>

BRAM_Addr_b <= X"31000120";

BRAM_WEN_B <= "1111";

BRAM_Dout_B <= s_result(31 downto 0);

next_state <= SET_DONE;

when SET_DONE =>

BRAM_WEN_B <= "1111";

BRAM_Dout_B <= X"00000002";

next_state <= DONE;

when DONE =>

next_state <= IDLE;

when others =>

next_state <= IDLE;

end case;

end process;

-------------------------------------------------------------------------------
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store_values : process(clk, rst)

begin

if (rst = ’1’) then

s_load_data <= ’0’;

s_a_operand <= (others => ’0’);

s_b_operand <= (others => ’0’);

s_n_modulus <= (others => ’0’);

s_n_prime <= (others => ’0’);

elsif( clk’event and clk = ’1’) then

if ( state = START ) THEN

s_load_data <= ’1’;

ELSIF ( state = LOAD_A1 ) THEN

s_a_operand(63 downto 32) <= BRAM_Din_B;

ELSIF ( state = LOAD_A2 ) THEN

s_a_operand(31 downto 0) <= BRAM_Din_B;

ELSIF ( state = LOAD_B1 ) THEN

s_b_operand(63 downto 32) <= BRAM_Din_B;

ELSIF ( state = LOAD_B2 ) THEN

s_b_operand(31 downto 0) <= BRAM_Din_B;

ELSIF ( state = LOAD_MOD1 ) THEN

s_n_modulus (63 downto 32) <= BRAM_Din_B;

ELSIF ( state = LOAD_MOD2 ) THEN

s_n_modulus (31 downto 0) <= BRAM_Din_B;

ELSIF ( state = LOAD_PRIME1 ) THEN

s_n_prime(63 downto 32) <= BRAM_Din_B;

ELSIF ( state = LOAD_PRIME2 ) THEN

s_n_prime (31 downto 0) <= BRAM_Din_B;

s_load_data <= ’0’;

END IF;

END IF;

end process;

-------------------------------------------------------------------------------

Clocking:process(clk,rst)

begin
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if rst = ’1’ then

cnt4clk <= "0000";

clock2 <= ’0’;

elsif clk’event and clk = ’1’ then

if cnt4clk = "0000" THEN

clock2 <= ’0’;

cnt4clk <= "0001";

elsif cnt4clk = "0010" THEN

clock2 <= ’1’;

cnt4clk <= "0011";

elsif cnt4clk = "0011" THEN

cnt4clk <= "0000";

else cnt4clk <= cnt4clk + 1;

end if;

end if;

end process Clocking;

end architecture;
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B VHDL code implementing the 64-bit Mont-

gomery Multiplier

B.1 main mult.vhd
--Main Mult-- --64 Bit--

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

-----------------------------------------------------------------------------------------

entity main_mult is

port

(

clk :in std_logic;

reset :in std_logic;

load_data :in std_logic;

a_operand :in std_logic_vector(63 downto 0);

b_operand :in std_logic_vector(63 downto 0);

n_modulus :in std_logic_vector(63 downto 0);

n_prime :in std_logic_vector(63 downto 0);

ready :out std_logic;

mod_ab :out std_logic_vector(63 downto 0)

);

constant width :integer := 64;

end main_mult;

-----------------------------------------------------------------------------------------

architecture main_mult of main_mult is

-----------------------------------------------------------------------------------------

component main_mult_counter is

port

(

clk :in std_logic;

reset :in std_logic;

load_data :in std_logic;

main_mult_cnt :out std_logic_vector(4 downto 0)

);
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end component main_mult_counter;

-----------------------------------------------------------------------------------------

component mult_64bits is

port

(

clk :in std_logic;

reset :in std_logic;

a :in std_logic_vector(width-1 downto 0);

b :in std_logic_vector(width-1 downto 0);

p :out std_logic_vector((2*width)-1 downto 0)

);

end component mult_64bits;

-----------------------------------------------------------------------------------------

signal main_mult_cnt :std_logic_vector(4 downto 0);

signal a1_mult :std_logic_vector(width-1 downto 0);

signal b1_mult :std_logic_vector(width-1 downto 0);

signal p1_mult :std_logic_vector((2*width)-1 downto 0);

signal p1_mult_sig :std_logic_vector((2*width)-1 downto 0);

signal u_sig :std_logic_vector(width downto 0);

begin

-----------------------------------------------------------------------------------------

