RUB | Fakultät für Philosophie und Erziehungswissenschaft | Institut für Philosophie II
    Research group Home | AnneMarie annemarietiny.jpg | Christian tiny_christian.stra_er.jpg | Dunja tiny_dunja._e_elja.jpg | Jesse tiny_jesse.heyninck.jpg | Mathieu tiny_mathieu.beirlaen.jpg | Pere pere.jpg | FAQ for members

Here you find a list of teaching activities of members of the Research Group for Non-Monotonic Logics and Formal Argumentation.

Winter Term 2017/2018

tiny_dunja._e_elja.jpg
  • Introduction to Scientific Rationality (University of Vienna)
tiny_dunja._e_elja.jpg
  • Contemporary Discussions on Scientific Pluralism (University of Vienna)
tiny_dunja._e_elja.jpg
  • Argumentation in Context (RUB, Optionalbereich)
tiny_dunja._e_elja.jpg
  • Debating (RUB, Optionalbereich)
tiny_jesse.heyninck.jpg
  • Logic Boot Camp 2018, a two day intensive course for bachelor and master students (organised together with Daniel Skurt), Ruhr-University, Bochum.
tiny_christian.stra_er.jpg
  • Grundkurs Logik: Einführungsvorlesung in die Logik
tiny_christian.stra_er.jpg
  • Übung zum Grundkurs Logik
tiny_christian.stra_er.jpg
  • Colloquium for Logic and Epistemology (together with Heinrich Wansing)
pere.jpg
  • Epistemic Logic, Master of Cognitive Science

Summer Term 2017

tiny_jesse.heyninck.jpg
  • Formal Argumentation (RUB)
tiny_christian.stra_er.jpg
  • Doktorandenkolloquium (together with Helmut Pulte, RUB)
tiny_christian.stra_er.jpg
  • Colloquium for Logic and Epistemology (together with Heinrich Wansing, RUB)

Winter Term 2016 / 2017

tiny_dunja._e_elja.jpg
  • Arguments in Action! (RUB, Optionalbereich) Wednesday 16:00–18:00, 18:00–20:00
tiny_christian.stra_er.jpg
  • Philosophische Logik Tuesdays 12:00–13:30 (RUB)
tiny_christian.stra_er.jpg
  • Übung zur Philosophischen Logik Tuesdays 14:30–16:00 (RUB)
tiny_christian.stra_er.jpg
  • Logic: Introductory Course Thursdays 10:00–12:00 (RUB)
tiny_christian.stra_er.jpg
  • Doktorandenkolloquium (together with Helmut Pulte, RUB) Thurdays 14:00–16:00
tiny_christian.stra_er.jpg
  • Colloquium for Logic and Epistemology (together with Heinrich Wansing, RUB) Thursdays 16:00–18:00
tiny_jesse.heyninck.jpg
  • Argumentation Based on Classical Logic, a short course given at the Logic Boot Camp 2017 (a two day intensive course for bachelor and master students), Ruhr-University, Bochum.

Summer Term 2016

tiny_christian.stra_er.jpg
  • Prädikatenlogik: Logik II (RUB)

    Dieser Kurs bietet eine Einleitung in die Prädikatenlogik an. Die Sprache der Prädikatenlogik umfasst Quantoren und Prädikate. So ist es möglich, Schlüsse wie den folgenden zu formalisieren:

    • Alle Menschen sind sterblich.
    • Sokrates ist ein Mensch.
    • Folglich ist Sokrates sterblich.

    Zunächst wird im Kurs die klassische Prädikatenlogik erster Stufe diskutiert, in der über Individuen quantifiziert wird. Dieses auf Frege, Peirce und Russell zurückgehende System ist das zentrale System der formalen Logik mit Anwendungsbereichen weit über die Philosophie hinaus, etwa die Informatik, die Mathematik, oder die Linguistik. Oft, wenn eindeutige und präzise Definitionen gefordert sind, greifen Wissenschaftler auf die formale Sprache der Prädikatenlogik zurück. Einige der wichtigsten Resultate der formalen Logik wurden im Kontext der Prädikatenlogik erster Stufe erzielt. Manche dieser Resultate, wie die Vollständigkeits- und Unvollständikeitstheoreme von Gödel, oder das Theorem von Löwenheim und Skolem werden im Kurs erklärt und hinsichtlich ihrer philosophischen Relevanz diskutiert.

