Normative Reasoning and Deontic Logics
[@RUB – SS2015]

Christian Straßer

Institute for Philosophy II, Ruhr-University Bochum
Centre for Logic and Philosophy of Science
Ghent University, Belgium
Christian.Strasser@UGent.be

April 11, 2015
How to express in a formally precise way modifiers?

We have a proposition like “She bakes a cake” and put it within the scope of a modifier, e.g.:

- Possibly/Necessarily, she bakes a cake.
- It should be that she bakes a cake.
- I know/believe that she bakes a cake.

idea: accessible worlds

accessibility relates to the modifier in question

- accessible worlds are possible worlds
- accessible worlds are ethically/legally/etc. ideal worlds
- accessible worlds are states/worlds compatible with my doxastic/epistemic state
Modal Logics – Kripkean Frames, More Formally

- a model is a tuple $M = \langle W, R, v \rangle$ where
- W is a set of points often called “worlds”
- $R \subseteq W \times W$ is a relation often called “accessibility relation”
- $v : W \times \mathcal{A} \to \{0, 1\}$ is an assignment function
 - often also: $v : \mathcal{A} \to \mathcal{P}(W)$ or $v : W \to \mathcal{P}(\mathcal{A})$
- atoms get their truth value at each world $w \in W$ in a model M via the assignment just as expected:
 $M, w \models A$ (where $A \in \mathcal{A}$) iff $v(w, A) = 1$ (resp. iff $w \in v(A)$, resp. iff $A \in v(w)$)
- the classical connectives are interpreted at each world in a model just as expected:
 $M, w \models \neg A$ iff $M, w \not\models A$
 $M, w \models A \land B$ iff $M, w \models A$ and $M, w \models B$
 $M, w \models A \lor B$ iff $M, w \models A$ or $M, w \models B$
 etc.
we now also have a unary modal operator □:
\[M, w \models □A \text{ iff for all } w' \text{ for which } (w, w') \in R \text{ (read: “for all worlds } w' \text{ accessible from } w): } M, w' \models A \]
e.g., \(M, w \models □A \) where □ represents necessity means that \(A \) holds in all possible worlds
e.g., \(M, w \models □A \) where □ represents normativity means that \(A \) holds in all ideal worlds

etc.

duality principle: ◊ = ¬□¬

◊ represents possibility

◊ represents permission

etc.

truth for ◊:
\[M, w \models ◊A \text{ iff there is a } w' \text{ such that } (w, w') \in R \text{ and } M, w' \models A \]

What do you think: \(M, w \models □A \) implies \(M, w \models ◊A \)?

Show: \(M, w \models □(A \land B) \) implies \(M, w \models □A \land □B \)

Show: \(M, w \models □A, □B \) implies \(M, w \models □(A \land B) \)
How to define an entailment relation? The modal logic \textbf{K}

- Answer: as usual!
- only: where $M = \langle W, R, v \rangle$: $M \models A$ iff for all $w \in W$, $M, w \models A$.
- We say M is a model of Γ iff $M \models A$ for all $A \in \Gamma$
- $\Gamma \vdash A$ iff all models of Γ are models of A
- often the semantics is phrased with a so-called actual/designated world
 - a model is a quadruple $M = \langle W, R, v, a \rangle$
 - difference to before: $M \models A$ iff $M, a \models A$.
 - rest as before: $\Gamma \vdash A$ iff all models of Γ are models of A
- these two representational formats are semi-expressive/equivalent: try to show this!

- What do you think: $\Box A \vdash_{\textbf{K}} \Diamond A$?
- Show: $\Box (A \land B) \vdash_{\textbf{K}} \Box A \land \Box B$
- Show: $\Box A, \Box B \vdash_{\textbf{K}} \Box (A \land B)$
Axiomatizing \mathbf{K}

$\mathbf{N} \vdash A$ implies $\vdash \Box A$

$\mathbf{K} \vdash \Box (A \supset B) \supset (\Box A \supset \Box B)$

- Show: $\Box (A \land B) \vdash_{\mathbf{K}} \Box A \land \Box B$
- Show: $\Box A, \Box B \vdash_{\mathbf{K}} \Box (A \land B)$
- Show: $\Box A, \Diamond B \vdash_{\mathbf{K}} \Diamond (A \land B)$
- Show: $\Box A \lor \Box B, \Diamond \neg B \vdash_{\mathbf{K}} \Box A$
Strengthening Kripkean Semantics: Frame Conditions

- requiring R to be reflexive (i.e., $(w, w) \in R$ for all w): $\text{T} \ "= K + \vdash \Box A \supset A$"
- requiring R to be serial (i.e., for all w there is a w' such that $(w, w') \in R$): $\text{KD} \ "= K + \vdash \Box A \supset \Diamond A$"
- requiring that the accessibility relation \leq is a partial order (reflexivity, transitivity, antisymmetry): intuitionistic logic
 - additional requirement: $w \leq w'$ implies $v(w) \subseteq v(w')$
 - negation is a modal operator: $M, w \models \neg A$ iff there is no w' such that $(w, w') \in R$ and $w' \models A$
 - implication: $M, w \models A \rightarrow B$ iff for all w' for which $(w, w') \in R$, $M, w' \models A$ implies $M, w \models B$.

