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1 Introduction

In [Qui95] Frank Quinn introduces a machinery for constructing spectra from “bordism-
type theories”. Examples of bordism-type theories arise from manifold n-ads, Poincaré n-
ads and from Ranicki’s symmetric and quadratic Poncaré n-ads. In [LM09], Gerd Laures
and James E. McClure define a structure with stronger axioms, which they call an ad
theory.
An ad theory consists of a target category A and the ads, which are certain functors

from the categories of oriented cells of a ball complex into the target category. These ads
have to fulfill the axioms of an ad theory. For example, the oriented compact topological
manifolds with boundary form the target category of the ad theory of oriented topological
bordism. A bordism between two closed manifolds is a functor F from the category of
the oriented cells of the ball complex I (the complex consisting of one 1-cell whose
boundary is the disjoint union of two 0-cells) to manifolds with boundary which has
certain properties: It shifts dimensions by a fixed value, it is compatible with taking
boundaries and it somehow respects orientations.

Figure 1: A bordism as an I-ad.

Such bordisms are the I-ads of this ad theory. If K is an arbitrary ball complex, then
the K-ads can be seen as a generalization of the concept of bordism. For example if K
is ∆n then we speak of n-ads. A morphism of ad theories is a functor between the target
categories that preserves ads.
To an ad theory one assigns its Ω-spectrum Q (this is Quinn’s spectrum construction)

and this defines a functor from the category of ad theories to the category of Ω-spectra.
The spaces Qk of the spectrum Q are the realizations of the semisimplicial sets defined
by the n-ads of degree k. Furthermore, one can assign to an ad theory its bordism
groups and a cohomology theory representing this bordism groups which is naturally
isomorphic to the cohomology theory associated to Q.
The construction of Q only depends on the target category and not on a bundle theory

like the Pontryagin-Thom construction. Another advantage is that there is no choice of
transversal intersections needed: The idea is, that by looking at the ∆n-ads one only
considers those simplices that define transversal intersections when restricted to the faces
of ∆n.
Laures and McClure prove that all the standard examples of bordism type theories

fulfill the axioms of an ad theory and they construct a functor from ad theories to
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the category of symmetric spectra which is weakly equivalent to Quinn’s construction.
Furthermore they show that the symmetric spectrum is a strictly associative ring spec-
trum if the ad theory is multiplicative (see [LM09, Definition (16.4)]). Multiplicativity
is analogous to the existence of Cartesian products for topological manifolds and its
compatibility with dimension, reversion of the orientation and bordism.
The aim of this work is to answer the question, what an equivariant ad theory should

be and how equivariant ad theories can be constructed. In particular we want to get
some kind of equivariant spectra and equivariant (co)homology theories from such con-
structions.
For manifolds groups appear, if one generalizes toG-manifolds andG-bordism. Guided

by this example, the first step is to construct ad theories with target categories consisting
of G-objects.
It now turns out to be useful to adopt the point of view on equivariant (co)homology

theories that is taken in the work of Wolfgang Lück and others (see [DL98], [KL05]
and [Lüc05]). There equivariant (co)homology theories consist of G-(co)homology the-
ories which are linked by a so-called induction structure. In particular one gets G-
(co)homology theories from functors of the orbit category or(G) to (Ω)-spectra and
equivariant (co)homology theories from functors from a category of small groupoids to
(Ω)-spectra which take equivalences of groupoids to weak equivalences of spectra. The
category of groupoids has to contain all transport groupoids of homogeneous spaces of
the form G/H for subgroups H of a group G.
Because of the functorial flavor of the definition of ad theories and the fact that

an equivalence of target categories induces isomorphisms of the bordism groups and
therefore weak equivalences between the associated spectra, we are lead to a more general
question: Suppose given an ad theory with target category A, is it possible to construct a
new ad theory whose target category is the functor category of functors C → A, where C
is a small category? In particular C should be allowed to be the transport groupoid of
a homogeneous space of the form G/H. This would define a contravariant functor from
groupoids to Ω-spectra as above and would allow us to apply the construction of an
equivariant cohomology theory to it.
The first we have to do is to restrict ourselves to those small categories C that have

exactly one isomorphism class of objects. This ensures that we have a well-defined
notion of dimension for the objects of the functor category. The transport groupoids of
the G-sets G/H all have this property, in fact they are equivalent to the category of the
group H.
Then we discover two new properties of ad theories, a functoriality property of the

gluing constructions and a functoriality of the cylinder constructions. See Section 3.2
for details. The main result (see Theorem 3.3.1) of this work is, that these properties
are sufficient to construct a new ad theory whose target category is AC .
The construction of this new ad theory is functorial in the ad theory and in C. We

observe that the new ad theory is multiplicative if the old ad theory was multiplicative.
We generalize this construction to functors to a larger version of the original target
category which contains more morphisms. This is necessary, because for example the
target category of oriented topological bordism contains only inclusions, but we need
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at least orientation-preserving homeomorphisms to be able to describe non-trivial G-
actions. We also examine the case of a full subcategory of the new target category of
functors, to be able to construct ad theories of manifolds with continuous G-action and
with restricted isotropy.
Having done all this we can apply the construction of equivariant cohomology theories

to such an ad theory with functorial gluing and cylinder constructions. The result is
an equivariant cohomology theory that represents the bordism groups of the new ad
theories with values in AG , where G is the category of the group G.
We prove that all the standard examples of ad theories have these functoriality prop-

erties of the gluing and cylinder constructions. The bordism groups of the new ad theory
with values in topological oriented G-manifolds are the usual G-bordism groups, which
justifies our construction. Thus we get an equivariant cohomology theory representing
equivariant bordism of topological manifolds. We also get the G-homology theory for
bordism of oriented topological G-manifolds. It is remarkable, that the associated Quinn
spectrum really represents G-bordism, because this is generally not true for the Thom
spectrum due to a failure of transversality in the equivariant situation.
We also get spectra and equivariant theories for geometric, symmetric and quadratic

Poincaré ad theories and we conclude with some remarks on another possible construc-
tion of equivariant ad theories for symmetric and quadratic Poincaré ad theories.
Outline of this work: First we introduce ad theories and the main results of the

work of Gerd Laures and James E. McClure in Section 2. Examples are deferred to
Section 5. Secondly, we define the new functoriality conditions and construct the new
ad theories whose target categories are diagram categories. This is done in Section 3.
The generalizations mentioned above are also carried out there.
The notions of or(G)-spectra, G-(co)homology theories and equivariant (co)homology

theories are introduced at the beginning of Section 4. We then apply the methods of the
works of Lück and others (see [Lüc05], [DL98] and [KL05]) to ad theories with functorial
gluing and cylinder constructions to get the equivariant cohomology theories we wanted.
In Section 5 we investigate the standard examples and show that they all have func-

torial gluing and cylinder constructions. We examine some of the new ad theories and
equivariant cohomology theories we get.
The last chapter is an appendix which contains basic definitions and results we will

need throughout this work. We refer to it when necessary.
Acknowledgements. First, I would like to thank Prof. Dr. Gerd Laures for the

subject of this work and his support. Secondly I want to say thank you to all the members
of the topology chair at the Ruhr-Universität Bochum for all the helpful discussions and
the pleasant atmosphere. In particular I am grateful to Dr. Markus Szymik. I appreciate
the financial support from the Studienstiftung des deutschen Volkes (German scholarship
foundation) during my studies.
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2 Ad theories

2 Ad theories
Here we want to introduce ad theories which are the main subject of this work. We cite
the definitions from [LM09] and occasionally we add small examples or remarks, which
we will use later. We also present the main results of [LM09]. Examples for ad theories
are deferred to Section 5, where we also show that all the standard examples have the
functorial gluing and cylinder properties, which we introduce in Section 3.2.

2.1 Axioms

Definition 2.1.1. A category with involution is a category together with an endofunc-
tor i which satisfies i ◦ i = id.

Example 2.1.2. The set Z is partial ordered and therefore it defines a category. With i
being the identity functor it gives an example for a category with involution.

Definition 2.1.3. A Z-graded category is a category A with involution i together with
two functors d : A → Z (called dimension functor) and ∅ : Z→ A which strictly commute
with i and fulfill d∅ = id. A functor between Z-graded categories is called a k-morphism
if it strictly commutes with i and ∅ and decreases the dimension by k.

Note that because of d being a functor there can not exist any morphism A → B in
a Z-graded category if d(A) > d(B). We often write ∅n for ∅(n) and sometimes dA, iA
and ∅A to clarify to which Z-graded category the dimension functor, the involution or ∅
belong.
Example 2.1.4. A chain complex C defines a Z-graded category as follows: The objects
of dimension n are the elements of Cn and in addition to identities we have a unique
morphism from every object to every object of higher dimension. The involution is
multiplication with −1 and ∅n is the element 0 ∈ Cn. Then the boundary map is an
example for a 1-morphism.
Example 2.1.5. We denote by ASTop the category whose objects are the compact oriented
topological manifolds with boundary together with an empty manifold ∅n for every n; the
dimension-preserving morphisms are the orientation-preserving inclusions of manifolds
with boundary (in particular the image of the boundary has to be a subset of the
boundary) and the dimension-increasing morphisms are the inclusions with image in the
boundary. The involution reverses the orientation. This defines a Z-graded category
and taking boundary defines an endofunctor, which is a 1-morphism.
Example 2.1.6. Let DSTop be the Z-graded category of compact oriented topological
manifolds with boundary together with an empty manifold ∅n for every dimension n,
whose dimension-increasing morphisms are the embeddings of topological manifolds with
boundary (with image in the boundary) and whose dimension-preserving morphisms
are orientation-preserving embeddings. Involution is again reversion of orientations.
Then ASTop is a subcategory of DSTop that respects the Z-graded structure in the sense
of the following definition:
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2.1 Axioms

Definition 2.1.7. Let A and D be Z-graded categories and let A be a subcategory
of D. Then we call A a Z-graded subcategory of D if the inclusion functor A → D is an
inclusion of Z-graded categories, that is it is a 0-morphism. This is equivalent to ∅ and
the involution of D restricting to that of A.

We proceed with the example of a Z-graded category that will be the source of the
models for ads, the category of cells of a ball complex. Basic definitions and properties
of ball complexes and references to the literature are given in part 6.2 of the Appendix.
One can also think of a ball complex as a finite regular cell complex together with an
underlying piecewise linear structure.

Example 2.1.8. Let L be a subcomplex of a ball complex K. Let Cell(K,L) be the Z-
graded category whose objects are the oriented closed cells (σ, o) which are not in L
and additionally an object ∅n for every n ∈ Z. The morphisms are the identities,
the inclusions of cells into cells of higher dimension without any requirements on the
orientations, and a morphism from ∅n to each object of higher dimension. The involution
is the reversion of the orientations. We often write Cell(K) for Cell(K, ∅).

Every morphism of pairs of ball complexes induces a 0-morphism between the Cell-
categories. We are furthermore interested in abstract morphisms which are not necessar-
ily induced by maps of pairs. Recall the definition of incidence numbers from Section 6.2
of the Appendix.

Definition 2.1.9. Let
θ : Cell(K1, L1)→ Cell(K2, L2)

be a k-morphism.

(i) Then θ is called incidence-compatible if

[(σ, o), (σ′, o′)] = (−1)k[θ(σ, o), θ(σ′, o′)]

for all pairs ((σ, o), (σ′, o′)) of oriented cells in Cell(K1, L1).

(ii) Let A be a Z-graded category and F : Cell(K2, L2)→ A an l-morphism, then the
composition ikl ◦ F ◦ θ is denoted by θ∗F : Cell(K1, L1)→ A.

Definition 2.1.10. Let A be a Z-graded category and let L be a subcomplex of a
ball complex K. Then a pre (K,L)-ad of degree k with values in A is a k-morphism
Cell(K,L)→ A.

We often only speak of pre (K,L)-ads if it is clear what A is. The pre (K,L)-ads of
degree k form a set which will be denoted by prek(K,L). If L is the empty ball complex,
then the set of pre (K,L)-ads of degree k is denoted by prek(K). Note that prek defines
a functor from (pairs of) ball complexes to sets.
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2 Ad theories

Definition 2.1.11. An ad theory consists of

• a Z-graded category A (called target category)

• for each k a subfunctor adk of prek (the subset adk(K,L) of prek(K,L) is called
the set of (K,L)-ads of degree k) such that the following axioms hold:
(a) For each pair (K,L) of ball complexes the equality

adk(K,L) = prek(K,L) ∩ adk(K)

holds.
(b) For each ball complex K, the element of prek(K) which takes every object

of Cell(K) to ∅ is a K-ad, called the trivial K-ad of degree k.
(c) The involution iA takes K-ads to K-ads.
(d) A pre K-ad that is isomorphic to a K-ad is a K-ad.
(e) A pre K-ad is a K-ad if it restricts to a σ-ad for each closed cell σ of K.
(f) (Reindexing) If

θ : Cell(K1, L1)→ Cell(K2, L2)

is an incidence-compatible k-isomorphism of Z-graded categories, then the
induced bĳection

θ∗ : prel(K2, L2)→ prel+k(K1, L1)

restricts to a bĳection

θ∗ : adl(K2, L2)→ adl+k(K1, L1).

(g) (Gluing) For each subdivision K ′ of K and each K ′-ad F there is a K-ad
which agrees with F on each residual subcomplex.

(h) (Cylinder) There is a natural transformation

J : adk(−)→ adk(−× I)

such that for F ∈ ad(K) the restrictions of J(F ) to K×0 and K×1 are both
equal to F and J takes trivial ads to trivial ads. (Note, that here K × I has
the canonical ball complex structure of the product.)

A morphism (resp., equivalence) of ad theories is a functor (resp., equivalence) of the
target categories that takes ads to ads. Often an ad theory with target category A will
be denoted by adA.

10



2.2 The bordism groups of an ad theory

2.2 The bordism groups of an ad theory

Throughout this section we fix an ad theory with target category A.

Definition 2.2.1. Let ∗ denote the space consisting of one point with its ball complex
structure (given by one cell of dimension 0). Two elements of adk(∗) are bordant if there
exists an I-ad which restricts to the given ads at the ends.

Remark 2.2.2. This defines an equivalence relation: Reflexivity is a consequence of the
cylinder axiom, symmetry follows from the reindexing axiom and transitivity from the
gluing axiom.

Definition 2.2.3. The set of bordism classes in ad−k(∗) is denoted by Ωk. The bordism
class of an ad F is denoted by [F ]. We sometimes write Ωk(adA) to specify the ad theory
whose bordism group we mean.

Next it is shown in [LM09] that the sets Ωk have an abelian group structure. We give
a short description of it: The isomorphism of categories

Cell(I, {0, 1})→ Cell(∗)

defines an incidence-compatible 1-morphism which will be denoted by κ. By the rein-
dexing axiom the map

κ∗ : adk(∗)→ adk+1(I, {0, 1})

is a bĳection.
Now let F,G ∈ adk(∗). Performing the following steps one by one (see Figure 2), will

give a construction of the sum:

(i) Apply κ∗. Then κ∗F and κ∗G define (I, {0, 1})-ads of degree k + 1.

(ii) Let F ′ and G′ be the extensions of these ads to I-ads by defining them to be the
trivial ad on the boundary of I. This defines ads by axiom (a) of Definition 2.1.11.

(iii) Apply the cylinder axiom to get J(F ′) and J(G′). Note that these ads restrict to
the trivial ads on the left and right edges (see Figure 2).

(iv) Use the gluing axiom to glue these ads together along these edges. This defines an
ad on the ball complex one gets by gluing together two copies of I × I along one
edge. Let M ′ denote this ball complex.

(v) Use gluing to get an ad on the subdivision of M ′ shown in the Figure. Denote this
subdivision by M .

(vi) Take the restriction of this ad on M to the upper edge.

(vii) It is the trivial ad on the boundaries, so it defines an (I, {0, 1})-ad.

(viii) Apply (κ−1)∗ to get a ∗-ad.

11



2 Ad theories

Figure 2: Construction of the sum.

This construction up to step (v) proves the following lemma:

Lemma 2.2.4 ([LM09, Lemma (4.4)]). For F,G ∈ adk(∗), there exists an ad H of
degree k+ 1 on M such that it restricts to F ′ and G′ on the two lower edges and that it
is the trivial ad on the vertical edges of M .

Definition 2.2.5. Let F,G ∈ adk(∗) and H an ad on M as in Lemma 2.2.4. Apply
steps (vi) to (viii) and define [F ] + [G] to be the resulting ∗-ad of degree k.

The operation + is well-defined: This can be seen by looking at page 8 and Figure 3
of [LM09].

Proposition 2.2.6 ([LM09, Proposition (4.7)]). The operation + makes Ωk an abelian
group.

Remark 2.2.7 ([LM09, Remark (4.8)]). An equivalence of ad theories induces an isomor-
phism of the bordism groups.
This remark will become important for us in Section 4, where we want to get equiv-

ariant theories from ad theories.

2.3 The cohomology theory of an ad theory
We continue by describing the cohomology theory associated to an ad theory.

Definition 2.3.1. Let K be a ball complex and L a subcomplex. Two ads F,G ∈
adk(K,L) are bordant if there exists a (K × I, L× I)-ad which restricts to F on K × 0
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2.3 The cohomology theory of an ad theory

and to G on K × 1. As for bordism groups this is an equivalence relation and we
write T k(K,L) for the set of bordism classes in adk(K,L) and the bordism class of F
will be denoted by [F ].

Remark 2.3.2. T k(∗) is the same as Ω−k.