Main_Mult_Counter1:main_mult_counter

port map

(

clk,

reset,

load_data,

main_mult_cnt

);

-----------------------------------------------------------------------------------------

Mult_64Bits1:mult_64bits

port map

(

clk,

reset,

a1_mult,

b1_mult,
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p1_mult

);

-----------------------------------------------------------------------------------------

Mult_Operations:process(clk, reset)

begin

if (reset = ’1’) then

a1_mult <= (others => ’0’);

b1_mult <= (others => ’0’);

p1_mult_sig <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

case main_mult_cnt is

when "00001" =>

a1_mult <= a_operand;

b1_mult <= b_operand;

when "00111" =>--mult_time + 1--

p1_mult_sig <= p1_mult;

a1_mult <= p1_mult(width-1 downto 0);

b1_mult <= n_prime;

when "01101" => --mult_time + 1-- --%1--

a1_mult <= p1_mult(width-1 downto 0);

b1_mult <= n_modulus;

when others =>

null;

end case;

end if;

end process Mult_Operations;

-----------------------------------------------------------------------------------------

Main_Operations:process(clk, reset)

variable u_var :std_logic_vector(2*width downto 0);

variable mod_ab_var :std_logic_vector(width downto 0);

begin

if (reset = ’1’) then
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u_sig <= (others => ’0’);

mod_ab <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

case main_mult_cnt is

when "10011" =>--%1 + mult_time +1--

u_var := (’0’ & p1_mult_sig) + (’0’ & p1_mult);

u_sig <= u_var(2*width downto width);

when "10100" =>--+1--

if (u_sig >= n_modulus) then

mod_ab_var := u_sig - n_modulus;

mod_ab <= mod_ab_var(width-1 downto 0);

else

mod_ab <= u_sig(width-1 downto 0);

end if;

when others =>

null;

end case;

end if;

end process Main_Operations;

-----------------------------------------------------------------------------------------

Ready_Signal:process(clk,reset)

begin

if (reset = ’1’) then

ready <= ’0’;

elsif (clk’event and clk = ’1’) then

if (main_mult_cnt = "10100") then

ready <= ’1’;

else

ready <= ’0’;

end if;

end if;

end process Ready_Signal;

-----------------------------------------------------------------------------------------
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end main_mult;

B.2 main mult counter.vhd
--Main Mult Counter--

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

-----------------------------------------------------------------------------------------

entity main_mult_counter is

port(clk :in std_logic;

reset :in std_logic;

load_data :in std_logic;

main_mult_cnt :out std_logic_vector(4 downto 0));

end main_mult_counter;

-----------------------------------------------------------------------------------------

architecture main_mult_counter of main_mult_counter is

-----------------------------------------------------------------------------------------

signal main_mult_cnt_sig :std_logic_vector(4 downto 0) := (others => ’0’);

-----------------------------------------------------------------------------------------

begin

-----------------------------------------------------------------------------------------

Count:process(clk,reset)

begin

if reset = ’1’ then

main_mult_cnt_sig <= (others => ’0’);

elsif clk’event and clk = ’1’ then

if load_data = ’1’ then

main_mult_cnt_sig <= (others => ’0’);
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else

if main_mult_cnt_sig = "10100" then

main_mult_cnt_sig <= "00001";

else

main_mult_cnt_sig <= main_mult_cnt_sig + 1;

end if;

end if;

end if;

end process Count;

-----------------------------------------------------------------------------------------

main_mult_cnt <= main_mult_cnt_sig;

-----------------------------------------------------------------------------------------

end main_mult_counter;

B.3 mult 64Bits.vhd
--Mult_64Bits--

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

-----------------------------------------------------------------------------------------

entity mult_64bits is

port(clk :in std_logic;

reset :in std_logic;

a :in std_logic_vector(63 downto 0);

b :in std_logic_vector(63 downto 0);

p :out std_logic_vector(127 downto 0));

subtype mult_input_32bits is std_logic_vector(31 downto 0);

type mult_input_32bits_array is array(1 downto 0) of mult_input_32bits;
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subtype mult_output_32bits is std_logic_vector(63 downto 0);

type mult_output_32bits_array is array(1 downto 0) of mult_output_32bits;

end mult_64bits;

