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Abstract. In 1999, J. Hastad and M. Néslund [13] could prove that every bit is a hard core of the RSA
function. From this work we extract an abstract theorem about the hidden number problem which can
be used to prove that every bit is a hard core of many specific cryptographic functions. Applications are
RSA, ElGamal, Rabin, a modified Diffie-Hellman function, Pailler’s cryptosystem, the Diffie-Hellman
function for elliptic curves and discrete exponentiation.

So far all in the literature known general constructions of hard core predicates for any one-way function
(for example the famous Goldreich-Levin Bit [12]) are based on some set of universal hash functions
(UHF). The natural open question was if there may be a nice connection between UHF and hard core
predicates. We present an example providing a negative answer to that question. Furthermore, as an
alternative to the Goldreich-Levin Bit, we give a new and efficient construction of a hard core predicate
of any one-way function that is based on the hidden number problem.
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1 Introduction

The existence of one-way functions is one of the central aspects in modern cryptography.
Loosely speaking one-way functions are functions that are easy to evaluate and hard to in-
vert. But even if inverting f is hard, a one-way function may “leak” certain information
about z in f(x). For example given an instance f(x) it may be hard (on the average) to
efficiently compute the corresponding x, but what about the least significant bit of the binary
representation of 7 In fact, it is known that the discrete exponentiation function leaks this
least significant bit but the RSA function does not.

The problem of showing that f(z) hides at least one bit of information about z is called
the hard core predicate problem. In 1989 Goldreich and Levin [12] proved that every one-way
function can be modified to have such a hard core, the so called Goldreich Levin Bit. This
modification has no substantial loss in either “security” or “efficiency”. In 1996 Néaslund [19]
showed that every one-way function can be modified such that every single bit of a linear
function on Z, also is a hard core of that modified one-way function.

The expression “security of b” sometimes appears as a synonym for a hard core b in the
literature. For instance, if a bit of the binary representation is a hard core of f we say that

* A 4-sheet version of this paper appeared in the proceedings of FCT’01 [15].



this bit is “secure”.

There are numerous applications for the concept of hard core predicates in modern cryp-
tography [11]. A hard core predicate for a permutation f gives rise to a:

— Pseudorandom generator.
— Secure bit-commitment scheme.
— Semantically secure cryptosystem.

In the first part of our work we consider the bitsecurity of concrete functions. As already
noted the least significant bit is a hard core of a concrete function, the RSA function. In
1999, J. Hastad and M. Néslund [13] could shown that even every bit is a hard core of
the RSA function. The proof of that result only makes use of the so called multiplicative
structure of the RSA function. That is, given RSA(z) = 2° mod N and an integer ¢, one
can compute RSA(cz mod N) = ¢¢ - ¢ mod N. Also in [13] it was shown that all (but the
first least significant!) bits are a hard core of the discrete exponentiation function on Zy:
EXP(z) = ¢g* mod p. The proof again relies on the multiplicative structure, i.e. EXP(cz) =
EXP(z)¢ mod p.

In section 3 we present the Hidden Number Problem, a useful primitive to prove bitsecu-
rity. One can conclude the bitsecurity of many cryptographic functions as a simple corollary.
These cryptographic functions include RSA, ElGamal, Rabin, discrete exponentiation, a
modified Diffie-Hellman function, the Diffie-Hellman function on elliptic curves and Pail-
lier’s function. Although there already exist similar proofs for most of these cryptographic
functions one has to individually adapt them to prove the result for a concrete function.
Because of the complexity of the proof this is a very unthankful work. The hidden number
problem exploits the common structure of all those cryptographic functions. Once proven
it lets us easily conclude the security of every bit of many cryptographic functions. This is
illustrated in figure 1. The proofs of the bitsecurity of the ElGamal function, a modified
Diffie-Hellman function (MDH), the elliptic curve Diffie-Hellman function (ECDH) as intro-
duced in [4] and Paillier’s function are new results (marked by darker leaves).