The sets T k(K,L) have an abelian group structure that can be defined similar to the
case of bordism groups: There is an incidence-compatible isomorphism

κ : Cell(I ×K, ({0, 1} ×K) ∪ (I × L))→ Cell(K,L),

which takes I × (σ, o), where I has the standard orientation, to (σ, o), so κ∗ induces a
bĳection of ads by the reindexing axiom. If M and M ′ are the ball complexes we used
above to define the addition of the bordism groups, then there is a generalized version
of the construction and therefore of Lemma 2.2.4. This generalized version shows that,
given F,G ∈ adk(K,L), there is an H ∈ adk+1(M × K,M × L) which restricts to the
analogues of F ′ and G′ on the products of the lower edges with K and is trivial on
products of the vertical edges of M with K.
Again, one can take such an ad H and apply the analogues of the steps (vi) to (viii).

Then [F ]+ [G] is defined to be the resulting (K,L)-ad and one uses the same arguments
as for the bordism groups to show that this gives a well-defined abelian group structure
on T k(K,L). See sections 4 and 12 of [LM09] for further details.
Next it is shown in [LM09] that this defines a homotopy functor. Recall from Sec-

tion 6.2, that Bi denotes the category of pairs of ball complexes and Bh is the category
consisting of the same objects whose morphisms are homotopy classes of continuous
maps of pairs.

Proposition 2.3.3 ([LM09, Proposition (12.5)]). For every k the functor T k : Bi→ Ab
factors uniquely through Bh.

The proof uses elementary expansions (see Definition (12.6) and Lemma (12.7) in
[LM09] and [BRS76, p. 5]) to show that the assumptions of Proposition I.6.1 and The-
orem I.5.1 of [BRS76] are fulfilled.
Then one wants to show that the functors T k define a cohomology theory. First one

observes, that excision is a direct consequence of the reindexing axiom.
One constructs a connecting homomorphism as follows: First one can proof (see

[LM09, Lemma (12.8)]), that κ∗ induces an isomorphism

T k(L)→ T k+1(I × L, {0, 1} × L)

of abelian groups. Then one uses that excision produces an isomorphism

T k(I × L, {0, 1} × L)→ T k((1×K) ∪ (I × L), (1×K) ∪ (0× L))

and defines:
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2 Ad theories

Definition 2.3.4. The connecting homomorphism

T k(L)→ T k+1(K,L)

is the negative of the composition

T k(L) κ∗ // T k+1(I × L, {0, 1} × L) T k+1(I ×K, (1×K) ∪ (0× L))
∼=oo // T k+1(K,L).

The last map is induced by the inclusion (0×K, 0× L)→ (I ×K, (1×K) ∪ (0× L)).

Theorem 2.3.5 ([LM09, Theorem (12.11)]). T ∗ is a cohomology theory.

2.4 The Ω-spectrum of an ad theory
In this section we describe the Ω-spectrum associated to an ad theory. A basic definition
for spectra is given in part 6.4 of the Appendix. Details of the construction given here
can be found in Section 13 of [LM09].

Definition 2.4.1. For k ≥ 0 let Pk be the semisimplicial set

(Pk)n = adk(∆n)

The face maps are induced by that of ∆n. Pk is equipped with a base point determined
by the elements ∅. Define Qk to be the geometric realization |Pk|.

There is a semisimplicial analog of the Kan suspension, defined as follows:

Definition 2.4.2. Let A be a based semisimplicial set. Then ΣA is the based semisim-
plicial set with only one 0-simplex ∗, the based set of n simplices is An−1 and the face
operators di : (ΣA)n → (ΣA)n−1 agree with those of A for i < n and dn takes all simplices
to ∗.

Lemma 2.4.3 ([LM09, Lemma (13.7)]). There is a natural homeomorphism Σ|A| ∼=
|ΣA|.

Now there is a 1-isomorphism of Z-graded categories

θ : Cell(∆n+1, ∂n+1∆n+1 ∪ {n+ 1})→ Cell(∆n)

which is constructed as follows: Let σ be a simplex of ∆n+1 which is not in ∂n+1∆n+1 ∪
{n + 1}. Then σ must contain the vertex n + 1. Now one defines θ to take σ with
its canonical orientation to the simplex of ∆n spanned by all the other vertices of σ
with (−1)dimσ−1 times its canonical orientation. The sign ensures that θ is incidence-
compatible, so by the reindexing axiom it induces a bĳection

θ∗ : adk(∆n)→ adk+1(∆n+1, ∂n+1∆n+1 ∪ {n+ 1}).

Then the composition

adk(∆n) θ∗ // adk+1(∆n+1, ∂n+1∆n+1 ∪ {n+ 1}) // adk+1(∆n+1)

defines a semisimplicial map
ΣPk → Pk+1.
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2.5 The symmetric spectrum associated to an ad theory

Definition 2.4.4. The spaces Qk together with the structure maps

ΣQk = Σ|Pk| ∼= |ΣPk| → |Pk+1| = Qk+1

define a spectrum which is denoted by Q.

Proposition 2.4.5 ([LM09, Proposition (13.9)]). Q is an Ω-spectrum.

Remark 2.4.6. The construction of the spectrum associated to an ad theory defines a
functor from the category of ad theories to the category of Ω-spectra, which we also will
denote by Q.

Theorem 2.4.7 ([LM09, Theorem (14.1)]). The cohomology theory represented by Q is
naturally isomorphic to T ∗.

2.5 The symmetric spectrum associated to an ad theory

Using multisemisimplicial sets it is possible to construct a symmetric spectrum M asso-
ciated to an ad theory. A definition for symmetric spectra can be found in part 6.4 of
the Appendix. The construction of M is done in section 15 of [LM09].
A k-fold multisemisimplicial set is a contravariant functor from ∆k

inj (see Exam-
ple 6.5.4) to sets. For a multiindex n = (n1, . . . , nk), let ∆n be the product ∆n1 ×
· · · ×∆nk . Then the geometric realization of a k-fold multisemisimplicial set A is given
by

|A| = (
∐

∆n ×An)/ ∼

with the evident equivalence reltion.
For an ad theory and k ≥ 1, a k-fold multisemisimplicial set is given by

(Rk)n = adk(∆n).

Then Mk is defined to be the geometric realization of Rk. For k = 0, define R0 to be
the set of ∗-ads of degree 0 and let M0 be R0 equipped with the discrete topology.
The action of Σk onMk and the suspension maps are defined in Definition 15.3 and 15.4

of [LM09].
For k ≥ 1 let Q′k bet the space homeomorphic to Qk which is the realization of the

semisimplicial set with n-simplices (Rk)(0,...,0,n). There are obvious maps Q′k → Mk, so
we get maps

Qk →Mk.

It is possible to show that M is weakly equivalent to Q in the sense of the following two
propositions.

Proposition 2.5.1 ([LM09, Proposition (15.7)]). These maps Qk →Mk are weak equiv-
alences.
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2 Ad theories

Proposition 2.5.2 ([LM09, Proposition (15.8)]). The diagrams

ΣQk //

��

ΣMk

��
Qk+1 // Mk+1

commute up to homotopy.

Let U be the forgetful functor from symmetric spectra to ordinary spectra. Then U
is a Quillen functor. So its right derived functor RU exists and it is an equivalence of
homotopy categories (see [MMSS01, Lemma A.2]).

Corollary 2.5.3 ([LM09, Corollary (15.9)]).

(i) M is a positive Ω spectrum, that is, the map Mk → ΩMk+1 is a weak equivalence
for k ≥ 1.

(ii) RU takes M to Q.

(iii) The homotopy groups of M are the bordism groups of the ad theory.

2.6 Multiplicative ad theories and symmetric ring spectra
In Section 16 of [LM09] it is shown how to get a symmetric ring spectrum from what
is called a multiplicative ad theory. First, a monoidal structure is needed on the target
category:

Definition 2.6.1. A strict monoidal structure on a Z-graded category A is a strict
monoidal structure (�, ε) (as in [ML98, Section VII.1]) on the underlying category which
fulfills:

(a) The monoidal product � adds dimensions; the dimension of the unit element ε
is 0.

(b) i(x� y) = (ix) � y = x� (iy) for all objects x and y and similarly for morphisms.

(c) x � ∅n = ∅n � x = ∅n+dimx for all objects x and all n. If further f : x → y is a
morphism then f � ∅n and ∅n � f are each equal to the canonical map

∅n+dimx → ∅n+dim y.

Remark 2.6.2 ([LM09, Remark (16.3)]). For a Z-graded categoryA with a strict monoidal
structure, there is a natural map on pre-ads

� : prek(K)× prel(L)→ prek+l(K × L)

given by
(F �G)(σ × τ, o1 × o2) = il dim(σ)F (σ, o1) �G(τ, o2).

This is well-defined, because of property (b) of the definition of a strict monoidal struc-
ture.
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2.6 Multiplicative ad theories and symmetric ring spectra

Definition 2.6.3. An ad theory together with a strict monoidal structure on the target
category A is called a multiplicative ad theory, if it fulfills the following two conditions:

(a) The pre ∗-ad with value ε is an ad.

(b) The map of the last remark restricts to a map

� : adk(K)× adl(L)→ adk+l(K × L).

Theorem 2.6.4 ([LM09, Theorem (16.5)]). The symmetric spectrum M determined by
a multiplicative ad theory is a symmetric ring spectrum.

Remark 2.6.5. Note, that a symmetric ring spectrum satisfies strict associativity, not
only associativity up to homotopy.
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3 The ad theory with values in the category of C-diagrams

3 The ad theory with values in the category of C-diagrams

It is our aim to construct equivariant ad theories. For manifolds and their bordism
theory, groups appear if one generalizes to G-manifolds and G-bordism. Guided by this
example, we want to construct ad theories with target categories consisting of G-objects
and we want to get G-cohomology theories from this construction, which are linked for
different groups by the structure of an equivariant cohomology theory.
As already said in the Introduction, it turns out to be useful to adopt the point of

view on equivariant (co)homology theories that is taken in the work of Wolfgang Lück
and others ([DL98], [KL05] and [Lüc05]). In particular, it is shown there, how to get G-
(co)homology theories from or(G)-spectra and equivariant (co)homology theories from
functors from the category of certain small groupoids to the category of (Ω-)spectra,
that take equivalences of groupoids to weak equivalences of spectra. The groupoids one
is interested in are transport groupoids of homogeneous spaces of the form G/H. We
will go into details about all this in Section 4.
For now we keep in mind, that we want to get such functors from groupoids to Ω-

spectra. That is, we want to construct new ad theories not only of G-objects, but
also of C-objects for certain small categories C. For example C should be allowed to be
such a transport groupoid of some G/H. It will turn out that C should at least be a
small category with exactly one isomorphism class of objects. The transport groupoids
of homogeneous spaces of the form G/H satisfy these requirements. In fact they are
equivalent to the categories of the groups H.
More precisely we want to take an existing ad theory with target category A and define

a new ad theory with the target category being the functor category AC equipped with
an appropriate Z-graded structure. This functor category is also called the category of C-
diagrams in A; see part 6.5 of the Appendix for basic definitions of diagram categories
and evaluation functors.
It seems natural that one wants a K-ad to be a pre-K-ad Cell(K)→ AC for which the

evaluation at every object C of C is an ad. We will show in this part of the work that for
an ad theory fulfilling certain additional properties, this always defines a new ad theory,
which is multiplicative if the original ad theory was. The properties mentioned are some
kind of functoriality of the gluing and cylinder constructions. They are introduced in
Section 3.2. We will see later in Section 5 that all the standard examples for ad theories
have these properties.
The example that guides us is given by topological G-manifolds. That is we want

to take the ad theory of oriented topological bordism (see Section 5) and get a new
ad theory whose target category is the category of G-manifolds (that means C is the
category of the group G). For this example an I-ad defined as above is a G-bordism and
so the bordism groups of the new ad theory are the G-bordism groups.
The category ASTop has only inclusions as morphisms, but we need at least homeo-

morphisms of topological manifolds to describe G-actions. A solution would be to add
embeddings to this category (see Definition 2.1.6) and redefine the ad theory, but we
take a slightly more general approach, which might be useful for other examples of ad
theories, in Section 3.5.
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3.1 The Z-grading of the diagram category

Later we may want to restrict ourselves to the bordism of G-manifolds with restricted
isotropy or continuous actions of topological groups. This is also possible by restriction
to a subcategory of the diagram category and we provide the techniques necessary for
this in Section 3.6.
As mentioned above, throughout this section C is a small category with exactly one

isomorphism class of objects, that is, for each pair of objects in C there exists an isomor-
phism between them. We denote by B a fixed representative for the only isomorphism
class. All constructions we make will not depend on the choice of B.
The standard example for C one should think of is the category G of a group G with

its only object ∗. Other examples are given by small categories that are equivalent to G
or by the transport groupoids of homogeneous spaces of the form G/H (in fact such a
transport groupoid of G/H is equivalent to the category of the group H, see part 6.3 of
the Appendix for foundations of equivariant topology and Section 4.1 for the definition
of the transport groupoid of a G-set).

3.1 The Z-grading of the diagram category

The first thing we have to do is to explain how we get a Z-graded structure on AC . The
following Proposition does this:

Proposition 3.1.1. Let A be a Z-graded category and C a small category with exactly
one isomorphism class. Let B be a representative for this class. The diagram category AC
is a Z-graded category with involution

iAC := iA∗ : AC → AC

F 7→ iA ◦ F
(α : F → G) 7→ iA(α),

dimension functor
dAC := dA ◦ evB,

and ∅AC(n) being the constant functor from C to ∅A(n). Furthermore this construction
is functorial in the sense that if C′ → C is a functor between small categories with exactly
one isomorphism class, then AC → AC′ is a 0-morphism and if A′ → A is a k-morphism
then A′C → AC is a k-morphism.

Proof. Note that the dimension does not depend on the choice of the representative B,
because it is a functor from A to Z. So the dimension of isomorphic objects in A agrees.
Everything else can be reduced to A being a Z-graded category.

We call this Z-graded structure the induced Z-grading and from now on we assume
that AC is equipped with this Z-graded structure.
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3 The ad theory with values in the category of C-diagrams

3.2 Functorial gluing and cylinder constructions
As we intend to construct a new ad theory with target category AC from an ad theory
with target category A, we need methods to transport the gluing and cylinder construc-
tions, which we have for every evaluation, to diagrams. Therefore we have to require
that these constructions are functorial in a certain sense which we want to enlighten in
this part.

Definition 3.2.1. For an ad theory with target category A the set adk(K) can be
regarded as a category whose objects are the ads of degree k and whose morphisms are
natural transformations between such ads. We call this category the category of K-ads of
degree k and denote it by adk(K) again. Note that adk(K) is simply the full subcategory
of k-ads of the functor category of functors Cell(K)→ A.

Definition 3.2.2. An ad theory is called ad theory with functorial gluing constructions
if for every subdivision K ′ of K and every k ∈ Z there exists a functor G : adk(K ′) →
adk(K) such that G is the identity functor on residual subcomplexes, that is G(F ) agrees
with F on each residual subcomplex and for a natural transformation g : F1 → F2 the
image G(g) agrees with g on each residual subcomplex.

Now let C be a small category with exactly one isomorphism class and let A be the
target category of an ad theory adA.

Definition 3.2.3. A (K,L)-ad of degree k with values in AC is a k-morphism

F : Cell(K,L)→ AC

such that for each object C of C the functor evC ◦F : Cell(K,L) → A is a (K,L)-ad.
The set of (K,L)-ads of degree k is denoted by adkAC(K,L).

Remark 3.2.4. It follows from the definition and the fact that all objects of C are iso-
morphic, that such a (K,L)-ad of degree k is an ad of degree k for every evaluation at
an object C of C.
Remark 3.2.5. The 0-morphism induced by a functor of small categories with exactly
one isomorphism class preserves ads. If A → A′ is functor that preserves ads, then the
induced functor AC → A′C is a functor that preserves ads.

Lemma 3.2.6. Let K ′ be a subdivision of a ball complex K and let A be the target cate-
gory of an ad theory with functorial gluing constructions. Then for every F ∈ adkAC(K

′)
there is a k-morphism

F̃ : Cell(K)→ AC ,
given by

F̃ (−)(C) = G(evC ◦F )(−)
and for morphisms g : C1 → C2 by

F̃ (−)(g) = G(evg ◦F )(−),

that is F̃ (−1)(−2) = G(ev(−2) ◦ F )(−1). This pre-ad is an ad, that is F̃ ∈ adkAC(K)
and F̃ agrees with F on each residual subcomplex.
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3.2 Functorial gluing and cylinder constructions

Proof. We see in remark 6.5.10 of the appendix that ev defines a functor. Since G is
a functor, G(ev(−) ◦ F ) defines a functor, so F̃ is a functor. Now F̃ is a k-morphism
because G takes k-ads to k-ads, so it does that for every evaluation evC ◦F at an object C
of C. This also shows that evC ◦F̃ is an ad for every object C, so F̃ ∈ adkAC(K) by
definition. It is clear that F̃ agrees with F on residual subcomplexes, because G preserves
that.

Definition 3.2.7. An ad theory is called ad theory with functorial cylinder constructions
if for every k ∈ Z there exists a natural transformation J : adk(−)→ adk(−× I) which
has the following properties:

(i) For each fixed ball complex K it is a functor

J(K) : adk(K)→ adk(K × I)

(ii) For each ball complex K, let

in∗K×1 : adk(K × I)→ adk(K × 1)
in∗K×0 : adk(K × I)→ adk(K × 0)

denote the restriction functors induced by the inclusions of K × 1 and K × 0
to K × I. Then in∗K×1 ◦J(K) and in∗K×0 ◦J(K) both are the identity functor

adk(K)→ adk(K),

that is J(K)(F ) is equal to F on K × 0 and K × 1 and for a natural transfor-
mation g : F1 → F2 the natural transformation J(K)(g) is equal to g on K × 0
and K × 1.

