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Space, Interaction, and Gauge Invariance

Michael Drieschner

Abstract. The claim is analyzed that gauge invariance introduces in some

miraculous way interaction into a so far free theory. The result of the analysis
is that interaction is put into the theory by hand, although in a somehow
hidden way. This is made clearer by a work of Paul Teller. The essential
role of space for interaction is emphasized, ending with a critical glimpse on
the usual interpretation of the Aharonov-Bohm effect.

1. Introduction

The gauge principle is a powerful tool in modern field theory. It seems that
we can introduce an interaction theory in starting from a free field theory and
postulating its gauge invariance: By some magic then an interacting field theory
comes out.

Wolfgang Pauli introduced this powerful tool into physics in his famous
paper [8]. But at that time he did not bother much with logical or structural
clarification of his arguments. He begins with a general Lagrangian without an
external field, and then rather suddenly introduces interaction via the covariant
derivative with the words: “With this assumption it is possible to introduce an
external electromagnetic field by replacing the operation ∂/∂x [...] by the operator
Dk = (∂/∂x) − iϵϕk”(p. 206). On the next page he introduces local phase trans-
formations: “The theory obtained in that manner is invariant with respect to the
gauge transformation ..., where now α may be an arbitrary function of position.”
– and that is all he says about ‘derivation’.

Sunny Auyang in her book [2] describes the procedure in detail – we shall
describe a similar derivation in the next paragraph – with justifications like: “It
is unreasonable to expect that phase changes are always global.” [2, p. 57]. She
continues under the heading of The Logic of Gauge Field Theories: “... we start
with a free matter field and derive the interacting field system in the following steps
...” [2, p. 58]. – This is a rather strong claim, since she talks about deriving the
interacting field system, and she ought to know what she is talking about, being a
philosopher and not a physicist. We shall have a look at her arguments shortly.

But the strongest claim is by Holger Lyre in his paper for the GTR conference
of 1999 at Notre Dame[7]. He maintains explicitly that “Miraculously, it turns out
that this coupling can in fact be derived just by postulating the invariance of [the
Lagrangian] under local gauge transformations instead of the corresponding global
ones.” (His italics!)

The purpose of this paper is to have a closer look at such claims and their
justification.

I thank Holger Lyre and Tim Eynck for interesting discussions.
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2. The Introduction of Gauge Invariance

Let us consider the free Dirac equation

(2.1) (iγµ∂µ −m)ψ(x) = 0,

where ψ(x) is a quantum mechanical state function. This equation remains valid if
we transform ψ(x) by a phase factor eiqα, with constants q, α:

(2.2) ψ(x) → ψ′(x) = eiqαψ(x), ψ̄(x) → ψ̄′(x) = e−iqαψ̄(x).

This is good old quantum mechanics, where all functions that differ only by a
phase factor represent the same quantum mechanical state; mathematically a state
is represented by a subspace of Hilbert space. [4][5]

Now comes the miraculous trick that is supposed to bring interaction into the
game: Instead of a “global” constant α we introduce a “local”, i.e. spacetime
dependent, phase function α(x). The justification of this step usually is rather
foggy, saying something like: “Since all physics is local, the phase invariance must
be local”, or, as Sunny Auyang puts it, after the phrase quoted above: “The
symmetry U(1) is localized to each point x in the field”. [2, p. 57, her italics]

Taken literally this is all nonsense: Expectation values of all observables are
invariant under global phase transformations, as one can easily see, since global
phase factors commute with all operators. This is not true any more for a “local”
phase factor. Take, for a simple example, 1 α(x) = p0 · x. This changes, as one
can easily calculate, the expectation value of p̂x = −i∂x from px to px + p0. – To
put it more generally: A local phase transformation does, in general, change the
expectation value of an operator if that operator contains a differentiation.

Thus let us do what physicists usually do: Try local phase transformations and
see what comes out. But – I want to emphasize – be aware of the fact that this
transformation changes the quantum mechanical state!

Now let us continue the “derivation”: The local phase transformation

(2.3) ψ(x) → ψ′(x) = eiqα(x)ψ(x)

changes the free Dirac equation (2.1) into

(2.4) (iγµ∂µ −m)ψ′(x) = −q · γµ∂µα(x) · ψ′(x).

We are taking this equation as our new field equation.
Then the physicist’s recipe prescribes the following:
Define

(2.5) Aµ(x) = −∂µα(x).
Insert (2.5) into (2.4); this gives (omitting the primes) the equation:

(2.6) (iγµ∂µ −m)ψ(x) = q · γµAµ(x) · ψ(x).
Now define for Aµ(x) what Wolfgang Pauli calls a gauge transformation of

the second type[8, p. 207]:

(2.7) Aµ(x) → A′
µ(x) = Aµ(x)− ∂µα(x),

using the same function α(x) as in (2.3).
If one applies both transformations, (2.3) and (2.7), at once, equation (2.6) is

left invariant.

1Only in this paragraph the designation x for the four-dimensional coordinates is changed to

x, and x designates one of the space coordinates.
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This can be achieved as well by replacing the derivative ∂µ by the “covariant
derivative”Dµ = ∂µ+iqAµ—as was quoted form Pauli above. It can be shown that
Aµ(x) has all transformation properties of the electromagnetic potential. – This is
all you have to do, and, hey presto, there is a true enough interaction equation.2

3. Magic Uncovered

Let us now have a closer look at the fingers of those magicians: What do they
really put into the trick, in order to get interaction out of it?