The Hidden Number problem (at least in a similar fashion) was first introduced by Boneh
and Venkatesan [5] and successfully exploited to show that the collection of the y/logn “un-
biased” most significant bits are a hard core function of the ElGamal and the Diffie-Hellman
function. An error in the proof in [5] was spotted and corrected by [24]. See also [20] how to
apply lattice-based techniques to solve the Hidden Number problem.

In addition we exploit the hidden number problem to present a new general and efficient
construction of hard-core predicates for any (modified) one-way function as an alternative
to the Goldreich-Levin Bit [12]. When extracting O(logn) simultaneous hard core bits our
method is slightly faster than the Goldreich-Levin method.

In the second part of our work we consider hard core predicates for any one-way function.
The two most commonly used general constructions of hard core predicates [12,19] mentioned

! The first least significant bits of EXP are known to be “easy”. We will refer to that later.
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Fig. 1. The hidden number problem and its relation to cryptographic functions.

above, as well as some others, heavily rely on sets of universal hash functions. On the other
hand, universal hash functions and hard core predicates have the same upper bounds of
complexity [10,9]. These two facts suggest a connection between universal hash functions
and hard core functions. This connection was first conjectured by Néslund [18].

In section 4.2 we answer this question to the negative with a simple counterexample. This
is done by modifying a set of universal hash functions in a certain way such that it cannot
be a hard core of a (specific) one-way function.

In section 4.3 we use the hidden number problem to give an example of a set of hash functions
that is only 2/3-universal (i.e. almost universal) but still can be used to give a hard core
predicate. These two results seem to show that the concepts of universal hash functions
and of hard core predicates are less correlated than expected. Based on our observations, in
section 4.4 we present a structural result about the construction of hard core predicates for
any (modified) one-way function, i.e. we characterize how to modify a given general hard
core to get a new one.

An excellent overview of hard core functions is given in the article of Gonzédlez Vasco and
Mats Néslund [23].

2 Notations and Preliminaries

All computations are done in the model of probabilistic polynomial time Turing machine
(pptm). For a string = € {0,1}*, |z| denotes the length of the binary representation of z. A
function f : {0,1}* — {0,1}* is called length-regular if for every x,y € {0,1}*, if |z| = |y|,
then |f(z)| = |f(y)|. For an ¢ = Y1 ; z;2¢, bit;(x) := z; denotes the i-th bit of the binary
representation of z, i.e. Isb(z) = bitg(z), the least significant bit.

A function « is called negligible in n if for every polynomial P and all sufficiently large n’s



it holds that a(n) < %. A function « is called non-negligible in n if for a polynomial P
and all sufficiently large n’s it holds that a(n) > ﬁ. Note that there are functions that a
neither negligible nor non-negligible.

A polynomial time computable function f : {0,1}* — {0,1}* is called one-way function if
for every pptm A the function a(n) := Pr[f(A(f(z)) = f(z)] is negligible, probability taken

over z, uniformly distributed on {0, 1}", and internal coin tosses of .A.

Definition 1 (Hard core predicate). Let b: {0,1}* — {0,1} be a polynomial-time com-
putable function. The predicate b is called a hard core predicate of a function g if for every
pptm D (predictor),

PD(g(x)) = ()] — 5

1s negligible as a function in n, where x is chosen at random and uniformly distributed from

{0,1}",

If the function b is a single bit of the binary representation, we say that the bit is individually
secure for the function g.

Note that no function b can be a hard core of every one-way function. To see that fix an
arbitrary one-way function f and a hard core b (of f). Now define g(z) := (f(z),b(z)). By
definition, g is a one-way function. Now we have constructed a counterexample for this b, as
b(x) can easily be recovered given the tuple (f(z),b(z)) = g(z). Therefore b is no hard core
of g. Definition 1 can easily be generalized to the case of more than one bit.