(iii) J takes trivial ads to trivial ads.

Lemma 3.2.8. Let A be the target category of an ad theory with functorial cylinder
constructions. Then we can construct a natural transformation

JAC : adkAC(−)→ adkAC(−× I),

which fulfills the cylinder axiom of an ad theory, as follows: For a ball complex K it
takes an element F ∈ adkAC(K) to JAC(K)(F ) which is defined by

JAC(K)(F )(−)(C) := JA(K)(evC ◦F )(−)

on objects C and
JAC(K)(F )(−)(g) := JA(K)(evg ◦F )(−).

on morphisms g : C1 → C2, that is JAC(K)(F )(−1)(−2) := JA(K)(ev(−2) ◦ F )(−1) .
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3 The ad theory with values in the category of C-diagrams

Proof. Completely analogous to the proof of Lemma 3.2.6, JAC(K)(F ) is a functor. It
is clear that JAC is a natural transformation of the two functors on the category of ball
complexes, because JA is a natural transformation. Let inK×0 : Cell(K×0)→ Cell(K×I)
be the inclusion functor. Then we can use that JA is a cylinder construction and
get JAC(K)(F )(inK×0(−))(C) = JA(K)(evC ◦F )(inK×0(−)) = evC ◦F = F (−)(C). Be-
cause JA is a functorial cylinder construction we even get JAC(K)(F )(inK×0(−))(g) =
JA(K)(evg ◦F )(inK×0(−)) = evg ◦F for morphisms g : C1 → C2. Hence the func-
tor JAC(K)(F ) restricts to the functor F on K × 0. The same proof can be applied
to the case K × 1. Trivial ads are taken to trivial ads by construction.

3.3 The ad theory with values in C-diagrams

Now we are ready to prove the main theorem of this section:

Theorem 3.3.1. Let A be the target category of an ad theory with functorial gluing and
cylinder constructions and let C be a small category with exactly one isomorphism class.
Let AC denote the functor category with the Z-graded structure of Proposition 3.1.1.
Then the sets

adkAC(K,L)

define subfunctors of prekAC which define an ad theory with target category AC. Further-
more this construction is a functor on the full subcategory of ad theories with functorial
gluing and cylinder constructions to the category of ad theories.

Proof. The axioms and even the fact that the sets define a subfunctor are checked by
reducing everything to the consideration of evaluations at objects C of C. Difficulties
only arise when one has to check the axioms which construct new ads: These are the
gluing and the cylinder axiom. Here we need the functoriality of these constructions. For
gluing we can apply Lemma 3.2.6 and for the cylinder axiom we simply have to apply
Lemma 3.2.8. By Remark 3.2.5 this defines a functor from ad theories with functorial
gluing and cylinder constructions to the category of ad theories.

We call this new ad theory the associated ad theory of C-diagrams in A.

3.4 Multiplicativity of the ad theory with values in C-diagrams

For a multiplicative ad theory with functorial gluing and cylinder constructions and
target category A it is possible to equip the associated ad theory of C-diagrams with a
multiplicative structure, too.
First we give the diagram category AC the induced strict monoidal structure. See

2.6.1 for the definition of strict monoidal structures on Z-graded categories.

Lemma 3.4.1. Let C be a small category with exactly one isomorphism class and let A
be a Z-graded category with strict monoidal structure (�, ε). Let AC be equipped with the
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3.4 Multiplicativity of the ad theory with values in C-diagrams

induced Z-graded structure of proposition 3.1.1. Then AC has a strict monoidal structure
given by

�C : AC ×AC → AC

(F,G) 7→
{

(C 7→ F (C) �G(C))
(g : C1 → C2) 7→ F (g) �G(g)

and εC is the constant functor to ε.

Proof. It is clear that �C is a bifunctor because � is one. It is strictly associative because
the functors (−) �AC ((−) �AC (−)) and ((−) �AC (−)) �AC (−) are equal on objects C
of C and on morphisms g : C1 → C2 and they are equal on natural transformations of
diagrams all because � is strictly associative. By definition of �C the diagram εC is the
unit object and left and right identity are strict because they are for ε and �.
The dimension of a diagram was defined to be the dimension of the evaluation at one

of the objects of C (Recall that it does not depend on the choice of the object because
there is only one isomorphism class of objects in C). Thus it is clear that �C adds
dimensions because � does and the dimension of the unit element εC is that of ε, so it
is 0. The involution on diagrams was defined to be the composition with the involution i
of A. So we can use that (�, ε) is a strict monoidal structure to show that

iAC(F �C G) = (iACF ) �C G = F �C (iACG)

and for natural transformations f, g of diagrams

iAC(f �C g) = (iACf) �C g = f �C (iACg).

Similarly one uses that ∅AC(n) is the constant diagram of the ∅A(n) to show that

F �C ∅AC = ∅AC �C F = ∅AC(n+ dim(F )).

and that for natural transformations of diagrams f : F1 → F2 the natural transforma-
tions f �C ∅AC(n) and ∅AC(n) �C f are both equal to the canonical morphism ∅AC(n +
dim(F1))→ ∅AC(n+ dim(F2)).

We call this strict monoidal structure the induced strict monoidal structure.

Theorem 3.4.2. Let A be the target category of a multiplicative ad theory with functorial
gluing and cylinder constructions. Then the associated ad theory of C-diagrams in A is
again a multiplicative ad theory.

Proof. Let E be the pre ∗-ad with value εC . Then by definition every evaluation at an
object of C is the pre ∗-ad with value ε which is an ad because the ad theory over A was
multiplicative. Hence E is an ad.
We also have to show that the natural map

prekAC(K)× prelAC(L)→ prek+lAC (K × L)
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3 The ad theory with values in the category of C-diagrams

of remark 2.6.2 restricts to a map

adkAC(K)× adlAC(L)→ adk+lAC (K × L).

For that we only have to show that the image of a pair of ads over AC is an ad with
values in A for every evaluation. This is true because of the definition of �C and the
fact, that the ad theory with values in A was multiplicative.

3.5 Generalization to more morphisms
The example that guides us are G-manifolds. The category ASTop has the disadvantage
that all the morphisms are inclusions, but we need at least (orientation-preserving)
homeomorphisms to describe G-actions on manifolds. That is we have to add for example
embeddings to ASTop. Of course it would be possible to redefine the ad theory with this
new target category, but that is not necessary: Here we want to solve this problem in a
more general manner and hope that this may be helpful for other examples in the future.
Basically we allow the C-diagrams to be functors from C to a Z-graded category with

more morphisms than A, while the morphisms between such C-diagrams are restricted
to those natural transformations whose morphisms are morphisms of A. Then we adapt
what we have proven before to this new situation.
Let A be a Z-graded category which is a Z-graded subcategory of a Z-graded cat-

egory D and contains all objects of D. Let DC be the diagram category for a small
category C with exactly one isomorphism class of objects. Let B be an arbitrary repre-
sentative for this isomorphism class.

Definition 3.5.1. We denote by DCA the subcategory of DC which consists of all objects
of DC and whose morphisms are the natural transformations φ : F → G for which the
morphisms φC : F (C)→ G(C) are morphisms of A.

Proposition 3.5.2. The category DCA is a Z-graded category with involution given by
the restriction of

iDC := iD∗ : DC → DC

F 7→ iD ◦ F
(α : F → G) 7→ iD(α),

to DCA and dimension functor
dDCA

:= dA ◦ evB,

and ∅DCA(n) being the constant functor from C to ∅A(n).

Proof. The proof is essentially the same as that for 3.1.1. Note again, that the dimension
does not depend on the choice of B. We can apply dA to the evaluation evB because of
the restriction to natural transformations we made. It ensures, that after evaluating the
morphisms are morphisms of A. Thus dDCA defines a functor.

Now let A additionally be the target category of an ad theory.
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3.5 Generalization to more morphisms

Definition 3.5.3. Every (K,L)-ad of degree k with values in A is a functor Cell(K)→
A. If we compose it with the inclusion of categories j : A → D we get a functor Cell(K)→
D. Therefore we can define a category whose objects are the (K,L)-ads of degree k and
whose morphisms are the natural transformations of the compositions of such ads with
the inclusion functor to D. We call this category the category of (K,L)-ads of degree k
with respect to D and denote it by adk,D(K,L).

Definition 3.5.4. The ad theory with target category A is called ad theory with functo-
rial gluing construction with respect to D if for each subdivision K ′ of K and every k ∈ Z
there exists a functor G : adk,D(K ′)→ adk,D(K) such that G is the identity functor on
residual subcomplexes, that is G(F ) agrees with F on each residual subcomplex and for
a natural transformation g : j ◦F1 → j ◦F2 the image G(g) agrees with g on each residual
subcomplex.

Definition 3.5.5. A (K,L)-ad of degree k with values in DCA is a k-morphism

F : Cell(K,L)→ DCA

such that for each object C of C the functor evC ◦F : Cell(K,L) → A is a (K,L)-ad of
degree k. The set of (K,L)-ads of degree k is denoted by adkDCA(K,L).

Remark 3.5.6. A functor C → C′ between small categories with exactly one isomorphism
class induces a morphism of Z-graded categories DCA → DC

′
A which preserves ads.

Example 3.5.7. A natural transformation between two K-ads F and G in adkDCA(K) is
given by morphisms F (σ, o)(C)→ G(σ, o)(C) in A such that for all morphisms C1 → C2
in C and (τ, o′)→ (σ, o) in Cell(K) the diagram

F (σ, o)(C1) //

��

F (σ, o)(C2)

��

F (τ, o′)(C1) //

77nnnnnnnnnnn

��

F (τ, o′)(C2)

77nnnnnnnnnnn

��

G(σ, o)(C1) // G(σ, o)(C2)

G(τ, o′)(C1)

77nnnnnnnnnnn
// G(τ, o′)(C2)

77nnnnnnnnnnn

commutes. The horizontal arrows are morphisms in D and all other arrows have to
be morphisms in A. It is helpful to have this diagram in mind to recognize where the
morphisms have to be in D and where they have to be in A.

Lemma 3.5.8. Let K ′ be a subdivision of a ball complex K and let A be the target
category of an ad theory with functorial gluing construction with respect to D. Then for
every F ∈ adkDCA(K ′) there is a k-morphism

F̃ : Cell(K)→ DCA,
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3 The ad theory with values in the category of C-diagrams

given by
F̃ (−)(C) = G(evC ◦F )(−)

and for morphisms g : C1 → C2 by

F̃ (−)(g) = G(evg ◦F )(−),

that is F̃ (−1)(−2) = G(ev(−2) ◦ F )(−1). This pre-ad is an ad, that is F̃ ∈ adkDCA(K)
and F̃ agrees with F on each residual subcomplex.

Proof. The proof is completely analogous to the proof of 3.2.6, we only have to mention
that evg ◦F is a natural transformation of j ◦ evC1 ◦F to j ◦ evC2 ◦F and therefore we
can apply G to it.

Definition 3.5.9. An ad theory with target category A is called ad theory with func-
torial cylinder construction with respect to D if for every k ∈ Z there exists a natural
transformation J : adk(−)→ adk(−× I) which has the following properties:

(i) For each ball complex K it is a functor

J(K) : adk,D(K)→ adk,D(K × I)

(ii) For each ball complex K the restrictions of this functor J(K) to K × 0 and K × 1
are the identity, that is J(K)(F ) is F on K × 0 and K × 1 and for a natural
transformation g : j ◦F1 → j ◦F2 the natural transformation J(K)(g) is equal to g
on K × 0 and K × 1.

(iii) J takes trivial ads to trivial ads.

Lemma 3.5.10. Let A be the target category of an ad theory with functorial cylinder
construction with respect to D. Then we can construct a natural transformation

JDCA
: adkDCA(−)→ adkDCA(−× I),

which fulfills the cylinder axiom of an ad theory, as follows: For a ball complex K it
takes an element F ∈ adkDCA(K) to JDCA(K)(F ) which is defined by

JDCA
(K)(F )(−)(C) := JA(K)(evC ◦F )(−)

on objects C and
JDCA

(K)(F )(−)(g) := JA(K)(evg ◦F )(−).

on morphisms g : C1 → C2, that is JDCA(K)(F )(−1)(−2) := JA(K)(ev(−2) ◦ F )(−1) .

Proof. Again we only have to mention that JA(K) can be applied to evC ◦F and
to evg ◦F because it is a functor on adk,D(K). The rest of the proof is analogous to
the proof of 3.2.8.
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3.6 The ad theory associated to a full subcategory of DCA

Theorem 3.5.11. Let A be the target category of an ad theory with functorial gluing
and cylinder constructions with respect to D. Then the sets

adkDCA(K,L)

define subfunctors of prekDCA which define an ad theory with target category DCA.

Proof. This proof is completely analogous to the proof of 3.3.1.

We call this ad theory the associated ad theory with values in DCA.
Now we assume that D has a strict monoidal structure, which restricts to a strict

monoidal structure (�, ε) of the Z-graded subcategory A.

Lemma 3.5.12. The Z-graded category DCA has a strict monoidal structure given by

�DC : DCA ×DCA → DCA

(F,G) 7→
{

(C 7→ F (C) �G(C))
(g : C1 → C2) 7→ F (g) �G(g)

and εDC is the constant functor to ε.

Proof. The fact that the monoidal product functor of D restricts to the one of A ensures
that �DC is a well-defined bifunctor. Strict associativity, left and right identity, and the
compatibility with dimension, involution, and with ∅ follow as in the proof of 3.4.1.

We call this strict monoidal structure the induced strict monoidal structure on DCA.

Theorem 3.5.13. If A is the target category of a multiplicative ad theory with functo-
rial gluing and cylinder constructions with respect to D, then the ad theory with target
category DCA equipped with the induced strict monoidal structure is again a multiplicative
ad theory.

Proof. Completely analogous to 3.4.2.

3.6 The ad theory associated to a full subcategory of DCA
For a topological group G one is interested in the continuous actions on oriented topo-
logical manifolds. A continuous action can be described as a continuous functor from the
topological category of the group G to the topological category of oriented topological
manifolds. Hence in the context of ad theories we are interested in ad theories with
values in the full subcategory of the diagram category which consists of the continuous
functors.
Another case where we want a restriction to a full subcategory is given by the bordism

of G-manifolds with restricted isotropy.
In this section we reformulate the results of the last section and construct an associated

ad theory for such restrictions.
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3 The ad theory with values in the category of C-diagrams

As in the section before, let A be a Z-graded category which is a Z-graded subcategory
of a Z-graded category D and contains all objects of D. Let DC be the diagram category
for a small category C with exactly one isomorphism class of objects and Let DCA be the
category of Definition 3.5.1.
Now let W be a full subcategory of DCA such that the involution and the functor ∅

restrict to this subcategory. Then it is clear that W is a Z-graded category. We define
the ads with values in W as expected:

Definition 3.6.1. A (K,L)-ad of degree k with values inW is a pre-(K,L)-ad of degree k
such that after composition with the inclusion functor W → DCA it is an ad with values
in DCA. Hence all the evaluations at objects of C have to be ads. We denote the set of
ads of degree k with values in W by adkW(K,L).

Theorem 3.6.2. Let A be the target category of an ad theory with functorial gluing and
cylinder constructions with respect to D. Then the sets

adkW(K,L)

define subfunctors of prekW and if both the gluing construction given by Lemma 3.5.8 and
the cylinder construction given by Lemma 3.5.10 restrict to ads with values in W, then
this defines an ad theory with target category W.

Proof. The assumption that the gluing and cylinder constructions take ads with values
in W to ads with values in W ensures, that we can simply adopt the proof of 3.5.11.

Next we investigate multiplicativity. Let A be the target category of a multiplicative
ad theory with functorial gluing and cylinder constructions with respect to D. As in
the last section we assume that A has a strict monoidal structure (�, ε) which is the
restriction of a strict monoidal structure of the Z-graded category D to A.

Theorem 3.6.3. If the induced strict monoidal structure on DCA of Lemma 3.5.12 re-
stricts to a strict monoidal structure of W, that is the bifunctor �DC restricts to a
bifunctor �W : W ×W → W and the constant functor from C to ε is an object of W,
then the ad theory with values in W is multiplicative.

Proof. The proof is completely analogous to the proof of 3.5.13.
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4 Equivariant theories and or(G)-spectra associated to an ad
theory

Here we explain how to get an equivariant cohomology theory from an ad theory with
functorial gluing and cylinder constructions. First we introduce equivariant homology
and cohomology theories in the sense of [DL98], [KL05] and [Lüc05] and explain how
they arise from a functor from the category of certain small groupoids to (Ω-)spectra,
which takes equivalences to weak equivalences. Then we apply this to ad theories with
functorial gluing and cylinder constructions.
We will use basic concepts of equivariant topology like G-spaces, G-CW-complexes,

fixed point spaces, the orbit category or(G) of a group G and the induction functor. We
give an introduction to these concepts in part 6.3 of the Appendix. Detailed explanations
can be found in the books [tD87] and [May96].

4.1 Equivariant (co)homology theories and or(G)-spectra
Here we introduce equivariant homology and cohomology theories in the sense of [KL05,
ch. 20], [Lüc05], or [DL98] respectively. Let G be a group and Λ a commutative ring
with unit.

Definition 4.1.1. A G-homology theory HG
∗ with values in Λ-modules is a collection

of covariant functors HG
n , n ∈ Z from the category of G-CW-pairs to the category

of Λ-modules together with natural transformations

∂Gn (X,A) : HG
n (X,A)→ HG

n−1(A) := HG
n−1(A, ∅)

such that the following axioms are fulfilled:

(i) (G-homotopy invariance) If two G-maps f, f ′ : (X,A) → (Y,B) of G-CW-pairs
are G-homotopic, then HG

n (f) = HG
n (f ′) for all n ∈ Z.