Standard Deontic Logic is KD.
Deontic Logic Paradox

- Natural language representation: NR
- Formal representation: FR
- Paradox 1:
 - NR implies A
 - FR does not imply A
- Paradox 2:
 - FR implies A.
 - NR does not imply A.
Some Problems

- \(\vdash A \supset B \) implies \(\vdash OA \supset OB \)
 - Ross' Paradox: \(O\ell \) (you're supposed to post the letter) implies \(O(\ell \lor b) \) (you're supposed to post the letter or burn the city)
 - The birthday cake: \(O(i_1 \land \ldots \land i_n) \) implies \(Oi_j \) (1 ≤ j ≤ n)?

- problems with conditional obligations
 - specificity: \(m \supset O\neg f \) but \((m \land a) \supset Of \). Suppose \(m \). Then we get triviality in SDL
 - similar: contrary-to-duty (Forrester paradox, Chisholm paradox, see later)

- deontic conflicts: e.g., \(OA \land O\neg A \)
Deontic Dilemmas

Example: The dilemma of Sartre’s pupil

- Obligation 1: stay with the ill mother
- Obligation 2: join the forces to fight the Nazis

Formal definition

- Two obligations: OA, OB
- both are possible: $\Diamond A$, $\Diamond B$
- they cannot jointly be realized: $\neg \Diamond (A \land B)$

They are often characterized by

- obligations with equal force
- incommensurable obligations
Deontic Explosions

Conflict \((A, B) \vdash \bot\)

Example 1: Principle \(D\)

\[
\begin{align*}
D & \quad OA \rightarrow \neg O \neg A \\
ECQ & \quad A \land \neg A \rightarrow \bot
\end{align*}
\]

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O\neg A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OA \rightarrow \neg O \neg A</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>\neg O \neg A</td>
<td>1, 3; MP</td>
</tr>
<tr>
<td>5</td>
<td>O\neg A \land \neg O \neg A</td>
<td>2, 4; \land \neg intro</td>
</tr>
<tr>
<td>6</td>
<td>\bot</td>
<td>5; ECQ</td>
</tr>
</tbody>
</table>
Deontic Explosions

1 OA

Starting point: 2 OB

3 $\neg \lozenge (A \land B)$

Example 2: Aggregation and Kant’s “ought implies can”

\[
\begin{array}{|c|c|}
\hline
\text{AND} & OA \land OB \rightarrow O(A \land B) \\
\text{Kant’s principle} & OA \rightarrow \lozenge A \\
\text{ECQ} & A \land \neg A \rightarrow \bot \\
\hline
\end{array}
\]

4 $O(A \land B)$ 1, 2; AND

5 $\lozenge (A \land B)$ 3, 4; Kant’s principle

6 \bot 5, 6; ECQ
Deontic Explosions

1 OA

Starting point: 2 OB

3 $\neg \Diamond (A \land B)$

Example 3: Distribution

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>$\Box (A \rightarrow B) \rightarrow (OA \rightarrow OB)$</td>
</tr>
<tr>
<td>D</td>
<td>$OA \rightarrow \neg O \neg A$</td>
</tr>
<tr>
<td>ECQ</td>
<td>$A \land \neg A \rightarrow \bot$</td>
</tr>
</tbody>
</table>

4 $\Box (A \rightarrow \neg B)$ 3

5 $O \neg B$ 1, 4; RM

6 $\neg O \neg B$ 2; D

7 \bot 5, 6; ECQ
DEX0 Conflict implies triviality (anything follows)
DEX1 Conflict implies that anything is obligatory

- Show that AND and $\vdash \neg O \bot$ implies DEX0
- Show that AND and RM' (see below) implies DEX1
 RM' If $\vdash A \supset B$ then $\vdash OA \supset OB$.
Many “Bad” Combinations

\[\textbf{AND}\]
\[OA \land OB \rightarrow O(A \land B)\]

\[\textbf{NM}\]
\[\square(A \rightarrow B) \rightarrow (OA \rightarrow OB)\]

\[\textbf{KP}\]
\[OA \rightarrow \diamond A\]

\[\textbf{ECQ}\]
\[A \land \neg A \rightarrow \bot\]

\[\textbf{D}\]
\[OA \rightarrow \neg O \neg A\]