    Neben der Semantik werden Beweissysteme vorgestellt, wie semantische Tableaus und das natürliche Schließen. Die Anwendung dieser Techniken wird in der begleitenden Übungsveranstaltung intensiv geübt.

    Je nach Interessenslage der Teilnehmer/innen und sofern Zeit dafür bleibt, bietet sich an, auf etwa folgende weiterführende Themen einzugehen:

    • Prädikatenlogik zweiter Stufe, die Quantifizierung über Eigenschaften bzw. Mengen von Individuen zulässt;
    • Freie Logik, in der nicht-referierende Terme und leere Diskursdomänen zugelassen sind;
    • parakonsistente Prädikatenlogik, in der das Prinzip des Ex Falso Quodlibet aufgegeben wird.

    Voraussetzung für den Kurs ist Grundwissen in der Aussagenlogik (etwa die Absolvierung des Grundkurses Logik). Der Kurs soll Studenten/innen ansprechen, die Spass und Interesse an formalen und präzisen Methoden haben.

tiny_christian.stra_er.jpg tiny_jesse.heyninck.jpg daniel-20.jpg
  • Übung zur Prädikatenlogik: Logik II (RUB)

    Namen der Tutoren   Termine   Raum
    Dominik Lenze   Di 14-16   GABF 04/511
    Kevin Friedrich   Do 16-18   GC 03/46
    Jonas Jakubowski   Fr 12-14   GA 03/46
    Christian Straßer   Mi 10-12   GA 03/46
    Daniel Skurt   Di 16-18   GA 03/46
    Jesse Heyninck   Mi 10-12   GA 3/39
tiny_mathieu.beirlaen.jpg tiny_christian.stra_er.jpg
  • Nonmonotonic logic (RUB)

    Non-monotonic logics aim to capture patterns of defeasible reasoning (DR). DR is indispensable when dealing with a world full of uncertainties: we constantly draw conclusions that we may reject later in view of new information. Moreover, most of human reasoning is defeasible. For instance, when noticing that the streets are wet, I infer that it has been raining. However, once I discern that the roofs are not wet, I retract my previous inference. In situations like this, we make inferences from premises that do not warrant that our conclusion holds: they only warrant that the conclusion is sufficiently likely.

    DR is not restricted to everyday contexts. It is also abundant in the (pure and applied) sciences. When observing time after time again that metals, unlike water, do not expand when solidified, it makes sense to accept the generalization that no metal expands when solidified. However, this conclusion had to be rejected once Gallium was discovered. DR is also an indispensable tool in expert reasoning. When hearing about a patient, John, who shows signs that best fit hyperthyroidism, a physician may conclude that John should be tested further for this condition. However, as soon as our physician is informed that John’s thyroid has been removed, he will retract his previous inference.

    As these examples indicate, DR comes in many forms: we reason from effect to cause (abduction), we make generalizations (induction), we reason on the basis of what is normally or typically the case (default reasoning), we infer on grounds of the information our senses give us about our environment etc. Given that DR is central for human reasoning, this urges us to study DR with exact formal methods. Only in this way are we able to explicate and evaluate reasoning processes in a precise way and to assist and correct people in reasoning.

    In this seminar we will cover several important formal accounts of DR including the domains of default reasoning, reasoning on the basis of inconsistent information, abductive reasoning, etc.

    The literature for the course will be announced during the first sessions.

    Students can get points by giving talks, writings essays, or by means of a written and/or oral test.

tiny_mathieu.beirlaen.jpg tiny_christian.stra_er.jpg
  • [2016-08-22 Mon]–[2016-08-26 Fri]
    Mathieu and Christian will give a tutorial on Introduction to Non-Monotonic Logic at ESSLLI 2016
    More info

Winter Term 2015/ 2016

tiny_christian.stra_er.jpg
  • Vorlesung: Grundkurs Logik I (Material befindet sich auf Blackboard, RUB)

    Die Vorlesung “Grundzüge der Logik” bietet eine elementare Einführung in die klassische Aussagen- und Prädikatenlogik. Die Syntax der Aussagen- und Prädikatenlogik wird motiviert und eingeführt. Das Konzept einer modelltheoretischen Semantik wird erörtert und die Wahrheitsbedingungen der klassischen Junktoren und der Quantoren werden erläutert. Ein besonderes Augenmerk wird auf das Problem der Kompositionalität der Bedeutung angesichts variablenbindender Operatoren gelegt. Die Ausdrucksstärke der klassischen Aussagenlogik wird eingehend behandelt. In die Beweistheorie der klassischen Logik wir durch ein System des Baumkalküls eingeführt. Die Begriffe der Korrektheit und Vollständigkeit eines Beweissystems werden erklärt.