(ii) (Exactness) For every pair (X,A) of G-CW-complexes, there is a long exact se-
quence

. . .
HG
n+1(j)

// HG
n+1(X,A)

∂Gn+1 // HG
n (A)

HG
n (i) // HG

n (X)

HG
n (j) // HG

n (X,A)
∂Gn // HG

n−1(A)
HG
n−1(i)

// . . .

where i : A→ X and j : X → (X,A) are the inclusions.

(iii) (Excision) For a G-CW pair (X,A) and a cellular G-map f : A → B of G-CW-
complexes, let (X ∪f B,B) be equipped with the induced structure of a G-CW-
pair. Then the canonical map (X,A) → (X ∪f B,B) induces for each n ∈ Z an
isomorphism

HG
n (X,A)

∼= // HG
n (X ∪f B,B).
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4 Equivariant theories and or(G)-spectra associated to an ad theory

(iv) (Disjoint union axiom) For a family Xi,i∈I of G-CW-complexes, the map induced
by the canonical inclusions ji : Xi →

∐
i∈I Xi is a bĳection

⊕
i∈I H

G
n (ji) :

⊕
i∈I H

G
n (Xi)

∼= // HG
n (
∐
i∈I Xi)

for all n ∈ Z.

Definition 4.1.2. A G-cohomology theory HG
∗ with values in Λ-modules is a collection

of contravariant functors Hn
G, n ∈ Z from the category of G-CW-pairs to the category

of Λ-modules together with natural transformations

δnG : Hn
G(A)→ Hn+1

G (X,A)

such that the following axioms are fulfilled:

(i) (G-homotopy invariance) If two G-maps f, f ′ : (X,A) → (Y,B) of G-CW-pairs
are G-homotopic, then Hn

G(f) = Hn
G(f ′) for all n ∈ Z.

(ii) (Exactness) For every pair (X,A) of G-CW-complexes, there is a long exact se-
quence

. . .
δn−1
G // Hn

G(X,A)
Hn
G(j)

// Hn
G(X)

Hn
G(i)

// Hn
G(A)

δnG // Hn+1
G (X,A)

Hn+1
G (j)

// Hn+1
G (X)

Hn+1
G (i)

// . . .

where i : A→ X and j : X → (X,A) are the inclusions.

(iii) (Excision) For a G-CW pair (X,A) and a cellular G-map f : A → B of G-CW-
complexes, let (X ∪f B,B) be equipped with the induced structure of a G-CW-
pair. Then the canonical map (X,A) → (X ∪f B,B) induces for each n ∈ Z an
isomorphism

Hn
G(X ∪f B,B)

∼= // Hn
G(X,A).

(iv) (Disjoint union axiom) For a family Xi,i∈I of G-CW-complexes, the map induced
by the canonical inclusions ji : Xi →

∐
i∈I Xi is a bĳection

∏
i∈I H

n
G(ji) : Hn

G(
∐
i∈I Xi)

∼= // ∏
i∈I H

n
G(Xi)

for all n ∈ Z.

Note, that if G is the trivial group, both definitions agree with the definition of a
(co)homology theory (which fulfills the disjoint union axiom) in the non-equivariant
sense. The disjoint union axiom is demanded here for the following lemmas to be true.
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4.1 Equivariant (co)homology theories and or(G)-spectra

Lemma 4.1.3 ([KL05, Lemma 20.5]). Let HG
∗ be a G-homology theory. Then for

every G-CW-complex X and a directed system {Xi | i ∈ I} of G-CW-subcomplexes
directed by inclusion such that X =

⋃
i∈I Xi, the natural map

colimi∈I H
G
n (Xi)

∼= // HG
n (X)

is bĳective for all n ∈ Z.

Lemma 4.1.4 ([Lüc05, Lemma 1.1]).

(i) Let H∗G be a G-cohomology theory. Then for every G-CW-pair (X,A) with an
exhaustion by subcomplexes A = X−1 ⊆ X1 ⊆ . . . ⊆

⋃
n≥−1Xn = X there is a

natural short exact sequence

0→ lim
n→∞

1Hp−1
G (Xn ∪A,A)→ Hp(X,A)→ lim

n→∞
Hp
G(Xn ∪A,A)→ 0.

(ii) Let H∗G and K∗G be G-cohomology theories and T ∗ : H∗G → K∗G a natural transfor-
mation of cohomology theories, that is for every n ∈ Z we have a natural trans-
formation Tn : Hn

G → Kn
G and these are compatible with the boundary operator.

Then if Tn(G/H) is bĳective for every homogeneous space G/H and every n ∈ Z,
then Tn(X,A) : Hn

G(X,A)→ Kn
G(X,A) is bĳective for all n ∈ Z.

For the next definitions recall Definition 6.3.9 of the induction of a group homomor-
phism.

Definition 4.1.5. An equivariant homology theory H?
∗ with values in Λ-modules con-

sists of a G-homology theory HG
∗ for every group G together with a so-called induction

structure: For every group homomorphism α : H → G and H-CW-pair (X,A) such
that ker(α) acts freely on X, there exists a natural isomorphism

indα : HH
n (X,A)

∼= // HG
n (indα(X,A))

for every n ∈ Z, such that the following conditions are fulfilled:

(i) (Compatibility with the boundary homomorphism) ∂Gn ◦indα = indα ◦∂Hn for all n ∈
Z.

(ii) (Functoriality) If β : G→ K is another group homomorphism such that ker(β ◦α)
acts freely on X, then for all n ∈ Z we have

indβ◦α = HK
n (f1) ◦ indβ ◦ indα

where f1 : indβ(indα(X,A)) → indβ◦α(X,A) is the natural K-homeomorphism
given by (k, g, x) 7→ (kβ(g), x).
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4 Equivariant theories and or(G)-spectra associated to an ad theory

(iii) (Compatibility with conjugation) Let g ∈ G and let c(g) : G→ G be the conjuga-
tion homomorphism g′ 7→ gg′g−1. If (X,A) is a G-CW-pair, then for all n ∈ Z,
the homomorphism

indc(g) : G→G : HG
n (X,A)→ HG

n (indc(g) : G→G(X,A))

agrees with HG
n (f2) where f2 is the G-homeomorphism

(X,A)→ indc(g) : G→G(X,A)

which takes x to (1, g−1x).

Definition 4.1.6. An equivariant cohomology theory H∗? with values in Λ-modules con-
sists of a G-cohomology theory H∗G for every group G together with a so-called induc-
tion structure: For every group homomorphism α : H → G and H-CW-pair (X,A) such
that ker(α) acts freely on X, there exists a natural isomorphism

indα : Hn
G(indα(X,A))

∼= // Hn
H(X,A)

for every n ∈ Z, such that the following conditions are fulfilled:

(i) (Compatibility with the boundary homomorphism) δnH ◦indα = indα ◦δnG for all n ∈
Z.

(ii) (Functoriality) If β : G→ K is another group homomorphism such that ker(β ◦α)
acts freely on X, then for all n ∈ Z we have

indβ◦α = indα ◦ indβ ◦Hn
K(f1)

where f1 : indβ(indα(X,A)) → indβ◦α(X,A) is the natural K-homeomorphism
given by (k, g, x) 7→ (kβ(g), x).

(iii) (Compatibility with conjugation) Let g ∈ G and let c(g) : G→ G be the conjuga-
tion homomorphism g′ 7→ gg′g−1. If (X,A) is a G-CW-pair, then for all n ∈ Z,
the homomorphism

indc(g) : G→G : Hn
G(indc(g) : G→G(X,A))→ Hn

G(X,A)

agrees with Hn
G(f2) where f2 is the G-homeomorphism

(X,A)→ indc(g) : G→G(X,A)

which takes x to (1, g−1x).

Lemma 4.1.7 ([Lüc05, Lemma 1.1]). Let H,K be finite subgroups of G and g ∈ G an
element with gHg−1 ⊂ K and let Rg−1 : G/H → G/K be the G-map that takes g′H
to g′g−1K and c(g) : H → K the homomorphism that takes h to ghg−1. Let

pr : (indc(g) : H→K{∗})→ {∗}
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4.1 Equivariant (co)homology theories and or(G)-spectra

be the projection to the one-point space. Then the diagram

Hn
G(G/K)

indGK ∼=
��

Hn
G(Rg−1 )

// Hn
G(G/H)

∼=indGH
��

Hn
K({∗})

indc(g) ◦Hn
K(pr)

// Hn
H({∗})

commutes.

Remark 4.1.8. Note that for the most relevant examples one always has a homomor-
phism indα, but the condition that ker(α) acts freely is needed to ensure that indα is
bĳective.
Examples for equivariant homology theories are the Borel construction (see [KL05,

Example 20.8]) or equivariant bordism (of smooth manifolds with orientation preserving
cocompact proper smooth G-action, see [KL05, Example 20.9]). Example for equivari-
ant cohomology theories are Borel cohomology or equivariant (topological complex) K-
theory (see Examples 1.6 and 1.7 of [Lüc05]).
Now one wants to construct equivariant homology and cohomology theories from spec-

tra as for the non-equivariant situation. In Section 20.4 of [KL05] an equivariant homol-
ogy theory is constructed from a covariant functor from the category of groupoids to the
category of spectra. In [Lüc05] an equivariant cohomology theory is constructed from a
contravariant functor from the category of groupoids to the category of Ω-spectra. We
will introduce these constructions here. First a G-homology theory can be constructed
from a covariant or(G)-spectrum:

Lemma 4.1.9 ([KL05, Lemma 20.12]). Let E be a covariant or(G)-spectrum. Then
a G-homology theory HG

∗ (−;E) is given by

HG
n (X,A;E) = πn(MapG(−, (X+ ∪A+ cone(A+))) ∧or(G) E).

In particular one has HG
n (G/H;E) = πn(E(G/H)). We call this G-homology theory

the associated G-homology theory to the covariant or(G)-spectrum E.

For a contravariant or(G)-Ω-spectrum E we analogously get an associatedG-cohomology
theory (on pairs of contravariant or(G)-CW-complexes (X,A)) by defining

Hn
G(X,A;E) := π−n(Mapor(G)(X?

+ ∪A?
+

cone(A?
+), E)).

If one composes the Hn
G(−;E) with the fixed point functor, one gets an associated G-

cohomology theory on G-CW-pairs. See [DL98, Section 4] and [Lüc05, Example 1.8] for
details.
Let GROUPOIDS be the category of small groupoids. The morphisms of this category

are the functors between groupoids. We define GROUPOIDSinj to be the subcategory
which contains all groupoids but only the functors between groupoids which are faithful,
that is they consist of injective maps of the morphism sets.
Next there is a functor from G-sets to GROUPOIDSinj which is defined as follows:
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4 Equivariant theories and or(G)-spectra associated to an ad theory

Definition 4.1.10. Let S be a G-set. Let S be the category whose objects are the
elements of the set S and the morphisms between two elements s1, s2 ∈ S are defined by

Mor(s1, s2) := {g ∈ G | gs1 = s2}.

Obviously S is a groupoid; it is called the transport groupoid of S. A G-map between G-
sets S → T defines a functor

S → T

on objects: s 7→ f(s)
on morphisms: g 7→ g.

Therefore this defines a functor from G-sets to GROUPOIDSinj which is called the
transport groupoid functor.

Definition 4.1.11. Let G be a group. We define

RG : or(G)→ GROUPOIDSinj

to be the composition of the transport groupoid functor with the forgetful functor
from or(G) to the category of G-sets.

Remark 4.1.12. Let H ⊂ G be a subgroup. Then there is an equivalence of the cate-
gories H = or(H, {e}) and G/H: The functor

H → G/H

on objects: ∗ 7→ [e]
on morphisms: h 7→ h

is essentially surjective, full and faithful. In particular G/H is a small category with
exactly one isomorphism class of objects.

Lemma 4.1.13 ([KL05, Lemma 20.14]). Let

E : GROUPOIDSinj → S

be a covariant GROUPOIDSinj-spectrum. Suppose that E respects equivalences, that
is an equivalence of groupoids (which is an equivalence of the underlying categories)
is taken to a weak equivalence of spectra. Then E defines an equivariant homology
theory H?

∗(−;E) such that for every group G the G-homology theory is the associated G-
homology theory of the covariant or(G)-spectrum E ◦RG, that is

HG
∗ (X,A;E) = HG

∗ (X,A;E ◦RG).

In particular one has

HG
n (G/H;E) ∼= HH

n ({∗};E) ∼= πn(E(H)).

The whole construction is natural in E.
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4.2 The or(G)-spectra and the equivariant cohomology theory associated to an ad
theory with functorial gluing and cylinder constructions

Lemma 4.1.14. Let
E : GROUPOIDSinj → Ω-S

be a contravariant GROUPOIDSinj-Ω-spectrum. Suppose that E respects equivalences,
that is an equivalence of groupoids (which is an equivalence of the underlying categories)
is taken to a weak equivalence of spectra. Then E defines an equivariant cohomology
theory H∗? (−;E) such that for every group G the G-cohomology theory is the associ-
ated G-cohomology theory of the contravariant or(G)-spectrum E ◦RG, that is

H∗G(X,A;E) = H∗G(X,A;E ◦RG).

In particular one has

Hn
G(G/H;E) ∼= Hn

H({∗};E) ∼= π−n(E(H)).

The whole construction is natural in E.

Proof. A proof (and so a construction of the induction homomorphism) is given in
[Lüc05, Example 1.8].

Remark 4.1.15. The proofs of the last two lemmas only need, that E is a functor on
the full subcategory of GROUPOIDSinj consisting of those groupoids that are transport
groupoids of homogeneous spaces of the form G/H. These groupoids have the property
that there is exactly one isomorphism class of objects. Therefore one can replace the
category GROUPOIDSinj by the full subcategory of groupoids with exactly one isomor-
phism class of objects, which we will denote by GROUPOIDSinj

1 . Thus both lemmas
stay true for GROUPOIDSinj

1 -(Ω-)spectra that take equivalences to weak equivalences.

4.2 The or(G)-spectra and the equivariant cohomology theory associated to
an ad theory with functorial gluing and cylinder constructions

If A is the target category of an ad theory with functorial gluing and cylinder construc-
tions, then a group homomorphism G1 → G2 induces a functor AG2 → AG1 which is
a 0-morphism and preserves ads. This defines a contravariant functor from the category
of groups to the category of ad theories and the composition with the functor from ad
theories to Ω-spectra or the functor from ad theories to symmetric spectra defines a
contravariant functor from groups to Ω-spectra or to symmetric spectra.
This also holds for the generalization to a larger target category of section 3.5. And

it is true for the special case of subcategories of section 3.6 where A is a topological
category and WH denotes the subcategory of continuous functors from the topological
categoryH of a topological group H to DA and the group homomorphism is a continuous
group homomorphism. Then it defines a functor from the category of topological groups
(with continuous group homomorphisms) to Ω-spectra or symmetric spectra respectively.
The aim of this section is to get an equivariant cohomology theory from this data. To

get this we want to construct contravariant or(G)-Ω-spectra and use the techniques and
results of Section 4.1. In particular we will use Remark 4.1.15 and define a contravari-
ant GROUPOIDSinj

1 -Ω-spectrum which takes equivalences to weak equivalences.
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4 Equivariant theories and or(G)-spectra associated to an ad theory

From now on we assume that A is the target category of an ad theory with functorial
gluing and cylinder constructions and all groups that occur will be discrete groups.
The naive approach would be to assign to G/H the Quinn spectrum of the ad theory

with target category AH. Unfortunately this definition fails for morphisms: Recall from
Proposition 6.3.4 that all the morphisms G/H → G/K in the orbit category are of the
form Ra for an a ∈ G with a−1Ha ⊂ K. Furthermore Ra = Rb if and only if ab−1 ∈ K.
Therefore assigning the group homomorphism H → K,h 7→ a−1ha to Ra is not well-
defined.
We will use the solution of this problem that is given in [DL98]. Here it is important,

that the index category C does not only have to be the category of a group, it also
can be any small category with exactly one isomorphism class of objects. In particular
it can be the transport groupoid of a homogeneous space of the form G/H. And we
have seen that a functor (resp. equivalence) between small categories with exactly one
isomorphism class induces a morphism (resp. equivalence) of the associated ad theories.
Such an equivalence of ad theories induces isomorphisms between the bordism groups of
the ad theories by Remark 2.2.7. The bordism groups are the homotopy groups of the
spectrum associated to the ad theory. This proves the following theorem:

Theorem 4.2.1. Let A be the target category of an ad theory adA with functorial gluing
and cylinder constructions. Let RA be the contravariant functor from GROUPOIDSinj

1
to the category of ad theories which assigns to such a groupoid C the associated ad
theory adAC and let Q denote the functor from ad theories to Ω-spectra. Then the
composition

Q ◦RA : GROUPOIDSinj
1 → Ω-S

defines a contravariant GROUPOIDSinj
1 -Ω-spectrum which takes equivalences to weak

equivalences of spectra.

For each group G we denote by RG the functor from or(G) to GROUPOIDSinj
1 which

assigns to G/H its transport groupoid. Then the composition Q ◦ RA ◦ RG defines a
contravariant or(G)-Ω-spectrum.
By Remark 4.1.15 and Lemma 4.1.14 we get the following corollary:

Corollary 4.2.2. Let A be the target category of an ad theory with functorial gluing
and cylinder constructions. Then the contravariant GROUPOIDSinj

1 -Ω-spectrum Q◦RA
of Theorem 4.2.1 defines an equivariant cohomology theory H∗? (−;Q ◦RA) such that for
every group G the G-cohomology theory is the G-cohomology theory associated to the
contravariant or(G)-spectrum Q ◦RA ◦RG, that is

H∗G(X,A;Q ◦RA) = H∗G(X,A;Q ◦RA ◦RG).