-----------------------------------------------------------------------------------------

architecture mult_64bits of mult_64bits is

-----------------------------------------------------------------------------------------

component mult_32bits is

port(clk :in std_logic;

reset :in std_logic;

a :in std_logic_vector(31 downto 0);

b :in std_logic_vector(31 downto 0);

p :out std_logic_vector(63 downto 0));

end component mult_32bits;

-----------------------------------------------------------------------------------------

signal a_mult :mult_input_32bits_array;

signal b_mult :mult_input_32bits_array;

signal p_mult1 :mult_output_32bits_array;

signal p_mult2 :mult_output_32bits_array;

signal p_sig :std_logic_vector(96 downto 0);

-----------------------------------------------------------------------------------------

begin

-----------------------------------------------------------------------------------------

a_mult(1) <= a(63 downto 32);

a_mult(0) <= a(31 downto 0);

b_mult(1) <= b(63 downto 32);

b_mult(0) <= b(31 downto 0);

-----------------------------------------------------------------------------------------

Partial_Product_Generate1:for i in 1 downto 0 generate

mult_32bits_1:mult_32bits port map(clk,

reset,

a_mult(0),

b_mult(i),

p_mult1(i));
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end generate Partial_Product_Generate1;

-----------------------------------------------------------------------------------------

Partial_Product_Generate2:for i in 1 downto 0 generate

mult_32bits_2:mult_32bits port map(clk,

reset,

a_mult(1),

b_mult(i),

p_mult2(i));

end generate Partial_Product_Generate2;

-----------------------------------------------------------------------------------------

p_sig(31 downto 0) <= (others => ’0’);

-----------------------------------------------------------------------------------------

Add_Partial_Products:process(clk,reset)

begin

if reset = ’1’ then

p_sig(96 downto 32) <= (others => ’0’);

p <= (others => ’0’);

elsif clk’event and clk = ’1’ then

p_sig(96 downto 32) <= (’0’ & p_mult1(1)) + (’0’ & p_mult2(0));

p <= p_sig + (p_mult2(1) & p_mult1(0));

end if;

end process Add_Partial_Products;

-----------------------------------------------------------------------------------------

end mult_64bits;

B.4 mult 32Bits.vhd
--Mult_32Bits--

library ieee;
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use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

-----------------------------------------------------------------------------------------

entity mult_32bits is

port(clk :in std_logic;

reset :in std_logic;

a :in std_logic_vector(31 downto 0);

b :in std_logic_vector(31 downto 0);

p :out std_logic_vector(63 downto 0));

subtype mult_input_16bits is std_logic_vector(15 downto 0);

type mult_input_16bits_array is array(1 downto 0) of mult_input_16bits;

subtype mult_output_16bits is std_logic_vector(31 downto 0);

type mult_output_16bits_array is array(1 downto 0) of mult_output_16bits;

end mult_32bits;

-----------------------------------------------------------------------------------------

architecture mult_32bits of mult_32bits is

-----------------------------------------------------------------------------------------

component mult_16bits is

port (clk :in std_logic;

reset :in std_logic;

a :in std_logic_vector(15 downto 0);

b :in std_logic_vector(15 downto 0);

p :out std_logic_vector(31 downto 0));

end component mult_16bits;

-----------------------------------------------------------------------------------------

signal a_mult :mult_input_16bits_array;

signal b_mult :mult_input_16bits_array;

signal p_mult1 :mult_output_16bits_array;

signal p_mult2 :mult_output_16bits_array;

signal p_sig :std_logic_vector(48 downto 0);

-----------------------------------------------------------------------------------------

begin

-----------------------------------------------------------------------------------------
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a_mult(1) <= a(31 downto 16);

a_mult(0) <= a(15 downto 0);

b_mult(1) <= b(31 downto 16);

b_mult(0) <= b(15 downto 0);

-----------------------------------------------------------------------------------------