Definition 2 (Hard core function). A polynomial time computable function h : {0,1}" —
{0,1}™ s called a hard core function of a function g if for pptm D (distinguisher),

|Pt[D(g(2), h(z)) = 1] = Pr[D(g(), i(m)) = 1]|
18 negligible as a function in n, where x is chosen at random and uniformly distributed from
{0,1}" and ry(n) is chosen at random and uniformly distributed from {0, 1}®).

If the function h are some bits of the binary representation, we say that the bits are simul-
taneous secure for the function g.

2.1 Known Results

The following well known Theorem from Goldreich and Levin [12] states that every one-way
function can be easily modified into a one-way function that has a hard core predicate. This
modification has no substantial loss in either “security” or “efficiency”.

Theorem 1 (Goldreich and Levin [12]). Let f be an arbitrary length regular one-way
function and let g be defined by g(x,r) := (f(z),r) where |z| = |r|. Let b(z,r) denote the
inner-product mod 2 of the binary vectors x and r. Then the predicate b is a hard core of the
function g.

Note that if f is a one-way function then g is one.
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Theorem 2 (Naslund [19]). Let f be an arbitrary length-regular one-way function and let
g be defined by g(z,u,v) := (f(x), u,v), wheren = |z|, p is a n-bit prime and (u,v) € Zpx Zs,.
Let bj(z,u,v) := bit;(ux + v mod p). Then for every j = j(n) € {0,...,n — 1} the predicate
b; is a hard core of the function g.

For the previously given Theorem one has to use a slightly different definition of hard core
predicates to fit the so called “bias of the upper bits” of the binary representation of a bit-
string. We will, as for the rest of this paper, not concern about that. Note that, in particular,
bo(z,7) = Isb(uxz + v mod p) is a hard core predicate of the one-way function g.

3 The Hidden Number Problem: a Useful Primitive to Prove
Bitsecurity

3.1 Main Results and Motivation

In [13] it was shown that every single bit is a hard core of the RSA function. In particular,
the same proof techniques were applied to show that all (but the first least significant) bits
of the discrete exponentiation function are hard. It turned out as already noted in [13] that a
special structure was needed to apply the techniques, a multiplicative structure. For instance,
by the equation RSA(cz) = RSA(c) - RSA(z) one can compute RSA(cz), given RSA(x) and
c. Although the proofs are similar it seems that it is not possible to conclude, for instance, a
result about the security of the discrete exponentiation bits from a result about the security
of the RSA bits.

In this section we present a useful primitive, the hidden number problem, and study under
which circumstances it is solvable. As a corollary we conclude the bitsecurity of many known
cryptographic functions such as RSA and ElGamal. Figure 1 illustrates this connection.

Under some reasonable cryptographic assumptions?, every bit is a hard core of the fol-
lowing functions:

The RSA encryption function

The ElGamal encryption function

A Modified Diffie-Hellman function (MDH)

The Diffie-Hellman function on Elliptic Curves (ECDH)
The Discrete Exponentiation function EXP?

The Rabin encryption function

Paillier’s encryption function

No ok W

Note that 1, 5 and 6 are known results whereas 2, 3, 4 and 7 are, at least for the results
about the security of all bits, new contributions of this paper.
As a second corollary we give a new and very simple construction of hard core predicates for

2 We will state the concrete assumptions later.
% For all but the first least significant bits.



every one-way function of the form g(z,r) = (f(z),r). It only consists of a single multipli-
cation modulo a prime p followed by a bit computation and gently improves the result from
Theorem 2.

Theorem 3. Let f be an arbitrary length-reqular one-way function and let g be defined
by g(z,r) = (f(x),r), where n = |z|, p is a n-bit prime and r € Zy. Let bj(z,r) :=
bit;(re mod p). Then for every j = j(n) € {0,...,n — 1} the predicate b; is a hard core of
the function g.

