How to express in a formally precise way modifiers?

We have a proposition like “She bakes a cake” and put it within the scope of a modifier, e.g.:

- Possibly/Necessarily, she bakes a cake.
- It should be that she bakes a cake.
- I know/believe that she bakes a cake.

idea: accessible worlds

accessibility relates to the modifier in question

- accessible worlds are possible worlds
- accessible worlds are ethically/legally/etc. ideal worlds
- accessible worlds are states/worlds compatible with my doxastic/epistemic state

How to define an entailment relation? The modal logic \mathbf{K}

- Answer: as usual!
- only: where $M = \langle W, R, v \rangle$: $M \models A$ iff for all $w \in W$, $M, w \models A$.
- We say M is a model of Γ iff $M \models A$ for all $A \in \Gamma$
- $\Gamma \models A$ iff all models of Γ are models of A
- often the semantics is phrased with a so-called actual/designated world
 - a model is a quadruple $M = \langle W, R, v, a \rangle$
 - difference to before: $M \models A$ iff $M, a \models A$.
 - rest as before: $\Gamma \models A$ iff all models of Γ are models of A
- these two representational formats are semi-expressive/equivalent: try to show this!

What do you think: $\Box A \vdash^K \Diamond A$?

Show: $\Box (A \lor B) \vdash^K \Box (A \land B)$

Axiomatizing \mathbf{K}

\mathbf{N} $\vdash A$ implies $\vdash \Box A$

\mathbf{K} $\vdash (\Box (A \lor B) \lor (\Box A \land \Box B)$

- Show: $\Box (A \lor B) \vdash^K \Box A \land \Box B$
- Show: $\Box A, \Box B \vdash^K \Box (A \land B)$
- Show: $\Box A \lor \Box B, \Box \neg B \vdash^K \Box A$
Strengthening Kripkean Semantics: Frame Conditions

- requiring R to be reflexive (i.e., $(w, w) \in R$ for all w): $\text{T} \models K + \Box A \supset A'$
- requiring R to be serial (i.e., for all w there is a w' such that $(w, w') \in R$): $\text{KD} \models K + \Box A \supset \Box A'$
- requiring that the accessibility relation \leq is a partial order (reflexivity, transitivity, antisymmetry): intuitionistic logic
- additional requirement: $w \leq w'$ implies $v(w) \leq v(w')$
- negation is a modal operator: $M, w \models \neg A$ iff there is no w' such that $(w, w') \in R$ and $w' \models A$
- implication: $M, w \models A \rightarrow B$ iff for all w' for which $(w, w') \in R$, $M, w' \models A$ implies $M, w \models B$.

Standard Deontic Logic is KD.

Deontic Logic Paradox

- Natural language representation: NR
- formal representation: FR
- Paradox 1:
 - NR implies A
 - FR does not imply A
- Paradox 2:
 - FR implies A.
 - NR does not imply A.

Deontic Dilemmas

Example: The dilemma of Sartre’s pupil

- Obligation 1: stay with the ill mother
- Obligation 2: join the forces to fight the Nazis

Formal definition

- Two obligations: OA, OB
 - both are possible: $\Diamond A$, $\Diamond B$
 - they cannot jointly be realized: $\neg \Diamond (A \land B)$

They are often characterized by

- obligations with equal force
- incommensurable obligations

Deontic Explosions

Conflict (A, B) ⊢ ⊥

Example 1: Principle D

| D | OA → ¬O¬A |
| ECQ | $A \land \neg A \rightarrow \bot$ |

1	OA	
2	$O\neg A$	
3	$OA \rightarrow \neg O\neg A$	D
4	$\neg O\neg A$	1, 3; MP
5	$O\neg A \land \neg O\neg A$	2, 4; \land intro
6	⊥	5; ECQ

Example 2: Aggregation and Kant’s “ought implies can”

| AND | OA ∧ OB → O(A ∧ B) |
| ECQ | $A \land \neg A \rightarrow \bot$ |

1	OA	
2	$O\neg A$	
3	$OA \rightarrow \neg O\neg A$	D
4	$\neg O\neg A$	1, 3; MP
5	$O\neg A \land \neg O\neg A$	2, 4; \land intro
6	⊥	5, 6; ECQ

Deontic Explosions
Deontic Explosions

1 OA
Starting point: 2 OB
3 ¬♦(A ∧ B)

Example 3: Distribution

\[
\text{RM} \quad □(A → B) → (OA → OB)
\]
\[
\text{D} \quad OA → ¬O¬A
\]
\[
\text{ECQ} \quad A ∧ ¬A → ⊥
\]

4 □(A → ¬B) 3
5 O¬B 1, 4; RM
6 ¬O¬B 2; D
7 ⊥ 5, 6; ECQ

Many “Bad” Combinations

\[
\text{AND} \quad OA ∧ OB → O(A ∧ B)
\]
\[
\text{NM} \quad □(A → B) → (OA → OB)
\]

\[
\text{KP} \quad OA → O\text{A}
\]
\[
\text{ECQ} \quad A ∧ ¬A → ⊥
\]
\[
\text{D} \quad OA → ¬O¬A
\]