tiny_jesse.heyninck.jpg
  • Exercises for Logic 1 (RUB)
tiny_dunja._e_elja.jpg
tiny_mathieu.beirlaen.jpg
  • Thinking about logic (RUB)

    The study of logic raises interesting philosophical questions and puzzles about knowledge, meaning, rationality, and reality. Why should we accept an inference as valid? When and how is deduction justified? How do we decide what counts as a logical connective and what does not? Besides classical logic, what are the alternative conceptions of logical inference? What, if anything, does logic tell us about the world out there? This course is intended to familiarize students with these questions by means of a number of classic essays in the field, which are carefully selected in terms of their significance, clarity, and accessibility. Most of the texts will be short and non- technical, although a basic understanding of propositional logic is recommended. The seminar will be taught in English. Below is a preliminary selection of texts to be included in the literature list for this course.

tiny_jesse.heyninck.jpg tiny_christian.stra_er.jpg
  • Logic Boot Camp 2016 (together with Daniel Skurt)

Summer Term 2015

tiny_christian.stra_er.jpg
  • Tutorial on Non-monotonic Reasoning as part of the TRS Reasoning School in Natal, Brazil (Aug 31-Sep 4, 2015).

    Defeasible reasoning is indispensable when dealing with a world full of uncertainties: we constantly draw conclusions that we may reject later in view of new information. For instance, when noticing that the streets are wet, I infer that it has been raining. However, once I discern that the roofs are not wet, I retract my previous inference. In situations like this, we make inferences from premises that do not warrant that our conclusions holds: they only warrant that the a conclusion is sufficiently likely. Defeasible reasoning is not restricted to everyday contexts. It is also abundant in the (pure and applied) sciences and in expert reasoning. E.g., when diagnosing a patient, John, who shows signs that best fit hyperthyroidism, a physician may conclude that John should be tested further for this condition. However, as soon as our physician is informed that John’s thyroid has been removed, she will retract her previous inference. As these examples indicate, defeasible reasoning comes in many forms: we reason from effect to cause (abduction), we make generalizations (induction), we reason on the basis of what is normally or typically the case (default reasoning), we infer on grounds of the information our senses give us about our environment, etc. In order to explicate and evaluate such reasoning processes, formal methods were developed: nonmonotonic logics. In this tutorial we will discuss some central approaches in nonmonotonic logic.

tiny_christian.stra_er.jpg
  • Adaptive Logics (RUB), Tuesdays 10–12, GABF 04/358: see here for more information.

    Adaptive logics offer a framework for the formal modeling of defeasible reasoning. When we reason defeasibly, our conclusions do not necessarily follow from our premises, but just likely or usually. One of the first applications of adaptive logics was reasoning on the basis of inconsistencies. The usefulness of Classical Logic is limited for this task since it allows one to derive just any formula when confronted with an inconsistent premise set. Inconsistency-adaptive logics, on the other hand, adapt themselves to a premise set in the following sense: they isolate inconsistencies and at the same time allow for the full power of Classical Logic for consistent parts of the premise set. The idea of letting a logic ’adapt itself to the premise set’ has since been applied to many other forms of defeasible reasoning such as abductive reasoning (deriving explanations: think of Sherlock Holmes), inductive generalizations (to derive from ’some X are A’ that ’all X are A’), normative reasoning in view of conflicting norms (’You shall not kill, but if you do, do it gently.’), default reasoning (’Tweety is a bird, thus she flies.’), and many others. In this seminar we will study adaptive logics, their dynamic proof theory, their semantics, and some of their applications. If time allows we will also investigate links to other central formal frameworks for defeasible reasoning. The literature will be announced in the first meeting. A basic understanding of propositional logic is advisory.

tiny_christian.stra_er.jpg
  • Normative Reasoning and Deontic Logics (RUB), Thursdays, 12-14, GABF 04/609: see here for more information and exercises.