Partial_Product_Generate1:for i in 1 downto 0 generate

mult_16bits_1:mult_16bits port map(clk,

reset,

a_mult(0),

b_mult(i),

p_mult1(i));

end generate Partial_Product_Generate1;

-----------------------------------------------------------------------------------------

Partial_Product_Generate2:for i in 1 downto 0 generate

mult_16bits_2:mult_16bits port map(clk,

reset,

a_mult(1),

b_mult(i),

p_mult2(i));

end generate Partial_Product_Generate2;

-----------------------------------------------------------------------------------------

p_sig(15 downto 0) <= (others => ’0’);

-----------------------------------------------------------------------------------------

Add_Partial_Products:process(clk,reset)

begin

if reset = ’1’ then

p_sig(48 downto 16) <= (others => ’0’);

p <= (others => ’0’);

elsif clk’event and clk = ’1’ then
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p_sig(48 downto 16) <= (’0’ & p_mult1(1)) + (’0’ & p_mult2(0));

p <= p_sig + (p_mult2(1) & p_mult1(0));

end if;

end process Add_Partial_Products;

-----------------------------------------------------------------------------------------

end mult_32bits;

B.5 mult 16bits.vhd
--Mult_16Bits--

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

-----------------------------------------------------------------------------------------

entity mult_16bits is

port (clk :in std_logic;

reset :in std_logic;

a :in std_logic_vector(15 downto 0);

b :in std_logic_vector(15 downto 0);

p :out std_logic_vector(31 downto 0));

end mult_16bits;

-----------------------------------------------------------------------------------------

architecture mult_16bits of mult_16Bits is

begin

-----------------------------------------------------------------------------------------

DFF:process(clk, reset)

begin

if reset = ’1’ then

p(31 downto 0) <= (others => ’0’);
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elsif clk’event and clk = ’1’ then

p(31 downto 0) <= a * b;

end if;

end process DFF;

-----------------------------------------------------------------------------------------

end mult_16bits;

C C source code
#include <xuartlite_l.h>

#include <xparameters.h>

#include <xexception_l.h>

--===========================================================

-- General definitions

--===========================================================

#define size_of_bignum 64

--===========================================================

-- Definition of the structure we’re going to use

--===========================================================

typedef struct

{

int word[size_of_bignum];

} bignum;

--===========================================================

-- Definition of the structure we’re going to use

--===========================================================

char test_a_bit();

short get_bitlength();

void mul();

int main(void) {

bignum base;

bignum exponent;

bignum modulus;
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bignum prime;

bignum result;

bignum temp;

bignum K;

int temptemp;

short bitpos;

temptemp = 1;

bitpos = 0;

base.word[0] = 0xD431;

base.word[1] = 0x0;;

exponent.word[0] = 0x25318523;

exponent.word[1] = 0x0;

modulus.word[0] = 0x8000013B;

modulus.word[1] = 0x0;

prime.word[0] = 0x8D00D00D;

prime.word[1] = 0x0D979124;

K.word[0] = 0x2D7EBD3D;

K.word[1] = 0x0;

result.word[0] = 0x0;

result.word[1] = 0x0;

temp.word[0] = 0x0;

temp.word[1] = 0x0;

print("\033[H\033[J"); //clears the screen

xil_printf("base = %x %x \t", base.word[1], base.word[0]);

xil_printf("exponent = %x %x \t", exponent.word[1], exponent.word[0]);

xil_printf("modulus = %x %x \t", modulus.word[1], modulus.word[0]);

print("\r\n");

xil_printf("prime = %x %x \t", prime.word[1], prime.word[0]);

xil_printf("K = %x %x \t", K.word[1], K.word[0]);

print("\r\n");

// base into montgom domain...

mul( &K.word[1], &K.word[0], &base.word[1], &base.word[0],

&modulus.word[1], &modulus.word[0], &prime.word[1], &prime.word[0],

&temp.word[1], &temp.word[0]);

xil_printf("base after transfer to montgomery domain = %x %x \t",

temp.word[1], temp.word[0]);