Approaches for logics dealing with deontic explosions:

- Restricting/Rejecting \textbf{ECQ} – going paraconsistent
 - Da Costa&Carnielli (1986) [4], Beirlaen et al [3, 2, 1]
- Restricting \textbf{AND}: Goble’s logic \(\mathcal{P}\)
- Restricting \textbf{RM}: Goble’s logics \(\text{DPM}\)
Some other approaches

- argumentation theory: Oren et al. (2008) [14], Gabbay (2012) [6], Straßer & Arieli (2014) [18]
Restricting Aggregation [7, 8]

- preferential semantics:
 - $M = \langle W, \langle \leq_a \rangle_{a \in W}, v \rangle$ where \leq_a are preorders on their fields (reflexive and transitive)
 - the field of a relation: $\mathcal{F} \leq_a = \{ b \in W \mid$ there is a $c \in W$ such that either $b \leq_a c$ or $c \leq_a b \}$
 - define: $M, w \models OA$ iff there is a $w' \in \mathcal{F} \leq_w$ such that for all w'' for which $(w', w'') \in R$, $M, w'' \models A$
 - where \leq_a are also connected (for all $w \neq w'$ in $\mathcal{F} \leq_a$, $w \leq w'$ or $w' \leq w$): this semantics characterizes SDL (and as we will see below also a dyadic version of SDL)

- multi-relational semantics (generalization of Kripkean semantics)
 - $M = \langle W, R, v \rangle$ where R is a non-empty family of serial accessibility relations R
 - each R represents a normative standard/value system/etc.:
 - $M, w \models OA$ iff there is a $R \in \mathcal{R}$ such that $M, w \models A$ for all $w' \in W$ for which $(w, w') \in R$

- both systems characterize the same consequence relation
System \mathbf{P}

PC If A is a classical tautology then A is an axiom of \mathbf{P}

RM If $\vdash A \supset B$ then $\vdash OA \supset OB$

N $\vdash OT$

P $\vdash \neg O \neg T$
Restricting Inheritance

Replace the inheritance principle

\[\text{RM} \quad \text{if} \; \vdash A \to B \quad \text{then} \quad \vdash OA \to OB \]

by a restricted version:

\[\text{RPM} \quad \text{if} \; \vdash A \to B \quad \text{then} \quad \vdash PA \to (OA \to OB) \]
DPM.1 Axioms

all axioms of classical propositional calculus and

RPM if $\vdash A \rightarrow B$ then $\vdash PA \rightarrow (OA \rightarrow OB)$

RE if $\vdash A \leftrightarrow B$ then $\vdash OA \leftrightarrow OB$

N $\vdash O\top$

AND $\vdash (OA \land OB) \rightarrow O(A \land B)$
Semantics

Neighborhood Frame

A *neighbourhood frame* F is a pair $\langle W, O \rangle$ in which W is a non-empty set of points, e.g., possible worlds, and O is a function assigning every $a \in W$ a set, O_a, of subsets of W; i.e., $O_a \subseteq \wp W$.

Models

A *model*, M, is a pair $\langle F, v \rangle$ where F is a neighborhood frame $\langle W, O \rangle$, and v is a function assigning every atomic formula p of \mathcal{L} a subset of W, i.e., $v(p) \subseteq W$. A *satisfaction relation* \models is defined as follows.

- $T_p)$ $M, a \models p$ iff $a \in v(p)$
- $T\neg)$ $M, a \models \neg A$ iff $M, a \not\models A$
- $T\land)$ $M, a \models A \land B$ iff $M, a \models A$ and $M, a \models B$
- $T\lor)$ $M, a \models A \lor B$ iff $M, a \models A$ or $M, a \models B$
- $T_O)$ $M, a \models O_A$ iff $A|_M \in O_a$
Semantics

For DPM.1: For all $X, Y \subseteq W$ and all $a \in W$:

a) $W \in O_a$

b) If $X \in O_a$ and $Y \in O_a$ then $X \cap Y \in O_a$

c) If $X \subseteq Y$ and $X \in O_a$ and $-X \notin O_a$ then $Y \in O_a$

Condition a) validates N, condition b) validates AND and condition c) validates RPM.
Problem with the Weakenings of **SDL**

- they are weak!
- solution: adaptive strengthening
- e.g., in the context of **P**: apply aggregation conditionally as much as possible
- e.g., in the context of **DPM**: apply inheritance conditionally and as much as possible
Problems with Conditional Obligations

Asparagus – Specificity

- Being served a meal, you ought not to eat with fingers.
- Being served asparagus, you ought to eat with fingers.
- You’re being served asparagus.

What if we model this via classical implication?