We start with the free Dirac equation (2.1): No interaction! Then we put local
phase transformations into the trick: First ingredient! The result is (2.6). Now look
closely: The right side of (2.5) is a (space-time) gradient. If we interpret it as an
electromagnetic potential, it is a case of zero electromagnetic field: So there is still
no interaction! Thus, local phase transformation does not introduce interaction.

Where does interaction come in, since it is apparently not by local phase trans-
formations? – In reality it is a second ingredient, put in by hand, and camouflaged
by the innocent looking definition (2.5): Local phase transformation by itself in-
troduces only field zero potentials. But the magician uses that opportunity to
generalize the equation and admit any electromagnetic potential. This is an extra
step in the argument, which is usually not mentioned; but it is by no means self
evident. Going on from field zero potentials to really interacting ones is in fact a
decision; and this is where interaction comes in!

4. Why Does It Work?

The two types of so-called gauge transformations involved [8, p. 207] are of
quite different quality: Gauge transformations of the second type are well known
from classical electrodynamics; they display the “gauge freedom” of the electromag-
netic potential, because different potentials entail the same electric and magnetic
fields if their difference is a (four dimensional) gradient. Thus a second type gauge
transformation changes only the description, not its physical content; it is conven-
tional. The same is true for the “global” phase factor, but it is not true for the
local phase transformations, the “gauge transformations of the first type”: They do
change the quantum mechanical state, i.e. the physical meaning of the description.

5. The analogy with General Relativity

Paul Teller3 gives an account of the “gauge argument” that is much more to
the point and a lot clearer than the usual “derivation” described above. In his
argument he maintains that “gauge transformations of the first type”, contrary to
their face value, are conventional as well.

Teller uses an analogy with coordinate transformations in geometry: If we have
a flat space with Cartesian coordinates, we can calculate the difference between vec-
tors at distant points by subtracting directly their coordinate values. But imagine
we had introduced curvilinear coordinates into that (still flat) space. Then, in
order to calculate the difference between vectors at distant points we have to in-
troduce a prescription of parallel transport—something that compensates for the
consequence of the merely conventional coordinate change. Teller considers “local

2For a very reasonable account of the logical structure in the framework of fiber bundles cf.
[9].

3[10]; Teller refers to Moriasu[8].
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coordinate transformations” as conventions, analogous to curvilinear coordinates
in a flat space: We can introduce local phase transformations if we compensate
for their influence in the description of reality—namely, in our case, by adding the
Aµ-term to form the covariant derivative.

This step is the same as the first step in the “derivation” described above.
It is considered by Teller—convincingly—as merely conventional. After this step
equation (2.5) still applies: There are no electromagnetic fields— in analogy with
a flat space.

But now the stage is set for the second step, namely for introducing interac-
tion, in the same way as curvilinear coordinates in a flat space set the stage for
introducing a non-flat space. The second step is here, replacing the field free Aµ

by a really interacting Aµ, with an electromagnetic field ̸= 0. This is really a new
step, as described above, that is not necessitated by the first step. But introducing
local phase transformations at first conventionally (like curvilinear coordinates in
flat space) makes visible a possibility that was hidden before. In this respect the
work of Paul Teller gives really new insight into the secret inner workings of gauge
field theory.

6. The role of space in interaction

What does it mean that the interaction equation is invariant under gauge trans-
formations? – The quantum mechanical state is changed physically by the gauge
transformation, whereas everything else is even on the surface transformed only
conventionally, and remains unchanged as far as physical content is concerned.
This means, quantum mechanical states that can be transformed into each other
by gauge transformations are valid solutions for the same physical situation, espe-
cially for the same interacting electromagnetic field.

This is very interesting: What all the ψ functions that are transformed into
each other by gauge transformations have in common is their spatial probability
distribution. Thus the spatial probability distribution seems to be the essential
property for interaction – in this case of the Dirac particle with the electromagnetic
field, but since gauge invariance seems to be rather universal, this might be a
property of all kinds of interactions.

This is a feature that has been discussed for a long time. C.F. von Weiz-
säcker claims that W. Heisenberg made a point of it, and at least Weizsäcker
himself has discussed it in several places (cf. [11, p. 203], [12, p. 381]).

This seems to bring us closer to the real explanation of the role of gauge in-
variance for theories of interaction: Gauge invariance groups quantum mechanical
states into equivalence classes all members of which have the same spatial proba-
bility distribution, and all states of one equivalence class interact in the same way
with the field.

Thus a gauge invariant equation shows most clearly how and where interaction
comes in. This might be the true reason behind the introduction of “local” phase
transformations.

7. Aharonov-Bohm effect

A topic that is frequently discussed in this environment is the Aharonov-Bohm
effect[1]. Many people maintain that it shows the direct physical significance of
the electromagnetic potential, even of different effects of potentials with the same
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electromagnetic field; and that this supports the claim of the “miraculous” origin
of the interaction from local phase transformations.

But, as we have seen, nothing is miraculous about the introduction of inter-
action. Gauge invariance just indicates a good place where to put interaction in
by hand. And by the same token nothing is miraculous about the influence of the
electromagnetic potential in the Aharonov-Bohm effect either; it is really the elec-
tromagnetic field way outside in space that is responsible for the effect. The reason
for the surprise is a double misconception: first one forgets that the field free space
is an idealization; but the field integrated over all space outside the solenoid exactly
compensates the field within. The second misconception is the classical image of an
electron spatially concentrated at its path; but the wave function of the electron is
spread out all over space, and its interaction with the electromagnetic field extends
all over space as well.

8. Conclusion

Thus, if we look carefully at our concepts of space and interaction, all miracle
vanishes out of gauge theory, and out of Aharonov-Bohm as well.
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