The results from Theorem 3 can easily be extended to O(logn) simultaneous bits using
standard techniques.

Theorem 4. Let f be an arbitrary length-reqular one-way function and let g be defined
by g(z,r) == (f(x),r), where n = |z|, p is a n-bit prime and r € Z;. Let h(x,r) be any
combination of O(logn) bits of (rx mod p). Then the function h is hard core function of the
function g.

Remark 1. Theorems 3 and 4 also hold when the modulus p is a power of 2, i.e. if p = 2.

3.2 Discussion

Theorem 4 suggests a new method to get O(logn) simultaneous secure bits of any (modified)
one-way function. For the special case considered in Remark 1 this method is more efficient
than the original method given by Goldreich and Levin [12]. We will quickly discuss that.

To get m := O(logn) simultaneous secure bits for any (modified) one-way function, for
the Goldreich-Levin method one multiplication of a binary vector (from {0, 1}") with a mxn
Toeplitz Matrix with entries from {0, 1} is needed. This can be done with O(nlog(n)) bit op-
erations. Remark 1 says that using our method one can get m = O(logn) simultaneous hard
core bits for any (modified) one-way function by the function h(z,r) = zr mod p mod m.
This is the special case for the m least significant bits. Now take as the modulus a power of
2,i.e. p = 2". Then the function h simplifies to A(z,r) = zr mod 2™ mod 2" = zr mod 2™ =
(z mod 2™) - (r mod 2™) mod 2™. Hence, only one multiplication in Z3,. is needed. This can
be implemented in O(m?) = O((logn)?) bit operations. Hence, our new method nearly gains
a factor of O(n) in efficiency.

This leads to a efficient construction of a pseudorandom generator for any one-way per-
mutation f which is due to Blum and Micali [2]. Let h(z,r) be the m := O(logn) least
significant bits of (rz mod 2"), i.e. h(z,r) = zr mod 2™.

Pick zg,79 € {0,1}" (the seed, or key) at random and let (z;y1,7i+1) = (f(x;), ;). Now
define the output of the pseudorandom generator as

G(zg, o) = h(zg, ro)h(z1,71),. ...

3.3 The Hidden Number Problem

We first informally introduce the Hidden Number Game as illustrated in Figure 2. It is
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Fig. 2. The Hidden Number Game.

a game between Alice (left) and Bob (right). In the beginning both agree on a common
modulus N and a fixed bit ¢. Alice takes a secret value z € Z} . Now Bob is allowed to ask
questions to Alice about bit;(cz mod N) for any ¢ € Z% . After polynomial many rounds and
after some internal computation Bob makes a guess for x. We say that he has won the game
if he guesses the correct x with non-negligible probability of success.

The crucial question is:

Is there are winning strateqy for Bob even if Alice is allowed to lie for nearly half of her
answers?

The answer is yes.

We come to a more formal description.

Definition 3. Let I C IN be an infinite set of integers and P a polynomial. For all N € I
and « € Z let (Onz) be a family of hidden number oracles for the i-th bit with

1
=3
18 a non-negligible function in the bitlength n of N, where the probability is taken over all
c € Zy, uniformly distributed and over all coin tosses of the oracle.

Pr[On .(c) = bit;(cz mod N)

The Hidden Number Problem (HNP) associated with I and (O ) is to compute x. More
formal we say that the HNP is efficiently solvable for bit i if there is an oracle pptm D(OnN-)
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allowed to make queries to Oy, such that that for every N € I and x € Z};, D= outputs
x with non-negligible probability of success (taken over the internal coin tosses of DN ).

We state our main theorem about the Hidden Number Problem.

Theorem 5. 1. IfI is the set of all odd primes, then HNP is efficiently solvable for all bits.
2. If I is the set of all odd integers, then HNP is efficiently solvable for all bits or one gets

a non-trivial factor of the integer.
3. If I is the set of all integers N of the form N = 2'-q, q odd, then HNP is efficiently
solvable for the bits | < i < n or one gets a non-trivial factor of the integer q.