    Deontic logic offers a formal explication of reasoning with normative notions such as obligations and permissions. It forms a subclass of modal logic. We start off with standard deontic logic which has the virtue of simplicity. However, it has its limitations. One such limitation concerns normative conflicts (for instance, when you make two promises that you cannot both fulfill), another one concerns conditional norms (for instance, think of a sign which says “Parents are allowed only if accompanied by children”). We will also study several alternative systems that were devised to tackle these problems, such as input/output logic, defeasible deontic logic, default logic, STIT-logic, etc. For the seminar no previous knowledge of modal logic is required though a basic understanding of propositional logic is advisory. Participants have the opportunity to familiarize themselves with central mechanisms in modal logic such as standard Kripkean relational (possible worlds) semantics and generalizations thereof such as neighborhood semantics. The literature will be announced in the first meeting.

tiny_dunja._e_elja.jpg
  • Scientific Pluralism (RUB), Tuesdays, 14-16, GABF 04/358

    In this seminar we will discuss different conceptions of scientific pluralism proposed in the recent literature, with a special focus on the relation between pluralism and cognitive goals of science, such as scientific objectivity. While a plurality of scientific inquiries in a given domain is often considered fruitful for scientific progress, disagreements among scientists advocating rivaling theories can also pose a threat to scientific objectivity. This motivates the question: which epistemic and methodological norms should guide scientists working in a domain that has a plurality of inquiries and theories? Depending on which cognitive goals and standards are prioritized, this question has been answered in different ways. While some have argued for a critical interaction among disagreeing scientists, others have argued for a restricted information flow between the rivaling camps. Moreover, the role of noncognitive values (such as social, political, ethical or idiosyncratic values) in scientific practice introduces additional problems to normative accounts of scientific pluralism.

    Literature:
    The exact course material will be provided during the course. The relevant literature includes the following:

    • Carrier, M. (2013). Values and objectivity in science: Value-ladenness, pluralism and the epistemic attitude. Science & Education, 22, 2547-2568.
    • Chang, H. (2012). Is Water H2O? Evidence, Pluralism and Realism. Springer. Kellert, S. H., Longino, H. E., & Waters, C. K. (Eds.) (2006). Scientific pluralism. Minneapolis: University of Minnesota Press.
    • Rolin, K. (2011). Diversity and dissent in the social sciences: The case of organization studies. Philosophy of the Social Sciences, 41 , 470-494.
    • Solomon, M. (2006). Groupthink versus the wisdom of crowds: The social epistemology of deliberation and dissent. The Southern Journal of Philosophy, 44
    • Zollman, K. J. (2010). The epistemic benefit of transient diversity. Erkenntnis, 72 , 1735.

Spring Term 2015

tiny_christian.stra_er.jpg
  • Adaptive Logics applied to the Philosophy of Science (UGent), block and video sessions by arrangement. The homepage for the course is situated here.
tiny_dunja._e_elja.jpg
  • Discovery and Creativity (UGent), block and video sessions by arrangement

Winter Term 2014/ 2015

tiny_christian.stra_er.jpg
  • Introducing defeasibility into formal logics: a survey of nonmonotonic logics (RUB)

    Defeasible reasoning is indispensable when dealing with a world full of uncertainties: we constantly draw conclusions that we may reject later in view of new information. Moreover, most of human reasoning is defeasible. For instance, when noticing that the streets are wet, I infer that it has been raining. However, once I discern that the roofs are not wet, I retract my previous inference. In situations like this, we make inferences from premises that do not warrant that our conclusion holds: they only warrant that the conclusion is sufficiently likely. Defeasible reasoning is not restricted to everyday contexts. It is also abundant in the (pure and applied) sciences. When observing time after time again that metals, unlike water, do not expand when solidified, it makes sense to accept the generalization that no metal expands when solidified. However, this conclusion had to be rejected once Gallium was discovered. DR is also an indispensable tool in expert reasoning. When hearing about a patient, John, who shows signs that best fit hyperthyroidism, a physician may conclude that John should be tested further for this condition. However, as soon as our physician is informed that John’s thyroid has been removed, he will retract his previous inference. As these examples indicate, DR comes in many forms: we reason from effect to cause (abduction), we make generalizations (induction), we reason on the basis of what is normally or typically the case (default reasoning), we infer on grounds of the information our senses give us about our environment etc. Given that DR is central for human reasoning, this urges us to study DR with exact formal methods. Only in this way, are we able to explicate and evaluate reasoning processes in a precise way and to assist and correct people in reasoning. In this seminar we will cover several important formal accounts of defeasible reasoning including the domains of default reasoning, reasoning on the basis of inconsistent information, abductive reasoning, etc. The literature for the course will be annouced during the first sessions. Students can get points by giving talks, writings essays, or by means of a written and/or oral test.