// exponentiation done using square and multiply

for ( bitpos = get_bitlength(&exponent) -1; bitpos > -1; bitpos -- )
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{

mul( &temp.word[1], &temp.word[0], &temp.word[1], &temp.word[0],

&modulus.word[1], &modulus.word[0], &prime.word[1],

&prime.word[0], &temp.word[1], &temp.word[0]);

if ( test_a_bit( &exponent.word[bitpos/32], bitpos ) == 1 )

{

mul( &temp.word[1], &temp.word[0], &base.word[1],

&base.word[0], &modulus.word[1], &modulus.word[0],

&prime.word[1], &prime.word[0], &temp.word[1],

&temp.word[0]);

}

}

mul( &temp.word[1], &temp.word[0], &temptemp, &temptemp, &modulus.word[1],

&modulus.word[0], &prime.word[1], &prime.word[0], &temp.word[1],

&temp.word[0]);

print("\r\n\r\n");

xil_printf("result = %x %x \t", temp.word[1], temp.word[0]);

}

char test_a_bit(int *temp, int bit)

{

if ( *temp & (1<<bit%32) )

{

return 1;

}

else

{

return 0;

}

}

short get_bitlength(bignum *number)

{

short bitpos;

short intpos = 64;

char found = 0;

// this loop hops through the interger numbers the bignum consists of

while ( !found && (intpos>= 0) )

{

intpos = intpos - 1;

bitpos = 31;

//now the inner loop searches the single integer numbers for the first

//non-zero bit

while ( !found && bitpos > -1 )

{

if ( test_a_bit(&(*number).word[intpos], bitpos) )
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{

found = 1;

}

else

{

bitpos = bitpos - 1;

}

}

}

// IMPORTANT: this function returns the number of bits!!!!

// It does _NOT_ return the position of the first non-zero bit!!

// That is eg:

// 4 = 100 in binary, the number of bits is 3 while the first non-zero bit

// is at position 2, as we start counting at the LSB.

//

///////////////////////////

return (intpos*32 + bitpos + 1);

}

--===========================================================

--

--===========================================================

void mul(int *factorah, int *factoral, int *factorbh, int *factorbl, int *modh,

int *modl, int *primeh, int *primel, int *resulth, int *resultl)

{

int *ptr_to_a1;

int *ptr_to_a2;

int *ptr_to_b1;

int *ptr_to_b2;

int *ptr_to_mod1;

int *ptr_to_mod2;

int *ptr_to_prime1;

int *ptr_to_prime2;

int *ptr_to_output1;

int *ptr_to_output2;

int *ptr_to_ctrl;

ptr_to_a1 = 0x31000000;

*ptr_to_a1 = 0x00000000;

ptr_to_a2 = 0x31000020;

*ptr_to_a2 = 0x00000000;

ptr_to_b1 = 0x31000040;

*ptr_to_b1 = 0x00000000;

ptr_to_b2 = 0x31000060;

*ptr_to_b2 = 0x00000000;
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C C SOURCE CODE

ptr_to_mod1 = 0x31000080;

*ptr_to_mod1 = 0x00000000;

ptr_to_mod2 = 0x310000A0;

*ptr_to_mod2 = 0x00000000;

ptr_to_prime1 = 0x310000C0;

*ptr_to_prime1 = 0x00000000;

ptr_to_prime2 = 0x310000E0;

*ptr_to_prime2 = 0x00000000;

ptr_to_output1 = 0x31000100;

*ptr_to_output1 = 0x00000000;

ptr_to_output2 = 0x31000120;

*ptr_to_output2 = 0x00000000;

ptr_to_ctrl = 0x310003E0;

*ptr_to_ctrl = 0x00000000;

// xil_printf("a = %x %x \t", *ptr_to_a1, *ptr_to_a2);

// xil_printf("b = %x %x \t", *ptr_to_b1, *ptr_to_b2);

// xil_printf("mod = %x %x \t", *ptr_to_mod1, *ptr_to_mod2);

// xil_printf("prime = %x %x \t", *ptr_to_prime1, *ptr_to_prime2);

// xil_printf("output = %x %x \t", *ptr_to_output1, *ptr_to_output2);

// xil_printf("ctrl = %d \r\n\n", *ptr_to_ctrl);

*ptr_to_a1 = *factorah;

*ptr_to_a2 = *factoral;

*ptr_to_b1 = *factorbh;;

*ptr_to_b2 = *factorbl;;

*ptr_to_mod1 = *modh;

*ptr_to_mod2 = *modl;

*ptr_to_prime1 = *primeh;

*ptr_to_prime2 = *primel;

// start the hardware processing unit

*ptr_to_ctrl = 0x00000001;

print("");

while ( *ptr_to_ctrl != 0x00000002 )

{

// DO NOTHING!