As already pointed out, the proof of Theorem 5 is basically the same as in the Hastad and
Néaslund paper [13] about the security of every RSA bit. It is sketched in subsection 3.10.

Now, as a warm-up, Theorem 3 can easily be proven. To see this let f be a one-way
function. Assume we have a hidden number oracle that, given (f(z),r), predicts bit;(rz mod
p) with probability significantly better than random guessing. Now apply Theorem 5 to that
oracle in order to compute x with non-negligible probability of success. This shows that
either f is not a one-way function or the oracle cannot exist.

3.4 RSA and Rabin Bits

Let Izgsa = {(N,e) : N = p-q,|p| = |q|,p, q prime ,gcd(e,p(N) = 1} be the set of all
possible RSA instances, where ¢(z) denotes the Euler Totient Function and Igrsa(n) :=
Irsa N ({0,1}" x {0,1}") the set of all possible n-bit RSA instances.

Given (N,e) € Igsa and « € Z%, the RSA function is defined as RSAy((z) := 2¢ mod N.
Knowing the factorization of N, one can compute a d such that ed mod ¢(N) = 1. This is
done using Euclids algorithm, for instance. Then RSAy ((z)¢ = 2% = z mod N. In order
to apply the definition of a hard core predicate one has to consider RSA as a collection of
functions. We leave the details, see [11] for more information.

The RSA function is believed to be one-way:

Strong RSA assumption: For every pptm A it holds that Pr[A(N, e, RSAy.(z)) = z] is
a negligible function in n, where the probability is taken over all (N,e) € Izsa(n), z € Z}y
and the internal coin tosses of A.

Theorem 6. Under the (strong) RSA assumption, every bit is a hard core of the RSA
function.

The Theorem is a direct corollary of the following proposition.

Proposition 1. If there exists an oracle Orsa satisfying
1
Pr[Ogrsa (N, e, RSAy (z)) = bit;(z)] — 5 is non-negligible,

probability taken over random choices of (N, e) € Igsa(n) and x € Z},. Then there exists an
oracle pptm DORsA (inverting algorithm) satisfying
Pr[D9sA(N, e, RSA () = x] is non-negligible,

probability taken over all random choices of (N, e) € Igsa(n), x € Z% and the internal coin
tosses of DOrsa,



Proof. Let N,e,RSAy.(x) be given. Using the RSA oracle Orga we will simulate a Hidden
Number oracle Oy, with z in the role of the Hidden Number. This allows us to apply The-
orem 5 and therefore compute x with non-negligible probability. Hence, we have broken the
strong RSA assumption. There are some technical details we have to take care of.

Let Trsa C Irsa be the non-negligible fraction of pairs (N, e) such that for every fixed
(N, e) € Trsa the oracle Ogrsa has a non-negligible advantage over random guessing the i-th
bit of x € Z};. The existence of such a fraction follows by a simple averaging argument and
is a standard technique. Let us assume the pair (/V, e) is such a “good instance”.

Now simulate a Hidden Number oracle for the hidden number z exploiting the multiplicative
structure of the RSA function:

Onz(c) == Orsa(N, e, c® - RSApn())
= Ogrsa(N,e,RSAn(c-z))
= bit;(cz)

where the last equation holds if the RSA oracle did not lie. For a random ¢ € Z}, RSAy ((cz)
is a random element, too. Hence, for all (N, e) € Trsa the oracles answer is correct with non-
negligible advantage (probability over all ¢) over random guessing. According to Theorem 5
then there exists an oracle pptm D(©N.2) that computes the Hidden Number z with non-
negligible probability, or we get a non-trivial factor of the modulus N which nevertheless
enables us to reveal z. Thus, computing the cleartext  from the cyphertext RSA(z) is the
same as computing the Hidden Number.