Approaches for logics dealing with deontic explosions:

- Restricting/Rejecting ECQ — going paraconsistent
 - Da Costa&Carnielli (1986) [4], Beirlaen et al [3, 2, 1]
 - Restricting AND: Goble’s logic P
 - Restricting RM: Goble’s logics DPM

Restricting Aggregation [7, 8]

- preferential semantics:
 - \(M = (W, (\leq_s)_{s \in W}, v) \) where \(\leq_s \) are preorder on their fields (reflexive and transitive)
 - the field of a relation: \(F \leq_s = \{ b \in W \mid \text{there is a } c \in W \text{ such that } b \leq_s c \text{ or } c \leq_s b \} \)
 - define: \(M, w \models OA \text{ iff there is a } w' \in F \leq_w \text{ such that for all } w'' \text{ for which } w' \leq_{w''} w'' \), \(M, w'' \models A \)
 - where \(\leq_s \) are also connected (for all \(w \neq w' \) in \(F \leq_s, w \leq w' \) or \(w' \leq w \)): this semantics characterizes SDL (and as we will see below also a dyadic version of SDL)
 - multi-relational semantics (generalization of Kripkean semantics)
 - \(M = (W, R, v) \) where \(R \) is a non-empty family of serial accessibility relations \(R \)
 - each \(R \) represents a normative standard/value system/etc.: \(M, w \models OA \text{ iff there is a } R \in \mathcal{R} \text{ such that } M, w \models A \text{ for all } w' \in W \text{ for which } (w, w') \in R \)
 - both systems characterize the same consequence relation

Some other approaches

 - argumentation theory: Oren et al. (2008) [14], Gabbay (2012) [6], Straßer&Arieli (2014) [18]

System P

\[
\text{PC} \quad \text{If } A \text{ is a classical tautology then } A \text{ is an axiom of } P
\]
\[
\text{RM} \quad \text{If } \models A ⊃ B \text{ then } \models OA ⊃ OB
\]
\[
\text{N} \quad \models O\top
\]
\[
\text{P} \quad \models ¬O¬\bot
\]
Restricting Inheritance

Replace the inheritance principle
\[\text{RM: } \text{if } \vdash A \rightarrow B \text{ then } \vdash O A \rightarrow O B \]
by a restricted version:
\[\text{RPM: } \text{if } \vdash A \rightarrow B \text{ then } \vdash PA \rightarrow (OA \rightarrow OB) \]

Goble’s Logic DPM.1

DPM.1 Axioms
all axioms of classical propositional calculus and
\[\text{RPM: } \text{if } \vdash A \rightarrow B \text{ then } \vdash PA \rightarrow (OA \rightarrow OB) \]
\[\text{RE: } \text{if } \vdash A \leftrightarrow B \text{ then } \vdash OA \leftrightarrow OB \]
\[\text{N: } \vdash O \top \]
\[\text{AND: } \vdash (OA \land OB) \rightarrow O(A \land B) \]

Semantics

Neighborhood Frame
A neighborhood frame \(F \) is a pair \(\langle W, O \rangle \) in which \(W \) is a non-empty set of points, e.g., possible worlds, and \(O \) is a function assigning every \(a \in W \) a set, \(O_a \), of subsets of \(W \); i.e., \(O_a \subseteq \wp W \).

Models
A model, \(M \), is a pair \(\langle F, v \rangle \) where \(F \) is a neighborhood frame \(\langle W, O \rangle \), and \(v \) is a function assigning every atomic formula \(p \) of \(L \) a subset of \(W \); i.e., \(v(p) \subseteq W \). A satisfaction relation \(\models \) is defined as follows:
\[
\begin{align*}
\text{Tp: } & M, a \models p \text{ iff } a \in v(p) \\
\text{T¬: } & M, a \models \neg A \text{ iff } M, a \not\models A \\
\text{T∧: } & M, a \models A \land B \text{ iff } M, a \models A \text{ and } M, a \models B \\
\text{T∨: } & M, a \models A \lor B \text{ iff } M, a \models A \text{ or } M, a \models B \\
\text{TO: } & M, a \models OA \text{ iff } |A|_M \in O_a
\end{align*}
\]

Problem with the Weakenings of SDL

- they are weak!
- solution: adaptive strengthening
- e.g., in the context of \(P \): apply aggregation conditionally as much as possible
- e.g., in the context of \(\text{DPM} \): apply inheritance conditionally and as much as possible

Asparagus – Specificity

- Being served a meal, you ought not to eat with fingers.
- Being served asparagus, you ought to eat with fingers.
- You’re being served asparagus.

What if we model this via classical implication?

- \(m \supset O \neg f \)
- \((m \land a) \supset Of \)
- \(m \land a \)

Problem: This is classically inconsistent (if SDL models \(O \)).
Problems with Conditional Obligations 2

Chisholm’s Paradox: Contrary to Duty Obligations

- John ought not to impregnate Suzy Mae.
- If John impregnates Suzy Mae, he ought to marry her.
- If John doesn’t impregnate Suzy Mae, he ought not to marry her.
- John impregnates Suzy Mae.