}

*ptr_to_ctrl = 0x00000000;

print("");
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// xil_printf("a = %x %x \t", *ptr_to_a1, *ptr_to_a2);

// xil_printf("b = %x %x \t", *ptr_to_b1, *ptr_to_b2);

// xil_printf("mod = %x %x \t", *ptr_to_mod1, *ptr_to_mod2);

// xil_printf("prime = %x %x \t", *ptr_to_prime1, *ptr_to_prime2);

// xil_printf("output = %x %x \t", *ptr_to_output1, *ptr_to_output2);

// xil_printf("ctrl = %d \r\n\n", *ptr_to_ctrl);

// print("done");

*resulth = *ptr_to_output1;

*resultl = *ptr_to_output2;

}

D Test vectors
Set1:

r = 10000000000000000

n = 32ED94BEAFAD89AD

r^-1 = 1F232C33B2A120A3

nprime = 9C84B039A1513DDB

a = 7E8C0146A7158418

b = 1D7F356E6E2F27F6

monpro = 23CFFA7944CC169D

Set 2:

n = 88b53d612dd5b053

r = 10000000000000000

r^-1 = 43c11cf82e823d94

nprime = 7ee08ae63a0bec25

a = 76bb25365f319426

b = 571f169d04a5735b

monpro = 565b25c421c077cd

65



REFERENCES REFERENCES

References

[1] Menezes, van Oorshot, Vanstone (1997), Handbook of applied cryptog-

raphy, CRC Press

[2] Marcelo E. Kaihara and Naofumi Takagi, A VLSI

Algorithm for Modular Multiplication/Division,

http://www.dec.usc.es/arith16/papers/paper-180.pdf

[3] McIvor, Ciaran (2005), Algortihms and Silicon Architectures for

Public-key Cryptography

[4] Avenet Inc. (2003), Xilinx Virtex-II Pro Evaluation Kit, Xilinx Virtex-

II Pro Eval Kit - User’s Guide 102103F.pdf

[5] Mealy, G. H. (1955), A Method for Synthesizing Sequential Circuits,

Bell System Tech. J. vol 34, pp. 1045 - 1079

[6] Montgomery, P.L. (1985), Modular Multiplication without Trial Divi-

sion, Math. Computation, Vol. 44, pp. 519-521

[7] Moore, Gordon E. (1965), Cramming more components onto integrated

circuits, Electronics, Volume 38, Number 8

[8] R.L. Rivest, A. Shamir, and L. Adleman (1978), A Method for Ob-

taining Digital Signatures and Public-Key Cryptosystems, Communi-

cations of the ACM 21,2, pp. 120-126

[9] Xilinx (2004), Processor IP Reference Guide, proc ip ref guide.pdf

[10] Xilinx (2004), Processor Local Bus PLB v3.4, plb v34.pdf

[11] Xilinx (2004), OPB Usage in Xilinx FPGAs, proc ip ref guide.pdf

[12] Xilinx (2004), OPB to PLB Bridge (v1.00b), proc ip ref guide.pdf

[13] Xilinx (2004), OPB UART Lite, opb uartlite.pdf

[14] Xilinx (2004), PLB Block RAM (BRAM) Interface Controller,

plb bram if ctrl.pdf

66



REFERENCES REFERENCES

[15] Xilinx (2004), Block RAM (BRAM) Block, bram block.pdf

[16] Xilinx (2004), Processor System Reset Module, proc sys reset.pdf

[17] Xilinx (2004), JTAGPPC Controller, jtagppc cntlr.pdf

[18] Xilinx (2004), PowerPC 405 Processor Block Reference Guide,

ppc405block ref guide.pdf

[19] Xilinx (2004), Data Side OCM Bus V1.0, dsocm v10.pdf

67