In particular one has

Hn
G(G/H;Q ◦RA) ∼= Hn

H({∗};Q ◦RA) ∼= π−n(Q ◦RA(H)) ∼= Ω−n(adAH).

The whole construction is natural in the ad theory with functorial gluing and cylinder
constructions.
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4.2 The or(G)-spectra and the equivariant cohomology theory associated to an ad
theory with functorial gluing and cylinder constructions

Proof. It remains to show that the construction is natural in ad theories with functorial
gluing and cylinder constructions, but this is a direct consequence of the fact that a
morphism of such ad theories A → A′ induces a morphism of the associated ad theo-
ries AC → A′C for a small category C with exactly one isomorphism class of objects and
that this defines a functor (see Theorem 3.3.1).

Remark 4.2.3. What we have done in this section generalizes to the situation of Sec-
tion 3.5: For a fixed ad theory with target category A with functorial gluing and cylinder
constructions with respect to D, we replace the functor RA by the functor RDA which
assigns to a groupoid C (with one isomorphism class of objects) the associated ad theory
with target category DCA. Then the theorem and the corollary hold as well (if we simply
ignore the naturality stated in the last sentence of the corollary).
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5 Examples

5 Examples
In this part we give short descriptions of each of the standard examples for ad theories,
which are the ad theory of a chain complex, the ad theory of oriented topological bordism,
geometric Poincaré complexes, symmetric Poincaré ad theories and quadratic Poincaré
ad theories.
We then show, that all these ad theories are ad theories with functorial gluing and

cylinder constructions. We give examples for the new ad theories and equivariant
(co)homology theories we get.

5.1 The ad theory of a chain complex

Let C be a chain complex. The Z-graded category AC associated to a chain complex
was introduced in Section 2.1.

Example 5.1.1. If K is a ball complex then let cl(K) denote its cellular chain complex.
The abelian group cln(K) is generated by the symbols 〈σ, o〉 with σ an n-dimensional
cell with orientation o, subject to the relation given by 〈σ,−o〉 = −〈σ, o〉. Then a pre K-
ad F lifts to a map of graded abelian groups from cl(K) → C. One defines F to be
a K-ad if and only if this lift is a chain map. By part a) of the definition of ad theories,
a (K,L)-ad has to be a K-ad which is zero on Cell(L). Gluing is given by addition
and J(F ) is defined to be 0 on all the objects of K × I that are not contained in K × 0
or K × 1. This defines an ad theory adC associated to a chain complex.
Note that a ∗-ad is a cycle of C. Then by definition we have a bĳection between HkC

and the bordism group Ωk. From the construction of the addition in the bordism groups
and the fact that gluing is addition, one sees that this bĳection is an isomorphism of
abelian groups.
If C is a DGA (see [Wei94, p. 112] for a definition), then adC is a multiplicative ad

theory.

We show that this ad theory fulfills the requirements of theorem 3.3.1, namely it has
functorial gluing and cylinder constructions:

Proposition 5.1.2. For a chain complex C the ad theory adC is an ad theory with
functorial gluing and it has functorial cylinders.

Proof. Recall that the gluing construction was given by addition. Thus we define the
functor G to be addition on objects. Regarding the definition of AC we see that there are
no morphisms between objects of the same dimension other than the identity. Therefore
natural transformations between k-morphisms can only be the identity. Hence G already
defines a functor which is the identity functor on residual subcomplexes.
For the functorial cylinders recall that the natural transformation J was defined to

be 0 on objects that are not contained in K × 1 or K × 0. Again there are no natural
transformations other than the identity between K-ads of degree k, so J(K) already
defines a functor and J(K) is the identity functor on K × 0 and K × 1 because it is the
identity on objects.
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5.2 Balanced categories and functors

The proof shows that this example is rather trivial. There is no interesting structure
which can be described by diagrams in AC . One should regard the proof above as a
check for consistency.

5.2 Balanced categories and functors

For the other examples we need the notion of a balanced category which is introduced
in Section 5 of [LM09]. Let A be a Z-graded category and let A(A,B) denote the set of
morphisms in A from A to B.

Definition 5.2.1. A is called a balanced category, if there is a natural bĳection

η : A(A,B)→ A(A, i(B))

for objects A, B with dimA < dimB, such that

(a) η ◦ i = i ◦ η

(b) η ◦ η is the identity.

A functor F between balanced categories is called a balanced functor if it commutes
strictly with η: F ◦ η = η ◦ F .

Example 5.2.2. All the Z-graded categories mentioned so far are balanced. In particular
the categories Cell(K,L) are balanced.

Definition 5.2.3. If A is a balanced category, then a balanced pre (K,L)-ad with values
in A is a pre (K,L)-ad which is a balanced functor.

5.3 Oriented topological bordism

Now we can present the ad theory of oriented topological bordism, introduced in Sec-
tion 6 of [LM09]. Its target category will be ASTop. Let B be the category of compact
orientable topological manifolds, whose dimension-preserving morphisms are the ori-
entable inclusions (that is there exists some choice of orientations which is preserved by
them) and the morphisms which increase dimension are the inclusions with image in the
boundary.
For a ball complex K let Cell[(K) be the category whose objects are the cells of K

together with an empty cell in every dimension and whose morphisms are the inclusions
of cells. Then a balanced pre K-ad F with values in ASTop induces a functor

F [ : Cell[(K)→ B.

Let σ, σ′ be cells of K with σ′ ( σ. Write i(σ′,o′),(σ,o) for the morphism (σ′, o′) → (σ, o)
in Cell(K) and jσ′,σ for the morphism in Cell[(K) from σ′ to σ.
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Definition 5.3.1. A K-ad with values in ASTop is a balanced pre K-ad F of degree k
such that

(a) If (σ′, o′) and (σ, o) are oriented cells with dim σ′ = dim σ− 1 and if [o, o′] is equal
to (−1)k then the map

F (i(σ′,o′),(σ,o)) : F (σ′, o′)→ ∂F (σ, o)

is orientation-preserving.

(b) For each σ, ∂F [(σ) is the colimit in Top of F [|Cell[(∂σ).

The set of K-ads of degree k is denoted by adkSTop(K).

Example 5.3.2. The functor Cell(∆n) → ASTop which takes each oriented cell of ∆n to
itself as an oriented topological manifold is an ad.

Figure 3: A ∆2-ad.

Theorem 5.3.3 ([LM09, Theorem (16.5)]). adSTop is an ad theory.

The sign in part (a) of the definition is needed to prove the reindexing axiom. We
give a detailed description of gluing and the construction of cylinder ads in the proof
of Proposition 5.3.4 later. For the moment one only has to know, that gluing is done
by taking the colimit of the underlying manifolds. This, together with the description
of the addition of the bordism groups shows, that the addition is given by taking the
disjoint union. Thus the bordism groups of adSTop are the usual oriented topological
bordism groups.
If one redefines the term topological manifold to mean a topological manifold which is

a subspace of some Rn, then ASTop has a strict monoidal structure given by the Cartesian
product. This makes adSTop a multiplicative ad theory.
We proceed to examine the functoriality of the gluing and cylinder constructions of

these ad theory. In addition to ASTop we will need the Z-graded category DSTop (see
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Definition 2.1.6). We will denote these categories by A and D respectively here and
take into account that we are in the situation of Section 3.5: The category ASTop is
a Z-graded subcategory of the Z-graded category DSTop and it contains all objects of D.
Furthermore if we redefine the term topological manifold to mean a topological mani-

fold which is a subset of an Euclidean space, then DSTop has a strict monoidal structure
as a Z-graded category, and this strict monoidal structure restricts to the strict monoidal
structure on the Z-graded subcategory ASTop. It is given by the Cartesian product of
oriented topological manifolds.

Proposition 5.3.4. The ad theory adSTop of oriented topological manifolds is an ad
theory with functorial gluing and cylinder constructions with respect to D = DSTop.

Proof. First we show that gluing is functorial. We will give a detailed description of the
gluing construction for oriented topological manifolds and then show that it is functorial.
LetK ′ be a subdivision ofK. For aK ′-ad F of degree k we denote the gluing construction
of the proof of Theorem (6.5) of [LM09] by G(F ). Explicitly the induced functor G(F )[
is given by Proposition (6.6) of [LM09], that is for a cell σ it is the orientable topological
manifold

G(F )[(σ) := colim
τ∈K′, τ⊂σ

F [(τ).

For an orientation o of σ there is exactly one orientation õ of G(F )[(σ) such that for every
oriented cell (τ, o′) with τ ⊂ σ, τ ∈ K ′, dim τ = dim σ, and i(τ,o′),(σ,o) an orientation pre-
serving inclusion of cells (τ, o′)→ (σ, o), the inclusion of manifolds F (τ, o′) ⊂ G(F )[(σ)
is orientation-preserving. Then G(F ) is defined on (σ, o) to be G(F )[(σ) equipped with
this orientation õ. In particular this orientation ensures that G(F ) fulfills part a) of
Definition 5.3.1 (part b) is fulfilled by Proposition (6.6) of [LM09]).
For a morphism j : (σ′, o′)→ (σ, o) in Cell(K) (which is an inclusion of cells) G(F )(j)

is defined to be the induced map between the colimits. The colimit of inclusions is an
inclusion, so G(j) is a morphism in ASTop. Furthermore G(F ) : Cell(K) → ASTop is a
functor, because colimit is a functor. It is a K-ad of degree k.
Now let g : F1 → F2 be a morphism in the category adk,D(K ′). Thus it is a nat-

ural transformation of the K ′-ads composed with the inclusion of ASTop into DSTop,
that is it consists of morphisms g(σ,o) : F1(σ, o) → F2(σ, o) in DSTop such that for mor-
phisms (σ′, o′)→ (σ, o) in Cell(K ′) the diagrams

F1(σ, o) // F2(σ, o)

F1(σ′, o′)

OO

// F2(σ′, o′)

OO

commute. We define G(g)(σ,o) to be the colimit of the g(τ,o′) of all cells τ ∈ K ′

with τ ∈ σ. This defines a continuous map between oriented topological manifolds which
is orientation-preserving if the dimensions of source and target agree, because then the
maps g(τ,o′) were orientation-preserving. If the dimensions do not agree it is map with
image in the boundary because Proposition (6.6) preserves that. Taking colimit is a
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functor, so G(g) defines a morphism in adk,D(K). The same argument shows that with
these definitions G is a functor adk,D(K ′) → adk,D(K). On residual subcomplexes this
functor restricts to the identity functor.
We proceed to show that the cylinder constructions of adSTop are functorial with

respect to DSTop. Let K be a ball complex. The cylinder construction was done as
follows: If (σ, o) is an oriented cell, then J(F )(σ × I, o× o′) = F (σ, o)× (I, o′).
Again a morphism g : F1 → F2 in adk,D(K) is given by maps g(σ,o) : F1(σ, o)→ F2(σ, o)

in DSTop such that for morphisms (σ′, o′) → (σ, o) the diagrams above commute. Thus
we simply define J(K)(g)(σ × I, o × o′) := g(σ,o) × id(I,o′). This map is orientation-
preserving if g(σ,o) was orientation-preserving so it is a morphism in DSTop. It is clear
that this defines a morphism in adk,D(K × I) and that with this definition J(K) is a
functor adk,D(K) → adk,D(K × I), that it restricts to the identity functor on K × 0
and K × 1 and that it takes trivial ads to trivial ads.

This proposition allows us to apply Theorem 3.5.11:

Corollary 5.3.5. For every small category C with exactly one isomorphism class of
objects we get an associated ad theory with target category DCA where D = DSTop and A =
ASTop.

Because of the strict monoidal structures we can also apply theorem 3.5.13 and we get

Corollary 5.3.6. This associated ad theory is a multiplicative ad theory.

Example 5.3.7 (Topological oriented G-bordism). Let G be the category of a discrete
group G and let ∗ be the only object of this category. Thus it is a small category
with only one object. Then DGA is the category of oriented topological G-manifolds with
oriented equivariant inclusions for manifolds of the same dimension and with equivariant
inclusions with image in the boundary for manifolds with different dimensions.
From the definition of bordism groups and the construction of the addition in the

bordism groups of the ad theory together with the gluing construction, we can see that
the bordism groups of this ad theory are the bordism groups of oriented topological G-
bordism. This is completely analogous to Remark (6.7) in [LM09].
The strict monoidal structure on the category DGA is given by the product of G-

manifolds with the diagonal action. The unit object is the point together with the
trivial action.
Remark 5.3.8. It is remarkable, that this ad theory, and therefore the associated spectra
really represent G-bordism, since for the equivariant Thom spectrum this is generally
not true, due to a failure of transversality in the equivariant situation. An example for
this failure is given by the manifold R as a G := Z/2Z-manifold with the only non-trivial
linear action. Then the inclusion of the (trivial) G-manifold given by a point ∗ to 0 is the
only G-map from ∗ to R. In particular it can not be homotopic to a G-map that would
take ∗ to a point different from 0, which would be the only possibility for the inclusion
of a point to be transverse to the submanifold {0}. This failure of transversality is the
problem that prevents the definition of an inverse of the Pontryagin-Thom construction.
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After all this we can apply the results of Section 4.2. Recall that Q denotes the
functor from ad theories to Ω-spectra and that RDA is the functor which assigns to a
groupoid C with exactly one isomorphism class of objects the associated ad theory with
target category DCA.

Corollary 5.3.9. We get an equivariant cohomology theory H∗? (−;Q ◦ RDA) such that
for every group G the G-cohomology theory is the G-cohomology theory associated to the
contravariant or(G)-spectrum Q ◦RDA ◦RG. In particular we have

Hn
G(G/H;Q ◦RDA) ∼= Ω−n(adDHA ),

which are the bordism groups of H-bordism of oriented topological H-manifolds.

Example 5.3.10 (Bordism of homeomorphisms). Note that the discrete group G does
not have to be finite. For G = Z one gets an ad theory with values in Z-manifolds.
A topological Z-manifold is the same as a topological manifold with homeomorphism,
which can be defined analogously to manifolds with diffeomorphism (see [Kre84]). Then
the bordism groups of this ad theory are the bordism groups of manifolds with homeo-
morphisms.
We proceed by giving some applications of the generalization to subcategories of Sec-

tion 3.6.
Example 5.3.11 (Restricted isotropy). Let G be a discrete groups and F a family of
subgroups closed under taking subgroups and conjugation. Let WF be the full subcat-
egory of DGA consisting of the G-manifolds M with isotropy restricted to F , that is for
each x ∈ M the isotropy group of x is in F . It is clear, that the involution restricts
to WF and that the image of ∅ is in WF .
Gluing together G-manifolds along inclusions of G-manifolds and taking the product of

a G-manifold with I (equipped with the trivial action) and giving the result the diagonal
action both preserves the isotropy groups. Therefore we can apply Theorem 3.6.2 and
we get an ad theory with values in WF .
The bordism groups of this ad theory are the G-bordism groups of oriented topologi-

cal G-manifolds with isotropy in F .
For example if F is the family consisting only of the trivial subgroup given by the

neutral element, we obtain an ad theory with values in free G-manifolds whose bordism
groups are the bordism groups of G-bordism of free G-manifolds.
Example 5.3.12 (Continuous actions). Let G be a topological group. In particular the
category G of the group is a topological category. Note that D = DSTop is a topological
category as well and that continuous G-actions on oriented topological manifolds are
continuous functors to DSTop. More generally let C be a small topological category with
discrete set of objects and exactly one isomorphism class of objects. Define W to be the
the full subcategory of DCA of the continuous functors.
We know, that the gluing construction is given by taking the colimit of the C-manifolds

over a subdivided cell to get a new C-manifold. Manifolds are locally compact and
Hausdorff, hence Proposition 6.1.2 ensures that the gluing construction of section 3.5
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restricts to W: If F is a K ′-ad for a subdivision K ′ of a ball complex K with values
in W, then for pairs (C1, C2) of objects of C and for a cell σ of K the continuity of the
maps

Map(C1, C2)→ Map(F (τ, o′)(C1), F (τ, o′)(C2)), g 7→ F (τ, o′)(g)
for every cell τ ∈ K ′, τ ⊂ σ implies that the colimit map

Map(C1, C2)→ Map( colim
τ∈K′,τ⊂σ

F [(τ)(C1), colim
τ∈K′,τ⊂σ

F [(τ)(C2))

is continuous.
The cylinder construction is given by taking the (value-wise) product of a C-manifold

with the constant C-space I. Thus Proposition 6.1.4 ensures that the cylinder construc-
tion of section 3.5 restricts to W: For a K-ad F with values in W and pairs (C1, C2) of
objects of C the continuity of the maps

Map(C1, C2)→ Map(F (σ, o)(C1), F (σ, o)(C2)), g 7→ F (σ, o)(g)

implies that the map

Map(C1, C2)→ Map(F [(σ)(C1)× I, F [(σ)(C2)× I)

is continuous.
Moreover the strict monoidal structure of DCA restricts to continuous functors and

therefore we can apply both theorems of section 3.6 and get an ad theory with values
in W. If C = G is the topological category of a topological group G, then the bordism
groups are the oriented topological G-bordism groups.
Example 5.3.13. The last two examples can be combined to get an ad theory with values
in oriented topological G-manifolds with restricted isotropy for a topological group G.
Now we return to the situation where G is a discrete group. Let X be a G-space,

that is it is a functor X : G → Top. Then we can define an ad theory of singular G-
manifolds in X as follows: Let DGA(X) denote the category whose objects are the natural
transformations from objects of DGA to X (so they are G-maps from G-manifolds to X).
The morphisms are morphisms of DGA (which are natural transformations representing
equivariant inclusions between G-manifolds) which commute with these natural trans-
formations to X. So the morphisms are equivariant inclusions of G-manifolds, which
commute with the G-maps to X (and have to be orientation-preserving if the dimen-
sions of the G-manifolds agree). The dimension of an object of DGA is the dimension
of the underlying G-manifold. An involution is given by taking a singular G-manifold
to the same G-manifold with reversed orientation and the same G-map to X. In ev-
ery dimension there is an object ∅n consisting of the empty G-manifold of dimension n
together with the empty map to X.
Then DGA(X) is a Z-graded category. Note that DGA(∗) is equal to DGA. A G-map X1 →

X2 induces a 0-morphism of Z-graded categories

DGA(X1)→ DGA(X2)

and this defines a functor from the category of G-spaces to the category of Z-graded
categories.
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Definition 5.3.14. A pre K-ad F with values in DGA(X) is an ad if the composition

Cell(K) F // DGA(X) // DGA(∗) = DGA

is an ad. The set of K-ads of degree k will be denoted by adG,kSTop,X .