- \(m \supset O \neg f \)
- \((m \land a) \supset Of \)
- \(m \land a \)

Problem: This is classically inconsistent (if SDL models \(O \)).
Chisholm’s Paradox: Contrary to Duty Obligations

- John ought not to impregnate Suzy Mae.
- If John impregnates Suzy Mae, he ought to marry her.
- If John doesn’t impregnate Suzy Mae, he ought not to marry her.
- John impregnates Suzy Mae.

Desiderata of a Formal Modeling

- logical independence
- non-triviality
- symmetry/non-ad-hoc modeling
- detachment possible
Chisholm continued

Option 1

- $\top \supset O\neg i$
- $i \supset Om$
- $\neg i \supset O\neg m$
- i

What’s the problem?

Option 2

- $O(\top \supset \neg i)$
- $O(i \supset m)$
- $O(\neg i \supset \neg m)$
- i

What’s the problem?
Chisholm continued

Option 3

- $O(\top \supset \neg i)$
- $O(i \supset m)$
- $\neg i \supset O\neg m$
- i

What’s the problem?

Option 4

- $O(\top \supset \neg i)$
- $i \supset Om$
- $O(\neg i \supset \neg m)$
- i

What’s the problem?
Some Approaches to Conditional Obligations

- use of binary modal operators
- default logic approach
- Input/Output logic
Using preferential semantics for a dyadic version of **SDL**

- \(M = \langle W, \leq, v \rangle \) where \(\leq \) is a connected preorder (reflexive and transitive)

- \(M, w \models O(B/A) \) iff there is a \(w' \in F \leq_w \) such that \(M, w' \models A \land B \) and for any \(w'' \) for which \(w' \leq_w w'' \):
 \(M, w'' \models A \) implies \(M, w'' \models B \).

- axiomatized by:
 - **RCE** If \(\vdash A \equiv A' \) then \(\vdash O(B/A) \equiv O(B/A') \)
 - **RCM** If \(\vdash B \supset C \) then \(\vdash O(B/A) \supset O(C/A) \)
 - **CK** \(O(B \supset C/A) \supset (O(B/A) \supset O(C/A)) \)
 - **CD** \(O(B/A) \supset \neg O(\neg B/A) \)
 - **CN** \(O(\top/\top) \)
 - **CO\land** \(O(B/A) \supset O(A \land B/A) \)
 - **trans** \((A \geq B) \land (B \geq C) \supset (A \geq C) \) where

\[
A \geq B =_{\text{df}} \neg O(\neg A/A \lor B) \quad \text{(read: "A is at least as good as B")}
\]
SDDL and a Problem with Specificity

Problem: we get Rational Monotonicity:

\[\text{RM} \quad (O(A/B) \land P(C/B)) \supset O(A/B \land C) \]

\[\text{e.g., } (O(\neg f/m) \land P(a/m)) \supset O(\neg f/m \land a) \]

- Various solutions have been proposed to weaken the monotonicity principle further and using different semantics (such as neighborhood semantics).
- All that I know generate other problematic examples (see [17, Part IV])
- One option: instead of “hard-coding” a weakened monotonicity principle, “go adaptive”. I.e., apply monotonicity \((O(A/B) \supset O(A/B \land C))\) defeasibly “as much as possible”.
The Detachment Problem

- Van Eck: “How can we take seriously a conditional obligation if it cannot, by way of detachment, lead to an unconditional obligation?” [21]
- SDDL has not means for detachment
- general problem: the possibility of specificity cases and CTD-cases means that we cannot apply MP naively to conditional obligations
- how to deal with this problem then? E.g.,
 - Input/Output logic (Makinson / Van Der Torre)
 - Adaptive logics (the Gent crew)
 - Default Logic (Horty)

Bas C. Van Fraassen. Values and the heart’s command.
Dov M. Gabbay.
Bipolar argumentation frames and contrary to duty obligations, preliminary report.

Lou Goble.
Multiplex semantics for deontic logic.

Lou Goble.

Lou Goble.
Normative conflicts and the logic of ‘ought’.

Lou Goble.
Deontic logic (adapted) for normative conflicts.
John F. Hory.
Reasoning with moral conflicts.

David Makinson and Leendert Van Der Torre.
Constraints for Input/Output logics.

Joke Meheus, Mathieu Beirlaen, and Frederik Van De Putte.
Avoiding deontic explosion by contextually restricting aggregation.

An argumentation inspired heuristic for resolving normative conflict.
Christian Straßer.
An adaptive logic framework for conditional obligations and deontic dilemmas.

Christian Straßer.
A deontic logic framework allowing for factual detachment.

Christian Straßer.

Christian Straßer and Ofer Arieli.
Sequent-based argumentation for normative reasoning.