tiny_christian.stra_er.jpg
  • Eine Einführung in die formale Argumentationstheorie (RUB)

    In den 1970ern formierte sich eine kritische Bewegung von ArgumentationsTheoretikern/innen bzw. sog. Informalen Logikern/innen. Diese stellten Unzulänglichkeiten der formalen Logik heraus hinsichtlich der Analyse von lebensnahen Argumenten und Schlußweisen jenseits des sterilen Logik-Labors. Ein zentrales Merkmal von vielen Argumenten ist, dass diese auf unterschiedliche Arten kritisierbar sind. Dies zieht nach sich, dass hier die rein deduktive Analyse der klassischen formalen Logik an ihre Grenze stößt, der zufolge die Akzeptierbarkeit der Prämissen die Akzeptierbarkeit der Conclusio (notwendigerweise) nach sich zieht. Neuere Ergebnisse in der formalen Argumentationstheorie und im Bereich der NichtMonotonen Logiken stellen in Aussicht, dass sich die beiden Bereiche der formalen und informalen Logik annähern. Dies ist philosophisch signifikant, da sich damit die Domäne der formal präzisen Methoden erweitert. Entsprechend floriert die formale Argumentationstheorie im Bereich der Künstlichen Intelligenz. Nicht nur ist eine formale Argumentationstheorie nützlich zur Analyse von einem Austausch von Argumenten zwischen mehreren beteiligten Personen. Neueste Einsichten in der Kognitionspsychologie deuten an (und bestätigen damit eine ältere Einsicht Platons), dass ein argumentatives Modell auch angemessen ist zum Verständnis des Schlussfolgerns einer Person im Sinne einer unilateralen Argumentation mit sich selbst. Im Rahmen dieses Seminars werden verschiedene Entwicklungen in der formalen Argumentationstheorie vorgestellt. Credits können erworben werden mit Hausarbeiten und Vorträgen. Die Literatur wird im Seminar bekanntgegeben. Falls Studenten/innen teilnehmen, die nicht flüssig im Deutschen sind, wird das Seminar in Englisch gehalten.

tiny_dunja._e_elja.jpg
  • The Problem of Theory Choice (RUB)

    The problem of theory choice is traditionally considered one of the central problems of philosophy of science and scientific methodology. Answering the question how scientists (are to) choose among a number of rivaling theories is of direct relevance for the way in which we understand scientific rationality. The topic became the subject of heated debates in the twentieth century philosophy of science especially after Kuhn (Kuhn (1962), Kuhn (1977)) had challenged the view that the growth of scientific knowledge is cumulative. While a lot has been written on the criteria underlying theory choice, the idea that scientists choose only one of the rivals, while discarding others as epistemically futile, has been criticized from a pluralist point of view (e.g. Chang (2012)). This poses the question: what does “theory choice” precisely mean when applied to scientific practice? What do scientists exactly choose, to which end do they make such a choice, and in view of which criteria? In this course we will analyze this problem, and discuss the above questions in view of the relevant literature. We will begin by relating the notion of theory choice to the distinction between the context of discovery and the context of justification (Reichenbach (1938)), and to critical analyses of frequent interpretations of this distinction (Nickles (1980), HoyningenHuene (2006)). This will help us to distinguish between different types of theory choice. We will then examine the role of these notions in particular historical case studies. The course material will be provided during the course.

    References:

    • Chang, H. (2012). Is Water H2O? Evidence, Pluralism and Realism. Springer. Hoyningen-Huene, P. (2006). Context of discovery versus context of justification and Thomas Kuhn. In J. Schickore, & F. Steinle (Eds.), Revisiting Discovery and Justification: Historical and philosophical perspectives on the context distinction (pp. 119–131). Netherlands: Springer.
    • Kuhn, T. (1962). Structure of Scientific Revolutions. (3rd ed.). Chicago: The University of Chicago Press.
    • Kuhn, T. (1977). The Essential Tension: selected studies in scientific tradition and change. Chicago: University of Chicago press.
    • Nickles, T. (1980). Introductory essay: Scientific discovery and the future of philosophy of science. In T. Nickles (Ed.), Scientific Discovery: Case Studies (pp. 1–59). Dordrecht: D. Reidel Publishing Company.
    • Reichenbach, H. (1938). Experience and Prediction. An Analysis of the Foundations and the Structure of Knowledge. University of Chicago Press.

Author: Research Group for Non-Monotonic Logics and Formal Argumentation

Created: 2019-04-01 Mon 16:24

Validate