Theorem 5.3.15. adGSTop,X is an ad theory and this defines a covariant functor from G-
spaces to ad theories.

Proof. For the gluing axiom one applies the gluing construction of the ad theory of G-
manifolds and takes the colimit of the maps to X as the new map to X. For the cylinder
axiom we take the cylinder construction for G-manifolds and to the product M × I of
a G-manifold M with I we assign the G-map M × I → X which one gets by composing
the G-map from M to X with the projection to M . All other axioms and the fact that
this is a functor are a direct consequence from the definitions.

Remark 5.3.16. The bordism groups of this ad theory are the G-bordism groups of
singular oriented topological G-manifolds in X; they will be denoted by ΩG

k (X). This is
a direct consequence of the gluing construction.
If we compose this functor with the functor Q from ad theories to Ω-spectra we get

a covariant functor from G-spaces to Ω-spectra. The restriction of this functor to the
subcategory given by the orbit category or(G) defines a covariant or(G)-Ω-spectrum.
Thus we can apply Lemma 4.1.9 and get a G-homology theory HG

∗ (−;Q◦adGSTop,?) such
that HG

n (G/H;Q ◦ adGSTop,?) = πn(Q ◦ adGSTop,G/H) ∼= ΩG
n (G/H).

5.4 Geometric Poincaré ad theories
The next example is given by geometric Poincaré ad theories ([LM09, Section 7]). Let π
be a group with a fixed properly discontinuous left action of π on a simply connected
space Z. Then the projection Z → Z/π is a universal cover. Let ω : π → {±1} be a
fixed group homomorphism. The right action of π on Z detemined by ω will be denoted
by Zω.

Definition 5.4.1. Let f : X → Z/π be a map and let X̃ be the pullback of the universal
cover Z to X. Then define S∗(X; Zf ) to be the module Zω ⊗Z[π] S∗(X̃). Here S∗(X̃)
denotes the singular chain complex of X̃.

Definition 5.4.2. LetAπ,Z,ω be the following Z-graded category: The objects are triples

(X, f : X → Z/π, ξ ∈ S∗(X,Zf )),

whereX is a space that is homotopy equivalent to a finite CW complex. If dim ξ < dim ξ′

then a morphism (X, f, ξ) → (X ′, f ′, ξ′) is a map g : X → X ′ such that f ′ ◦ g = f .
If dim ξ = dim ξ′ one requires additionally that g∗(ξ) = ξ′ and there are no morphisms
if dim ξ > dim ξ′. Now the dimension of (X, f, ξ) is dim ξ, the involution i takes (X, f, ξ)
to (X, f,−ξ) and ∅n is the n-dimensional object with X = ∅.
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Aπ,Z,ω is balanced. A balanced pre K-ad F will be denoted by

F (σ, o) = (Xσ, fσ, ξσ,o),

reflecting the fact, that Xσ and fσ do not depend on o.
Now there are two conditions one wants F to fulfill: X should be well-behaved as a

functor from Cell[(K) to topological spaces (see [LM09, Definition 7.3]) and F should
be closed (see [LM09, Definition 7.6]). For a cell σ of a ball complex K one defines X∂σ

to be the space colimτ(σXτ . Then the two conditions guarantee, that one can define a
cap product using the Alexander-Whitney map (see Definition 7.5):

HomZ[π](S∗(X̃σ),Z[π])→ S∗(X̃σ)/S∗(X̃∂σ);

and this is a chain map for each σ (see Lemma 7.8). Therefore we can define:

Definition 5.4.3 ([LM09, Definition (7.9)]). A preK-ad F is aK-ad if it is balanced and
closed and X is well-behaved and for each (σ, o) the cap product induces an isomorphism

H∗(HomZ[π](S∗(X̃σ),Z[π]))→ Hdimσ−degF−∗(X̃σ, X̃∂σ).

One writes adπ,Z,ω for the set of K-ads with values in Aπ,Z,ω.

Theorem 5.4.4 ([LM09, Theorem (7.10)]). adπ,Z,ω is an ad theory.

Further descriptions of the gluing and cylinder constructions can be found in the proof
of this theorem in [LM09] or later in the proof of Proposition 5.4.5 here. Basically, for
gluing one takes the colimit of the spaces. Therefore one can see, that addition in the
bordism groups of adπ,Z,ω is given by the disjoint union.
If one replaces the monoidal categories Set and Ab by equivalent strict monoidal

categories (see [Kas95, Section XI.5]), the category Ae,∗,1 has a strict monoidal structure
and the ad theory ade,∗,1 is a multiplicative ad theory.

Proposition 5.4.5. The ad theory of geometric Poincaré bordism ([LM09, section 7])
is an ad theory with functorial gluing and cylinder constructions.

Proof. Let K ′ be a subdivision of K and F a K ′-ad with F (τ, o) = (Xτ , fτ , ξτ,o). We
denote the gluing construction given in [LM09] by G(F ). We write Vσ := colimτ∈K′ Xτ

and eσ : Vσ → Z/π for the map induced by the colimit, and θσ,o for the sum
∑

(τ,o′) ξτ,o′

where (τ, o′) runs through the cells of K ′ with the same dimension as σ and orientation o′
induced by o. Then

G(F )(σ, o) = (Vσ, eσ, θσ,o).

Now let g : F1 → F2 be a natural transformation of K ′-ads of degree k, that is it is given
by morphisms g(τ,o) : F1(τ, o) → F2(τ, o). As above we denote the values G(F1)(σ, o)
of G(F1) and G(F2)(σ, o) of G(F2) by (V 1

σ , e
1
σ, θ

1
σ,o) and (V 2

σ , e
2
σ, θ

2
σ,o) respectively. Let g̃σ

denote the map induced between the colimits by g. Because taking colimit is a functor
it is clear that e2σ ◦ g̃σ = e1σ. Because of g(τ,o′)∗ξ

1
τ = ξ2τ we get also that g̃σ∗(θ1

σ,o) =
θ2
σ,o, so g̃σ is a morphism in Aπ,Z,ω. Again because taking colimit is a functor, these
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maps g̃(σ,o) := g̃σ define a natural transformation G(g) : G(F1) → G(F2). The same
argument together with the fact that the induced map of the colimit in homology is
compatible with the sums of the homology classes of the gluing construction implies
that with this definition G : adkπ,Z,ω(K ′) → adkπ,Z,ω(K) is a functor. By definition G
restricts to the identity functor on residual subcomplexes.
The proof of the functoriality of the cylinder constructions is similar to the proof

for adSTop: Just recall from [LM09] that J(F ) was defined to be the product ad F ×G
of Lemma (7.11) where G is the trivial I-ad with values in Ae,∗,1, with e the trivial group,
and 1 the homomorphism e→ {±1}. Explicitly G(σ, o) = (σ, ∗,± id) where ± is + if and
only if o is the standard orientation of σ and id denotes the class of the singular chain
complex induced by the identity of σ. Therefore if g : F1 → F2 is a natural transformation
of K-ads, the product induces a natural transformation J(g) : J(F1)→ J(F2) of (K×I)-
ads. Of course this defines a functor J : adkπ,Z,ω(K)→ adkπ,Z,ω(K×I). OnK×0 andK×1
the functor J restricts to the identity functor and it takes trivial ads to trivial ads by
definition.

As a consequence we get associated ad theories of G-objects in Aπ,Z,ω for a group G
which we will denote by adGπ,Z,ω. The addition in the bordism groups is induced by the
disjoint union of these G-objects.
By the results of Section 4 we get G-cohomology theories connected by the structure

of an equivariant cohomology theory that represent these bordism groups.

5.5 Symmetric Poincaré ad theories

The last two examples are the symmetric and quadratic Poincaré ad theories. Symmetric
Poincaré ad theories are defined in Chapter 8 of [LM09]. Let R be a fixed ring with
involution.

Definition 5.5.1. Let C denote the category of chain complexes of free left R modules.
A chain complex C of C is called finitely generated if it is finitely generated in each degree
and zero in all but finitely many degrees. It is homotopy finite if it is chain homotopy
equivalent to a finitely generated object. The full subcategory of homotopy finite objects
will be denoted by D.

By applying the involution of R, one gets a chain complex of right R modules from an
object C of C, which will be denoted by Ct. Then Ct⊗RC is equipped with the Z/2 action
that switches the factors. LetW be the standard resolution of Z by Z[Z/2]-modules (see
[Wei94, ch. 6.2]).

Definition 5.5.2. A quasi-symmetric complex of dimension n is a pair (C, φ), where C
is an object of D and φ is a Z/2-equivariant map

W → Ct ⊗R C

of graded abelian groups which raises degrees by n.
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Definition 5.5.3. Let AR denote the category whose objects are the quasi-symmetric
complexes and whose dimension-increasing morphisms (C, φ)→ (C ′, φ′) are the R-linear
chain maps f : C → C ′. If the dimensions are equal, then one additionally requires
that (f t⊗ f)◦φ = φ′ and there are no morphisms that lower dimension. Equip AR with
the involution which takes (C, φ) to (C,−φ), and let ∅n be the object for which C is zero
in all degrees. Then AR is a balanced Z-graded category.

A balanced pre K-ad F with values in AR will be denoted by

F (σ, o) = (Cσ, φσ,o).

Again one wants F to fulfill certain properties: C should be well-behaved as a functor
from Cell[(K) to chain complexes (see [LM09, Definition 8.7]) and F should be closed
(see Definition 8.8). One denotes by C∂σ the colimit colimτ(σ Cτ . Then these properties
ensure, that the composition

W → Ctσ ⊗R Cσ → (Cσ/C∂σ)t ⊗R Cσ

is a chain map. Then for an oriented cell (σ, o) one chooses a right inverse g : Z→W of
the augmentation and defines a chain map

Υσ : HomR(Cσ, R)→ Cσ/C∂σ

to be the composition

Z⊗HomR(Cσ, R)→W ⊗HomR(Cσ, R)→ ((Cσ/C∂σ)t ⊗R Cσ)⊗HomR(Cσ, R)
→ (Cσ/C∂σ)t ⊗R R ∼= (Cσ/C∂σ)t.

The chain homotopy class of this map is independent of the choice of g. Then one can
define ads:

Definition 5.5.4. A pre K-ad F with values in AR is a K-ad if it is balanced and closed
and C is well-behaved and for each σ the map Υσ induces an isomorphism

H∗(HomR(Cσ, R))→ Hdimσ−degF−∗(Cσ/C∂σ).

The set of K-ads with values in AR is denoted by adR(K).

Theorem 5.5.5 ([LM09, Theorem (8.13)(i)]). adR is an ad theory.

These ad theories are called symmetric Poincaré ad theories.
Assuming again that Set and Ab are replaced by equivalent strict monoidal categories

and additionally that R is commutative, AR has a strict monoidal structure and the ad
theory adR is multiplicative.

Proposition 5.5.6. The symmetric Poincaré ad theories are ad theories with functorial
gluing and cylinder constructions.
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Proof. Let K ′ be a subdivision of K. For a cell σ of K and a K ′-ad F , gluing is
constructed by taking the colimit Dσ of the underlying chain complexes of the val-
ues F (τ, o) with τ ∈ K ′ and τ ∈ σ. The Z/2-equivariant map κσ,o : W → Dt

σ ⊗R Dσ is
the sum of the compositions of the Z/2-equivariant maps with the map into the tensor
product Dt

σ ⊗R Dσ of this colimit and its associated complex of right modules, taken
over all oriented cells (τ, o′) of K ′ with dim τ = dim σ and τ ⊂ σ such that o′ is in-
duced by o. If F1 and F2 are two K ′-ads of degree k, then we denote their values
by F1(τ, o′) = (C1

τ , φ
1
τ,o′) and F2(τ, o′) = (C2

τ , φ
2
τ,o′) respectively. We denote the gluing

constructions by G(F1)(σ, o) = (D1
σ, κ

1
σ,o) and G(F2)(σ, o) = (D2

σ, κ
2
σ,o). A natural trans-

formation g : F1 → F2 consists of R-linear chain maps g(τ,o′) : F1(τ, o′) → F2(τ, o′) that
fulfill gt(τ,o′) ⊗ g(τ,o′) ◦ φ

1
τ,o′ = φ2

τ,o′ . So they induce a map g̃(σ,o) : D1
σ → D2

σ between the
colimits such that g̃t(σ,o) ⊗ g̃(σ,o) ◦ κ

1
σ,o = κ2

σ,o, because

g̃t(σ,o) ⊗ g̃(σ,o) ◦ κ
1
σ,o = g̃t(σ,o) ⊗ g̃(σ,o) ◦

∑
(τ,o′)

(W
φ1
τ,o′−−−→ C1,t

τ ⊗ C1
τ → D1,t

σ ⊗D1
σ)

=
∑
(τ,o′)

(g̃t(σ,o) ⊗ g̃(σ,o) ◦ (W
φ1
τ,o′−−−→ C1,t

τ ⊗ C1
τ → D1,t

σ ⊗D1
σ))

=
∑
(τ,o′)

(W
gt(τ,o′)⊗g(τ,o′)◦φ

1
τ,o′−−−−−−−−−−−−→ C2,t

τ ⊗ C2
τ → D2,t

σ ⊗D2
σ))

=
∑
(τ,o′)

(W
φ2
τ,o′−−−→ C2,t

τ ⊗ C2
τ → D2,t

σ ⊗D2
σ))

= κ2
σ,o.

Hence the maps g̃(σ,o) are morphisms of AR. The functoriality of taking colimit shows
that G(g)(σ,o) := g̃(σ,o) defines a natural transformation and that G is a functor with
this definition. This functor restricts to the identity functor on residual subcomplexes
by definition.
The proof of the functoriality of the cylinder constructions is analogous to that for

geometric Poincaré ad theories. Let K be a fixed ball complex and F a K-ad of degree k.
Lemma (8.14) in [LM09] constructs tensor product ads analogously to the product ads
of Lemma (7.11) and an I-ad G is constructed in the proof of Theorem (8.13) such
that J(F ) = F ⊗ G. Hence J defines a functor adR,k(K) → adR,k(K × I) and this
functor restricts to the identity functor on K × 0 and K × 1 and it takes trivial ads to
trivial ads.

Thus for every group G we get an ad theory of G-objects in AR and associated G-
cohomology theories that are connected by the structure of an equivariant cohomology
theory.
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5.6 Quadratic Poincaré ad theories
At last we present the quadratic Poincaré ad theories of Section 9 of [LM09].
Definition 5.6.1. A quasi-quadratic complex of dimension n is a pair (C,ψ) where C
is an object of D and ψ is an element of (W ⊗Z/2 (Ct ⊗R C))n.
Definition 5.6.2. Let AR denote the category whose objects are the quasi-quadratic
complexes and whose dimension-increasing morphisms (C,ψ) → (C ′, ψ′) are the R-
linear chain maps f : C → C ′. If dimensions are equal one additionally requires that
(1 ⊗ (f t ⊗ f))ψ = ψ′ and there are no morphisms that lower dimension. Equip AR
with the involution that takes (C,ψ) to (C,−ψ) and ∅n is the n-dimensional object for
which C is zero in all degrees. Then AR is a balanced Z-graded category.
A balanced pre K-ad F is denoted by

F (σ, o) = (Cσ, ψσ,o).

Again there is a definition of a property called closed (see Definition 9.3) one wants F
to have. One defines a non-positively graded complex V0 → V−1 → · · · of Z/2-modules
by

V−n = HomZ/2(Wn,Z[Z/2]).
One gets an isomorphism

W ⊗Z/2 (Ct ⊗R C) ∼= HomZ/2(V,Ct ⊗R C),

so that the composition
N : W → Z→ V

induces a homomorphism

N∗ : W ⊗Z/2 (Ct ⊗R C)→ HomZ/2(W,Ct ⊗R C),

which is called the norm map. This map induces a functorN : AR → AR by taking (C,ψ)
to (C,N∗(ψ)).
Definition 5.6.3. A pre K-ad with values in AR is a K-ad if it is balanced, closed
and C is well-behaved and N ◦ F is a K-ad.
Remark 5.6.4. Note that here well-behaved means the same as for symmetric Poincaré
ads.
Theorem 5.6.5 ([LM09, Theorem (9.5)]). adR is an ad theory.
These ad theories are called quadratic Poincaré ad theories.

Proposition 5.6.6. The quadratic Poincaré ad theories are ad theories with functorial
gluing and cylinder constructions.
Proof. This is proved in the same way as for symmetric Poincaré ad theories with the
only difference, that now Lemma (9.6) of [LM09] plays the role of Lemma (8.14).

