Floating surface potential of spherical dust grains in magnetized plasmas

Dr. Dennie Lange, Prof. Dr. Rainer Grauer
Ruhr University Bochum, Lehrstuhl für Theoretische Physik I, Plasma-, Laser- und Atomphysik, D-44780 Bochum, Germany
Dennie.Lange@rub.de

Introduction

Abstract
Plasma embedded dust grains getting charged because plasma particles hitting the grain surface and will be absorbed. Due to the larger mobility of electrons grains acquire a negative floating charge. A dynamical equilibrium charge is reached when electron and ion current to the grain are equal. The charging currents are substantially changed if an external magnetic field is present because plasma particles motion becomes aligned with the field lines. In this work a particle-in-cell (PIC) simulation study of the charging of single, stationary and spherical grains in magnetized plasma environment is presented.

The numerical model
OPAR is a full 3D PIC code with a single, spherical dust grain in the center of a Cartesian grid system, see Fig. 1 (left panel). The sphere is treated as an inner boundary, plasma particles reaching the surface are removed from the simulation and their charge is accumulated to the floating charge \(Q \). The points on the grain surface are set in every time step to the potential \(V_g \). At the outer boundary particles can leave the system and new particles are injected to represent an infinite plasma medium outside the simulation box. The magnetized plasma is created by overlapping the box with a homogeneous and constant magnetic field in z-direction, see Fig. 1 (right panel).

Plasma parameters
The following plasma parameters were used in the simulations:
• Plasma density: \(n_e = n_i = 6 \cdot 10^{19} / m^3 \)
• Temperature of electrons and ions: \(kT_e = kT_i = 1 \text{ eV} \)
• Plasma frequency of electrons: \(\omega_p = 4.37 \cdot 10^9 / s \)
• Debye-length of electrons and ions: \(\lambda_e = \lambda_i = 96 \mu m \)
• Grain radius: \(R = 10, 20, 50, 100 \) or \(200 \mu m \)
• Most possible gyroradius of electrons: \(R_{ge} = 400 \) to \(0.01 \mu m \)
• Magnetic field strength: \(B_z = 0.004 \) to \(169 T \)

In a Maxwellian plasma, the most possible gyroradius is

\[
R_{ge} = \frac{m e B_z}{2e} \left(\frac{kT_e}{2eB_z} \right)^{1/2} \quad \text{with} \quad v_m = \sqrt{\frac{2kT_e}{m}}
\]

Simulation results
Equilibrium surface potential
In Figure 2 (left panel) the time averaged surface potentials in equilibrium state for the five grains are shown for different gyroradii. With decreasing gyroradius (increasing \(B_z \)) the potentials become more negative for all grains. The significant change started when electrons gyroradius becomes considerably smaller than \(\lambda_e \).

Plots to a modified OML theory for full magnetized charging currents [1]. The absolute value of the potential is not directly dependent on \(B_z \), but on the ratio \(\eta_{ei} \), which is shown in the right panel of Fig. 2. The surface potentials are not decreasing for \(\eta_{ei} < 1 < \eta_{ie} \) in such a way which is predicted by a modified OML approach which considers a magnetized electron but unmagnetized ion charging current because electrons most possible gyroradius is always smaller than of ions a Maxwellian plasma [2]. For \(\eta_{ei} > 1 \) the potentials getting more negative and the absolute value becomes independent of the grain radius.

Potential structure
The potential distribution around a grain in a strong magnetized plasma depends on the ratio \(R/\lambda_e \), see Fig. 3. For the smallest considered grain radius (left panel) rotational symmetry remains nearly unchanged whereas for the largest grain (right panel) a negative potential profile in z-direction is formed because electrons with not sufficient energy to overcome the surface potential will be reflected backwards along \(B_z \) and every ion which is moving along a field line which penetrates the grain surface will be absorbed.

Conclusions
Although electrons are always stronger coupled to a magnetic field than ions in a Maxwellian plasma, a simultaneously situation of magnetized electron and unmagnetized ion charging current never exist. Due to the attractive potential, ions absorbing kinetic energy and its gyroradius strongly increases on the way to the grain by what ions with a certain phase angle of the spiral motion can miss the surface. This decrease of ions charging current is stronger than of electrons in a magnetized plasma for all grain radii.

Literature / Acknowledgments

Support from the German Research Foundation (Research Training Group 1051) and from the Research School of the Ruhr-University Bochum is gratefully acknowledged.