Desiderata of a Formal Modeling

- logical independence
- non-triviality
- symmetry/non-ad-hoc modeling
- detachment possible

Chisholm continued

Option 1

- \(\top \supset \neg i \)
- \(i \supset m \)
- \(\neg i \supset \neg m \)
- \(i \)

What’s the problem?

Option 2

- \(\top \supset \neg i \)
- \(i \supset m \)
- \(\neg i \supset \neg m \)
- \(i \)

What’s the problem?

Some Approaches to Conditional Obligations

- use of binary modal operators
- default logic approach
- Input/Output logic

Chisholm continued

Option 3

- \(\top \supset \neg i \)
- \(i \supset m \)
- \(\neg i \supset \neg m \)
- \(i \)

What’s the problem?

Option 4

- \(\top \supset \neg i \)
- \(i \supset m \)
- \(\neg i \supset \neg m \)
- \(i \)

What’s the problem?

Using preferential semantics for a dyadic version of SDL

- \(M = \langle W, \leq, v \rangle \) where \(\leq \) is a connected preorder (reflexive and transitive)
- \(M, w \models O(B/A) \) iff there is a \(w' \in F \leq w \) such that \(M, w' \models A \land B \) and for any \(w'' \) for which \(w' \leq w'' \): \(M, w'' \models A \) implies \(M, w'' \models B \).
- axiomatized by:
 - RCE If \(\vdash A \equiv A' \) then \(\vdash O(B/A) \equiv O(B/A') \)
 - RCM If \(\vdash B \equiv C \) then \(\vdash O(B/A) \equiv O(C/A) \)
 - CK \(O(B/C/A) \equiv O(B/A) \land O(C/A) \)
 - CD \(O(B/A) \equiv \neg O(\neg B/A) \)
 - CN \(O(\top/\top) = O(B/A) \equiv O(A \land B/A) \)
 - trans \(\langle (A \geq B) \land (B \geq C) \rangle \equiv (A \geq C) \) where

\[A \geq B = df \neg O(\neg A/A \lor B) \] (read: “A is at least as good as B”)

SDDL and a Problem with Specificity

Problem: we get Rational Monotonicity:

\[\text{RM} \ (O(A/B) \land P(C/B)) \supset O(A/B \land C) \]

\[\text{e.g., } (O(\neg f/m) \land P(a/m)) \supset O(\neg f/m \land a) \]

- Various solutions have been proposed to weaken the monotonicity principle further and using different semantics (such as neighborhood semantics).
- All that I know generate other problematic examples (see [17, Part IV])
- One option: instead of “hard-coding” a weakened monotonicity principle, “go adaptive”. I.e., apply monotonicity \(O(A/B) \equiv O(A/B \land C) \) defeasibly “as much as possible”.
The Detachment Problem

- Van Eck: “How can we take seriously a conditional obligation if it cannot, by way of detachment, lead to an unconditional obligation?” [21]
- SDDL has not means for detachment
- general problem: the possibility of specificity cases and CTD-cases means that we cannot apply MP naively to conditional obligations
- how to deal with this problem then? E.g.,
 - Input/Output logic (Makinson / Van Der Torre)
 - Adaptive logics (the Gent crew)
 - Default Logic (Horty)

Handwritten notes:

- Christian Straßer
 - A system of temporally relative modal and deontic predicate logic and its philosophical applications.
 Published online first.
- John F. Horty
 - Reasoning with moral conflicts.
- Lou Goble
 - Bipolar argumentation frames and contrary to duty obligations, preliminary report.
- Lou Goble
 - Multiplex semantics for deontic logic.
- Lou Goble
- Lou Goble
 - Normative conflicts and the logic of ‘ought’.
- Lou Goble
 - Deontic logic (adapted) for normative conflicts.

Handwritten notes:

- Dov M. Gabbay
 - Bipolar argumentation frames and contrary to duty obligations.
- Dov M. Gabbay
 - Bipolar argumentation frames and contrary to duty obligations, preliminary report.
- Lou Goble
- Lou Goble
 - Normative conflicts and the logic of ‘ought’.
- Lou Goble
 - Deontic logic (adapted) for normative conflicts.

Handwritten notes:

- Mathieu Beirlaen and Christian Straßer
 - Nonmonotonic reasoning with normative conflicts in multi-agent deontic logic.
- Mathieu Beirlaen and Christian Straßer
 - Two adaptive logics of norm-propositions.
- Mathieu Beirlaen, Christian Straßer, and Joke Meheus
 - An inconsistency-adaptive deontic logic for normative conflicts.
- Newton C.A. da Costa and Walter Carnielli
 - On paraconsistent deontic logic.
 - Philosophy, 16:293–305, 1986.
- Bas C. Van Fraassen
 - Values and the heart’s command.