Again for every group G we get an ad theory of G-objects in AR and associated G-
cohomology theories that are connected by the structure of an equivariant cohomology
theory.
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5.7 Outlook on other equivariant constructions concerning symmetric and quadratic
Poincaré ad theories

5.7 Outlook on other equivariant constructions concerning symmetric and
quadratic Poincaré ad theories

An R-module with a G-action is the same as an RG-module. This is not true for free R-
modules and free RG-modules and because of this we can not understand the categories
of G-objects in AR and AR by the categories ARG and ARG.
However it seems natural that one wants to get equivariant theories by the dependency

on G of the symmetric and quadratic ad theories associated to RG for a fixed ring with
involution R. In fact in [DL98] a covariant functor from GROUPOIDS to L-theory
spectra is given that takes equivalences of groupoids to weak equivalences of spectra:
For a small groupoid C a so-called R-category with involution RC is constructed. Fur-

thermore one can define a symmetric monoidal R-category RC⊕. If C is the category of
a group, then RC is simply the group ring.
Now one can apply the usual construction of the periodic algebraic L-theory spectrum

to these R-categories and gets the desired covariant functors GROUPOIDS → S, that
take equivalences of groupoids to weak equivalences of spectra.
An advantage of this construction is that assembly maps and the isomorphism con-

jecture of Farrell-Jones can then be formulated in terms of or(G)-spectra.
The hope is, that such a construction is also possible for symmetric and quadratic

Poincaré ad theories. Gerd Laures and James E. McClure provide a (covariant) functo-
riality in R of symmetric and quadratic ad theories in Section 11 of [LM09] (they use
a method of Blumberg and Mandell and the target categories have to be modified). A
part of the strategy would be to use this functoriality.
The advantage would be, that for example with symmetric Poincaré ad theories and

if R is commutative, one would get functors from GROUPOIDS to symmetric ring
spectra.
I intend to pursue this idea in my future work.
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6 Appendix

6.1 Some facts from point-set topology

Throughout this work all topological spaces are assumed to be compactly generated
weak Hausdorff spaces and we mean the category of this spaces when we speak of topo-
logical spaces. We write Top for this category itself, Top(X,Y ) for the set of contin-
uous maps X → Y and Map(X,Y ) for the mapping space in this category, which is
equipped with the compactly generated compact-open topology. Working with this cat-
egory ensures that it fulfills an exponential law, that is for spaces X, Y and Z we get a
homeomorphism

Map(X × Y,Z) ∼= Map(X,Map(Y, Z))

and these homeomorphisms are natural in X, Y and Z. See [tD00, VI.6] or [Whi78, I.4]
for details.
In particular if X and Y are locally compact Hausdorff spaces, then Map(X,Y ) has

the compact-open topology.

Lemma 6.1.1. Let I be a finite category and F be a functor from I to locally compact
Hausdorff spaces such that colimI F is a locally compact Hausdorff space. Let Y be a
locally compact Hausdorff space. Then the bĳection induced by the universal property of
the colimit

Map(colim
I

F, Y )→ lim
I

Map(F (−), Y )

is a homeomorphism.

Proof. The map from the left to the right side is continuous by the universal property
of the limit. For finite disjoint sums one can check the continuity of the inverse map
directly using the definition of the compact-open topology. If X → Z is an identification
map (that is Z carries the quotient topology) between locally compact Hausdorff spaces,
then we have to prove that Map(Z, Y ) has the induced topology of the inclusion

Map(Z, Y )→ Map(X,Y ).

That is we have to check that for each test space T a map f : T → Map(Z, Y ) is
continuous if and only if the composition of the inclusion with f is continuous. By the
exponential law this is equivalent to T × X → T × Z being an identification. This is
true by theorems (6.8) and (6.13) of [tD00].
We have shown that the claim holds for finite disjoint sums and quotient spaces, hence

it is true for all finite colimits.

Proposition 6.1.2. Let I be a finite category and F1 and F2 functors from I to locally
compact Hausdorff spaces, such that colimF1 and colimF2 are locally compact Hausdorff
spaces. Let T be a topological space and let there be continuous maps

fJ : T → Map(F1(J), F2(J))
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6.1 Some facts from point-set topology

for every object J of I, which are compatible, that is for morphisms in I the induced
diagrams commute. Then the colimit map

T → Map(colim
I

F1, colim
I

F2)

is continuous.

Proof. Let inJ denote the continuous map F2(J)→ colimI F2. Then the composition

T → Map(F1(J), F2(J))→ Map(F1(J), colim
I

F2),

where the second map is given by composition with inJ , is continuous. By the universal
property of the limit we get a unique continuous map

T → lim Map(F1(J), colim
I

F2).

Now we can apply Lemma 6.1.1 to the right side and simply check that the resulting
map is the colimit map.

Lemma 6.1.3. Let X, Y and Z be locally compact Hausdorff spaces. Then the bĳection

Map(X,Y )×Map(X,Z)→ Map(X,Y × Z)

given by the universal property of the product is a homeomorphism.

Proof. The map from the right to left side is continuous by the universal property of
the product. The continuity of the other direction can be checked directly using the
definitions of the product topology and the compact-open topology.

Proposition 6.1.4. Let Y1, Y2 and W be locally compact Hausdorff spaces, T a topo-
logical space and f a continuous map

T → Map(Y1, Y2).

Then the map induced by the product with W

T → Map(Y1 ×W,Y2 ×W )

is continuous.

Proof. We compose f with the continuous map induced by the composition with the
projection Y1 × W → Y1 and get a continuous map T → Map(Y1 × W,Y2). On the
other hand we can compose the constant map T → Map(W,W ) with the map induced
by composition with the projection Y1 × W → W and get a continuous map T →
Map(Y1 ×W,W ). Together these maps define a continuous map

T → Map(Y1 ×W,Y2)×Map(Y1 ×W,W )

to whose right side we can apply Lemma 6.1.3. Then one sees that the resulting contin-
uous map is the map whose continuity we wanted to show.
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6.2 Ball complexes

We will not give an extensive introduction to piecewise linear topology here. Instead
we refer to [RS72] where the foundations are elaborated in every detail. Ball complexes
are described in [BRS76, I.1] and the basic definitions are also given in [LM09]. We will
shortly recall the definitions concerning ball complexes which are the technical device
we need for the definition of ad theories. After that we will explain what is meant by
the incidence number of two cells which occurs in the definition of ad theories.
An m-dimensional p.l. manifold is a polyhedron M , so that every point x ∈M has a

neighborhood which is p.l. homeomorphic to an open subset of Rn. An m-dimensional
p.l. ball is a p.l. manifold with boundary which is p.l. homeomorphic to the p.l.
manifold Im.

Definition 6.2.1. For a finite collection K of p.l. balls in some Rn we define |K| to
be the union

⋃
σ∈K σ. Then K is called a ball complex if the interiors of the balls are

disjoint and for each ball σ ∈ K its boundary is a union of balls of K.

The balls of a ball complex are often called closed cells or only cells. A ball complex
is a regular CW complex (see [Whi78, II.6] for a definition of regular CW complexes).
We sometimes call |K| the underlying space of K. Every finite simplicial complex is a
ball complex.

Definition 6.2.2. A subset of a ball complex K which is itself a ball complex is called a
subcomplex. An isomorphism of ball complexes is a p.l. homeomorphism which takes cells
to cells. If L is a subcomplex of K then we denote the pair of ball complexes by (K,L).
An isomorphism of pairs (K,L) and (K ′, L′) is an isomorphism of ball complexes K →
K ′ which restricts to an isomorphism L → L′. A morphism f of ball complexes is
a composition of an isomorphism φ with an inclusion j of a subcomplex: f = j ◦ φ.
Similarly, a morphism of pairs is a composition of an isomorphism of pairs with an
inclusion of pairs. Let Bi be the category of pairs of ball complexes. The category with
the same objects whose morphisms are homotopy classes of continuous maps of pairs
will be denoted by Bh.

The product of ball complexes is defined by the products of the cells and it is again
a ball complex (see [BRS76, page 5]). This is an advantage of ball complexes over
simplicial complexes. We will often use products with the ball complex I which is the
unit interval together with its standard structure as a ball complex, which consists of
two 0 cells and one 1 cell.

Definition 6.2.3. Let K be a ball complex. A ball complex K ′ is called a subdivision
of K if it fulfills the two conditions

(i) |K ′| = |K|

(ii) Each cell of K ′ is contained in a cell of K.
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Let σ be an n-dimensional cell and write ∂σ for its boundary. Then there is an
isomorphism Hn(σ, ∂σ) ∼= H̃n(Sn) ∼= Z where H denotes singular homology and H̃
denotes reduced homology. We define an orientation of the cell to be a generator o
of Hn(σ, ∂σ). We write (σ, o) for the oriented cell.
Now let (σ, o) be a cell of dimension n of a ball complex K with chosen orientation o

and let (τ, o′) a cell of dimension n−1 ofK with chosen orientation o′. Let τ be contained
in the boundary of σ. Then we have the incidence isomorphism as is described in [Whi78,
p. 82]:

Hn(σ, ∂σ) ∼= Hn−1(τ, ∂τ).

The incidence number [(σ, o), (τ, o′)] is defined to be 1 if o is thrown to o′ under this
isomorphism and −1 if o is thrown to −o′. If τ is not contained in the boundary of σ
the incidence number is defined to be 0.

6.3 Foundations of equivariant topology
We collect basic definitions and properties of equivariant topology here. In particular,
we will introduce the orbit category. Of course we will not give proofs for every detail
here, instead we refer the reader to the books [tD87] and [May96].
Let G be a group. The category of the group G is the category which consists of one

object ∗ with the set of endomorphisms of ∗ being the group G and composition is the
multiplication of the group. Thus all endomorphisms are automorphisms and e is the
identity. We denote this category by G.
Now let C be an object of a category C. There are several (in their specific situation

equivalent) notions of a G-action on C which are:

• A (left-)action of G on C is a group homomorphism G→ Aut(C) to the group of
automorphisms of C.

• A (left-)action of G on C is a functor F : G → C such that F (∗) = C.

• If C is the category of sets, then a (left-)action of G on a set X is a map

G×X → X, (g, x) 7→ gx

such that (gg′)x = g(g′x) for all g, g′ ∈ G and ex = x where e denotes the
neutral element of G. Sometimes one writes g.x for gx, for example if one wants
to distinguish between an action and a group multiplication. By the exponential
law this is equivalent to the first definition.

We omit the term left in the following, and note that there is also a notion of right
action: A right-action of G on some object C of C is a contravariant functor F : G → C
or if C is the category of sets and X a set, then this is the same as a map

X ×G→ X, (x, g) 7→ xg

such that xe = x and (xg)g′ = x(gg′). Note that left actions can be transformed to right
actions and vice versa by the formula xg = g−1x.
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An object of C with a group action of G on it is called a G-object in C.
Often we are in the situation of a category C whose objects are sets with additional

structures. For example, think of topological spaces or manifolds or (left) modules over
a ring R. Then an action of G on C gives an action of G on the set C by applying the
forgetful functor from C to the category of sets to the action. The resulting action on
the set has the special property that it acts by automorphisms in the category C, that is
for all elements g ∈ G the map of sets induced by it C → C, c 7→ gc is an automorphism
in the category C. On the other hand every G-action on the underlying set of C by
automorphisms of C is a G-object in C.
Now let G be a topological group, that is G is a group together with a topology such

that the multiplication map and the inverse map

G×G→ G, (g, g′) 7→ gg′

G→ G, g 7→ g−1

are both continuous.

Definition 6.3.1. A left-G-space is a topological space X together with a continuous
map

G×X → X, (g, x) 7→ gx

which fulfills ex = x and g′(gx) = (gg′)x. Such a map is called a continuous left-action
of G on X.

Again we will often omit the term left, when speaking of G-spaces, and sometimes
even continuous when it is clear that we talk about a continuous action. There is a
notion of continuous right actions as for G-actions.
Note that a G-space X is more special than a G-object in Top because it describes

continuous symmetries. Every G-space is a G-object in Top. Conversely, this is not true
in general. The categories G and Top can be viewed as topological categories, in the
sense that their morphism sets carry a topology such that composition is continuous. The
topology of the (only) morphism set of G is that of G and the topology on the morphism
sets of Top is given by the mapping spaces. Then a G-space is a continuous functor in
the sense, that the maps on the morphism sets are continuous. This is essentially the
same as a continuous group homomorphism G→ Aut(X), where Aut(X) is the group of
homeomorphisms X → X with the subspace topology of the mapping space topology.
If G has the discrete topology, then a G-space is the same as a G-object in Top.
We call an action effective if its group homomorphism is injective.

Definition 6.3.2. A Lie Group is a group G which is a smooth manifold such that the
multiplication map and inverse map are both smooth maps.

Usually one regards compact Lie groups in equivariant topology. Often one even
restricts oneself to the case of finite groups. When we speak about a finite group G we
always assume that it is equipped with the discrete topology. In particular every G-
action on a space is continuous and every subgroup is closed.
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A continuous map between G-spaces f : X → Y is called G-equivariant if f(gx) =
gf(x) for all g ∈ G and x ∈ X. Such a map is also called a G-map. The G-spaces and G-
maps form a category which we denote by TopG. Generally constructions for spaces like
sums and products work well for G-spaces. For instance, we get Cartesian products by
letting G act diagonally. For G-spaces X and Y the group G acts on Map(X,Y ) by
conjugation, that is gf(x) := gf(g−1x). With this action the exponential law provides
a G-homeomorphism

Map(X × Y,Z) ∼= Map(X,Map(Y,Z))

Additionally we define MapG(X,Y ) to be the subspace of Map(X,Y ) which contains
the G-maps.
For a G-action on X the orbit of x is the set Gx := {gx | g ∈ G}. The orbits provide

a disjoint partition of X, so they define an equivalence relation. The quotient space is
denoted by X/G and is called the orbit space of the action.
Next we regard subgroups. For us all subgroups that appear are assumed to be topo-

logically closed. Note that this is always true for subgroups of a finite group. Let H ⊂ G
be a subgroup. We have a continuous right action of H on G by right translation. The
orbits of this action are the cosets gH and the orbit space G/H is a left-G-space by the
action

G×G/H → G/H, (g′, gH) 7→ g′gH

A G-space is called homogeneous space if it is G-homeomorphic to G/H for some sub-
group H ⊂ G. The G-spaces G/H together with G-maps between them form a category
which is called the orbit category of G and is denoted by or(G).
Let XH denote the fixed point space of X under the action of H, that is

XH := {x | hx = x for h ∈ H}

equipped with the subspace topology. For an element x ∈ X the group

Gx := {g | gx = x}

is called the isotropy group of x.
The normalizer of a subset H of a group G is defined by NGH := {g | gHg−1 = H}.

Therefore a subgroup H is normal in G if and only if NGH = G. For a subgroup the
normalizer is again a group, which contains H as a normal subgroup. Indeed it is the
largest subgroup of G with this property. The quotient group WH := NGH/H is called
the Weyl group of H.

Lemma 6.3.3. XH is a WH-space.

Proof. The action is defined by [g]x := gx. We have to show that this is well-defined.
Let g be a representative for [g]. First, gx ∈ XH because hgx = gh′x = g.x for
some h′ ∈ H which exists by the definition of the normalizer. For [g′] = [g] = gH we
know that g′ = gh for some h ∈ H. So g′x = ghx = gx. The action is continuous because
the action of NGH on XH is, and WH is equipped with the quotient topology.
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We cite a simple but useful proposition from [tD87]:

Proposition 6.3.4 ([tD87, (I.1.14)]). Let H and K be subgroups of G.

(i) There exists a G-map G/H → G/K if and only if H is conjugate to a subgroup
of K.

(ii) If a ∈ G, a−1Ha ⊂ K, then we obtain a G-map Ra : G/H → G/K, gH 7→ gaK.

(iii) Each G-map G/H → G/K has the form Ra for suitable a ∈ G with a−1Ha ⊂ K.

(iv) Ra = Rb if and only if ab−1 ∈ K.

For a G-space X let AutG(X) denote the set of G-homeomorphisms X → X.

Corollary 6.3.5. For a subgroup H ⊂ G the group AutG(G/H) is isomorphic to the
Weyl group WH.

Proof. See page 6 of[tD87].

Corollary 6.3.6. We have bĳections

TopG(G/H,G/K) ∼= (G/K)H

Proof. By the proposition the set TopG(G/H,G/K) can be identified with the set of
equivalence classes [a] of elements a ∈ G with a−1Ha ⊂ K where the equivalence
relation is given by a ∼ b :⇔ a−1b ∈ K. On the other hand the elements of (G/K)H are
cosets aK with haK = aK for all h ∈ H. Now it is easy to see that there are well-defined
maps [a] 7→ aK and aK 7→ [a], which are inverse to each other by definition.

Lemma 6.3.7. For a G-space X and a subgroup H ⊂ G the orbit space X/H is a WH-
space.

Proof. The action is defined by [g]Hx := H(gx). This is well-defined, because if [g] =
[g′], then g′ = gh for some h ∈ H and because of g ∈ NH we have gh = h′g for
some h′ ∈ H and so H(g′x) = H(h′gx) = H(gx).

We continue by collecting several adjunctions we may need. Let K be a G-space with
trivial G-action. The proof of the following two bĳections is simple.

Proposition 6.3.8. We have bĳections

TopG(K,X) ∼= Top(K,XG)

and

TopG(X,K) ∼= Top(X/G,K).
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Definition 6.3.9. Let G and H be groups and X be an H-space and α : H → G
a group homomorphism. On the product G × X an equivalence relation is defined
by (gα(h), x) ∼ (g, hx). Let indαX denote the quotient space of this relation. It is the
same as the quotient of G×X of the right action given by (g, x)h := (gα(h), h−1x). It
is equipped with a G-action

G× (G×H X)→ G×H Y, (g, [(g′, x)]) 7→ [(gg′, x)]

and we call this G-space the induction of X with α. If α is an inclusion of a subgroup,
we also write indGH X or G×H X for it.

Now let α : H → G be the inclusion of a subgroup. Then the construction of the
induced G-space defines a functor TopH → TopG. We have a functor in the other
direction by restricting the G-action to H. These functors are adjoint:

Proposition 6.3.10. Let X be an H-space and Y a G-space. There is a canonical
bĳection

TopG(G×H X,Y ) ∼= TopH(X,Y )

Proof. See proposition (I.4.3) in [tD87].

Generally for a right G-space X and a left G-space Y we define the balanced prod-
uct X ×G Y := (X × Y )/ ∼ with (xg, y) ∼ (x, gy). If both X and Y are left-G-spaces
then we regard X with the associated right action to get the balanced product. For
an H-space X this definition agrees with that for G×H X.
Dually to the inducedG-space we can construct a coinduced G-space. Let MapH(G,X)

be the space of H-maps G→ X where H acts on G by multiplication from the left. It is
a G-space by the action gf(g′) = f(g′g). Then this G-space is called the coinduced G-
space. We get the dual version of the canonical bĳection:

Proposition 6.3.11. Let X be an H-space and Y a G-space. There is a canonical
bĳection

TopH(Y,X) ∼= TopG(Y,MapH(G,X))

Proof. See [tD87, I.4.11].

The following statement provides alternative descriptions of the induced and coin-
duced G-space.

Proposition 6.3.12. Let X be a G-space. Then we have G-homeomorphisms

G×H X ∼= (G/H)×X

and

MapH(G,X) ∼= Map(G/H,X)

59



6 Appendix

Proof. The first G-homeomorphism is given by the map [(g, x)] 7→ (gH, gx). This map
is a well-defined G-map and its inverse is given by the G-map (gH, x) 7→ [(g, g−1x)].
For the second G-homeomorphism let f : G/H → X be a continuous map. Then
define f ′ : G → X by f ′(g) = gf(g−1H). This is an H-map because f ′(hg) =
hgf(g−1h−1H) = hgf(g−1H) = hf ′(g). For the other direction let f : G → X be
an H-map. Define f ′(gH) = gf(g−1). It is easy to see that these constructions are
inverse to each other.

We go on by explaining homotopies in the equivariant context. Let I be equipped
with the trivial G-action. Then for every G-space X the product X × I is a G-space.
Two G-maps X → Y are defined to be G-homotopic if there is a G-map h : X × I → Y
which restricts to the two G-maps on the ends. G-homotopy is an equivalence relation
and we denote the homotopy category by hTopG.
A G-map f : X → Y is called a weak equivalence if the restrictions fH : XH → Y H

are weak equivalences for all subgroups H ⊂ G. If we add formal inverses for weak
equivalences to hTopG we denote the resulting category by hTopG.
In homotopy theory one often works with based spaces. A based G-space is a G-space

together with a point of it which is G-fixed. Let X+ denote the disjoint union of a G-
space X and a base point on which G acts trivially. We have to replace the Cartesian
product by the smash product X ∧Y = (X ×Y )/X ∨Y to get a suitable product in the
category of based G-spaces. The morphisms are based G-maps and we denote the set of
morphisms by Toppt

G (X,Y ) or by TopG(X,Y ) if it is clear that we work in the category
of based G-spaces.
We get analogous adjunctions and bĳections for the based situation. A based homo-

topy between based G-maps X → Y is a based G-map h : X ∧ I+ → Y which restricts
to the maps on the ends. Again we get analogous homotopy categories.
We proceed by introducing the fixed point functor and the orbit functor. For the rest

of this section let X be a G-space and G a compact topological group.

Lemma 6.3.13. We get a contravariant functor from the orbit category or(G) to topo-
logical spaces as follows:

G/H 7→ XH

(Ra : G/H → G/K) 7→
{
XK → XH

x 7→ ax

Proof. We only have to verify that the functor is well-defined on morphisms. First we
know that for a morphism Ra we have a−1Ha ⊂ K, so for x ∈ XK we have hax = akx
for some k ∈ K and therefore hax = ax. If Ra = Rb then ab−1 ∈ K. So for x ∈ XK we
get ax = bx.

We call this functor the fixed point functor.

Proposition 6.3.14 ([tD87, I.3.8]). For a compact group G there is a canonical home-
omorphism

MapG(G/H,X) ∼= XH
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6.3 Foundations of equivariant topology

which is given by f 7→ f(H).

With this proposition the fixed point functor is isomorphic to the functor MapG(−, X),
because (MapG(−, X)(Ra)(f))(H) = (f ◦Ra)(H) = f(aK) = af(K).

Lemma 6.3.15. A covariant functor from the orbit category to topological spaces is
given by

G/H 7→ X/H

(Ra : G/H → G/K) 7→
{
X/H → X/K

Hx 7→ Kax

Proof. Again we only have to proof that it is well-defined on morphisms. For a mor-
phism Ra we have Ha = aK. So if Hx = Hy it follows that y = hx for some h ∈ H
and ah = ka for some k ∈ K. Thus Kay = Kahx = Kkax = Kax. If Ra = Rb
then ab−1 ∈ K, so Kbx = Kab−1bx = Kax. Continuity follows from the continuity of
the left translation and the universal property of quotient topology.

This functor is called the quotient space functor.

Proposition 6.3.16. Let X be a left G-space. There is a canonical homeomorphism

X/H ∼= X ×G G/H.

Proof. The map is given by Hx 7→ [x,H], the inverse map is given by [x, gH] 7→ Hg−1x.
It is easy to check that both maps are well-defined and that they are continuous.

This proposition yields an isomorphism of the quotient space functor to the func-
tor X ×G −, because X ×G −(Ra)([x,H]) = [x, aK] = [ax, a−1aK] = [ax,K].

Definition 6.3.17. Let G be a group. A family of subgroups F of G is a nonempty
set of subgroups which is closed under taking subgroups and conjugation with elements
of G. We denote by or(G,F) the full subcategory of or(G) consisting of the objects G/H
with H ∈ F .

Example 6.3.18. Let G be a group, then there are the following examples of families of
subgroups:

• F = {H ⊂ G | H is a finite subgroup of G}

• If X is a G-space then F = {H ⊂ G | XH 6= ∅} is a family of subgroups.

• A group is called virtual cyclic if it contains a cyclic subgroup of finite index. Let

F = {H ⊂ G | H is virtual cyclic.}

Then F is a family of subgroups.
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We proceed by giving a short introduction to G-CW-complexes. See [May96, I.3]
or [KL05, 19.1] or [tD87, II.1, II.2] for details. Let G be a topological group and let
the disks Dn and the spheres Sn be equipped with the trivial G-action. Note that the
homogeneous spaces G/H play the role of points in equivariant topology.

Definition 6.3.19. A G-CW complex X is a G-space together with a G-invariant fil-
tration

∅ = Xn−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . .
⋃
n≥0

Xn = X

such that

(i) X carries the colimit topology of this filtration.

(ii) for all n ≥ 0 the G-space Xn is obtained from Xn−1 by attaching equivariant n-
dimensional cells, that is there exists a G-pushout

∐
i∈In G/Hi × Sn−1 //

��

Xn−1

��∐
i∈In G/Hi ×Dn // Xn

Note that the attaching maps G/H × Sn → Xn are determined by their restrictions
to the fixed point sets Sn → XH

n , because of the adjunctions above. This can be used
to prove homotopy theoretical results as for non-equivariant CW complexes: There is a
Whitehead theorem (see [May96, Theorem 3.2] or [KL05, Theorem 19.6]) and a cellular
approximation theorem (see [May96, Theorem 3.6] or [tD87, Theorem II.2.1]). A G-
map f : X → Y of G-CW complexes is cellular if f(Xn) ⊆ Yn for every n. Then
the cellular approximation theorem ensures that each G-map between G-CW-complexes
is G-homotopic to a cellular one and each G-homotopy between cellular G-maps can be
replaced by a cellular G-homotopy.

6.4 Spectra and symmetric spectra

There exist several new model categories, which are all Quillen equivalent and whose
associated homotopy categories are equivalent to the classical stable homotopy cate-
gory. Some of them are constructed from diagram categories of spectra. The different
constuctions of such model categories of diagram spectra are covered and compared in
[MMSS01]. One of these categories is the category of (topological) symmetric spectra
of [HSS00]. The advantage of all these new examples for model categories for the stable
homotopy category is, that a reasonable smash product can already be defined on the
category itself and not just on the homotopy category.
The main purpose of the machinery given in [LM09] is to take a multiplicative ad

theory and produce symmetric ring spectra. In this section we collect basic definitions
for spectra and symmetric ring spectra from the literature.

62



6.4 Spectra and symmetric spectra

Definition 6.4.1. A spectrum X is a family (Xn)n∈Z of pointed topological spaces
together with maps

εn : Xn ∧ S1 → Xn+1.

A spectrum is called Ω-spectrum if the adjoint maps σn : Xn → ΩXn+1 are weak equiv-
alences, that is they induce isomorphisms of the homotopy groups. A map of spec-
tra f : X → Y is a family of maps fn : Xn → Yn such that for all n ∈ Z the diagrams

Xn ∧ S1 εn //

fn∧idS1
��

Xn+1

fn+1
��

Yn ∧ S1
εn

// Yn+1

commute. We write S for the category of spectra and Ω-S for the category of Ω-spectra.

Spectra represent generalized homology and cohomology theories by Brown’s repre-
sentability theorem. Let Sk denote the k-fold smash product of S1. The symmetric
group Σk (equipped with the discrete topology) acts continuously on Sk by permuta-
tions of the factors.

Definition 6.4.2. A symmetric spectrum X is a spectrum together with continuous
actions of the symmetric group Σn on Xn such that for all n, k ∈ Z the composition

Xn ∧ Sk
εn∧idSk−1// Xn+1 ∧ Sk−1 // · · · // Xn+k

is Σn × Σk-equivariant (Σn × Σk acts on Xn+k as subgroup of Σn+k). A morphism of
symmetric spectra is a map of the spectra such that fn : Xn → Yn is Σn-equivariant. We
denote the category of symmetric spectra by SΣ.

Definition 6.4.3. A symmetric sequence is a sequence of pointed spaces X0, X1, . . .
together with actions of Σn on Xn. A morphism X → Y between symmetric sequences
consists of Σn-equivariant maps Xn → Yn.

On the category of symmetric sequences there exists a tensor product ⊗ (see [HSS00,
Definition 2.1.3]) and a twist isomorphism τ (see [HSS00, Proposition 2.1.4 and Re-
mark 2.1.5]), such that this category is symmetric monoidal ([HSS00, Lemma 2.1.6]). If S
is the symmetric sequence of the symmetric sphere spectrum ([HSS00, Example 1.2.4]),
then there is an equivalence between left S-modules in the category of symmetric se-
quences and symmetric spectra ([HSS00, Proposition 2.2.1]).

Definition 6.4.4. Let X,Y be symmetric spectra and mX : S ⊗M →M and mY : S ⊗
Y → Y the structure maps of the left S-modules. Then

X ∧ Y := coequalizer( X ⊗ S ⊗ Y
idX ⊗mY //

(mX◦τ)⊗idY
// X ⊗ Y )

defines a smash product in the category of symmetric spectra that makes SΣ a symmetric
monoidal category ([HSS00, Lemma 2.2.2 and Corollary 2.2.4]).
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6 Appendix

6.5 Diagrams in a category and evaluation functors
Often additional structures on objects of a category (for example topological spaces)
can be described by functors into this category. For instance, recall that a G-object in a
category is a functor of G into the category. Another example is given by or(G)-spaces
which are defined to be functors from or(G) to spaces. For a G-space X a contravariant
functor from or(G) to spaces is given by the fixed point functor G/H 7→ XH and a
covariant functor is defined by the quotient space functor.
One idea is that one can get a lot of information about the equivariant homotopy

theory from the system of fixed point sets. In this section we want to introduce the
basic terminology of diagrams in a category. For further treatment we refer to [DL98]
and [DF87].
Let C be a small category and D a category.

Definition 6.5.1. A covariant (contravariant) functor C → D is called a covariant
(contravariant) C-diagram in D.

Recall that a contravariant functor is a covariant functor from the dual category Cop
to D. Having that in mind, we omit the variance in what follows and give definitions
only for the covariant case.
If D is the category of topological spaces, we speak of C-diagrams of spaces, if D is the

category of topological manifolds, then we speak of C-diagrams of manifolds and so on.
All C-diagrams in D form a category whose morphisms are the natural transformations.
We denote this functor category by DC or sometimes by C-D and call it the category
of C-diagrams in D or shortly diagram category. For example, if D = Top we write C-
Top for this category. We call C the index category of these diagrams. There are several
examples we want to keep in mind.
Example 6.5.2. Let G be the category of a group G. Then a functor F : G → D is a G-
object in D. Thus G-objects in a category D are nothing else than G-diagrams in D.
For instance, if D is the category of topological spaces we get a space with an action
of G on the underlying set of the space by homeomorphisms. Recall, that if G is a
topological group we do not necessarily get a G-space, because the action does not have
to be continuous. Of course if G is equipped with the discrete topology we always get
a G-space and in this case G-diagrams of spaces and G-spaces are the same.
Example 6.5.3. Let G be a group and or(G) its orbit category. Let X be a G-space.
The fixed point functor is an example of a contravariant or(G)-space. We called it the
associated contravariant or(G)-space of X. The quotient space functor is an example of
a covariant or(G)-space. A functor from or(G) to the category of spectra is an or(G)-
spectrum. In Section 4.1 equivariant homology and cohomology theories are constructed
from covariant (or respectively contravariant) or(G)-spectra.
Example 6.5.4. Let ∆ be the category with objects the finite ordered sets [n] := {0, . . . , n}
and morphisms the monotonically increasing maps. Then a simplicial set is a contravari-
ant ∆-set. Let ∆inj be the category with the same objects as ∆ but with only the injective
monotonically increasing maps. A semisimplicial set is a contravariant ∆inj-set.
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6.5 Diagrams in a category and evaluation functors

Definition 6.5.5. Let X be a contravariant and Y a covariant C-space. Then their
balanced product is defined to be the space

X ×C Y :=
∐

C∈ob(C)
X(C)× Y (C)/ ∼

where ∼ is the equivalence relation generated by (xφ, y) ∼ (x, φy) for morphisms φ : C →
D in C and x ∈ X(D) and y ∈ Y (C) where xφ stands for X(φ)(x) and φy for Y (φ)(y).
If X and Y are pointed, that is X is a contravariant and Y a covariant functor

from C to the category of pointed spaces, then one defines their balanced smash product
analogously to be the pointed space

X ∧C Y =
∨

C∈ob(C)
X(C) ∧ Y (C)/ ∼ .

If X is a contravariant pointed C-space and E a covariant C-spectrum, then their
balanced smash product is defined level-wise to be X ∧C En together with the obvious
maps.

Definition 6.5.6. Let X and Y be C-spaces (of the same variance). Then we de-
fine MapC(X,Y ) to be the space one gets by giving the set of maps of C-spaces from X
to Y the subspace topology of the inclusion into

∏
C∈ob(C) Map(X(C), Y (C)).

If X is a pointed C-space and E a C-spectrum, then one defines the mapping space
spectrum MapC(X,E) to be the spectrum whose space at level n is MapC(X,E(n))
together with the structure maps coming from the canonical map of pointed spaces

MapC(X,E(n)) ∧ S1 → MapC(X,E(n) ∧ S1),

which takes φ ∧ z to the map of C-spaces from X to E(n) ∧ S1 which sends x ∈ X(C)
to φ(C)(x) ∧ z ∈ E(n)(C) ∧ S1 for every object C of C.

Remark 6.5.7. In [DL98] the balanced product is called tensor product and it is also
denoted by X ⊗C Y . Note that the balanced product and the mapping space are also
called the coend and the end construction in category theory (see [ML98, IX.5 and IX.6]).

There is an exponential law as expected:

Lemma 6.5.8 (Lemma 1.5 of [DL98]). Let X be a contravariant C-space, Y a covari-
ant C-space and Z a space. Write Map(Y, Z) for the obvious contravariant C -space
whose value at an object C of C is Map(Y (C), Z). Then there is a homeomorphism

Map(X ×C Y,Z)→ MapC(X,Map(Y,Z))

which is natural in X, Y and Z.

Next we introduce evaluation functors and the notation we will use for them.
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Definition 6.5.9. Let j : C′ → C be a functor. The evaluation functor at j is defined
by the composition with j:

evj : DC → DC
′
, F 7→ F ◦ j

An object C of C defines a subcategory with one object C and one morphism idC . We
write evC for the evaluation of the inclusion of this category and call it the evaluation
at C. Explicitly it is given by

evC : DC → D
F 7→ F (C)

(F → G) 7→ (F (C)→ G(C)).

If g : C1 → C2 is a morphism in C and I the category with two objects 0 and 1, their
identities, and one morphism 0→ 1, we have a functor j : I → C which takes 0 to C1, 1
to C2 and (0→ 1) to g. Then we write evg for the evaluation of this functor and call it
the evaluation at the morphism g.

Remark 6.5.10. If D′ is another category and F : D′ → DC a functor, then for every
object C of C composition with the evaluation yields a functor FC = evC ◦F . Then for
a morphism g : C1 → C2 in C the evaluation evg provides a natural transformation

evg ◦F : FC1 → FC2 .

Therefore evaluation defines a functor

ev : C → Fun(DC ,D)
C 7→ evC
g 7→ evg,

which we call the evaluation functor.
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