Now when choosing a random (N, e) from Igss, D(©¥=) still outputs & with non-negligible
probability for all x € Z}. We can now define DrsA(N, e, RSAy . (z)) := D(O~2) as output
of the inverting algorithm which inverts RSA with non-negligible probability. a

The Rabin encryption function is RSA with exponent 2, i.e. RABIN(z) = z? mod N. For
that reason all RSA results above carry over to Rabin with some minor adoptions. Due to
space limitations we will not go into detail.

3.5 A Modified Diffie-Hellman Function and its Bits

Define Ipy := {(p, g) : p is a prime and g is a primitive element of Z;} and Ipx(n) := Ipg N
({0,1}*x {0, 1}"). The Diffie-Hellman function DH,, ; with respect to (p, g) € Ipn is defined as
DH, ,(g% g°) = g®® mod p. To the best of our knowledge, it is an open problem if computing
a single bit of the Diffie-Hellman function is as hard as computing all of DH,, .

The only known result concerning the bitsecurity of the Diffie-Hellman function is from Boneh
and Venkatesan [5]. It shows that the collection of the 1/log n unbiased most significant bits of
DH, , are as hard to compute as all of DH,, ,. Furthermore it seems that the oracle machines
used in [5] can only cope with almost faulty-free oracles.

In the same paper [5], Boneh and Venkatesan also present a modification of the Diffie-
Hellman function with provable security of the unbiased most significant bit. We will present
a modification with provable security of every bit. Its security will rely on the following
assumption:



CDH: The Computational Diffie-Hellman (CDH) assumption for Zj; is the following:
For every pptm A it holds that Pr[A(p, g, 9% ¢°) = g%] is a negligible function in n, where
the probability refers to randomly chosen (p,g) € Ipg(n), g%, ¢° from Z;, and the internal
coin tosses of A.
The CDH assumption for the group Zy is believed to be true. See [3] for instance.
For (p, g) € I define

MDH, (g% ¢°, u) := ug®.

Theorem 7. Computing any bit of the Modified Diffie-Hellman function MDH 1is as hard
as computing all of MDH.

The Theorem is a direct corollary of the following proposition.

Proposition 2. If there exists an oracle Oypn such that
1
Pr[Owmpn(p, 9, 9% 9%, v) = bit;(MDH,, 4(g% ¢°, u))] — 5 is non-negligible,

probability taken over random choices of (p,g) € Ipu(n) and a,b,u € Z,,. Then there exists
an oracle pptm DOMPH syuch that

Pr[DOMoH(p g g% ¢°) = g™ is non-negligible,

probability taken over all random choices of (p, g) € Ipu(n), a,b € Z; and the internal coin
tosses of DOvPH,

Proof. Let p, g, g% be an instance of the Diffie-Hellman function. We again only concentrate
on the non-negligible fraction of (p, g, a, b) for which the oracle Oypg has an non-negligible
advantage over random guessing bit;(ug®). Now to simulate the hidden number oracle for
the hidden number z := ¢ set

ON,yab(c) = OMDH(pa g, ga’ gb) C),

which is bit;(cg®) in case the oracle did not lie. According to Theorem 5, we get the hidden
number z = g% with non-negligible probability of success. O

3.6 The Diffie-Hellman function on Elliptic Curves

At Crypto 2001 Boneh and Shparlinski proved the individual security of every of the O(logn)
least significant bits for the Diffie-Hellman function on elliptic curves [4]. In fact, what they
showed is the bitsecurity of a modified Diffie-Hellman similar to that mentioned in the
previous subsection that exploits some special structure of elliptic curves. In their paper
computing this Diffie-Hellman function is reduced to the so called Squaring Hidden Number
problem. We will sketch that our results also apply to this type of Hidden Number problem.
Hence, computing any bit of the Diffie-Hellman function on elliptic curves is as hard as
computing the whole. We will not go into mathematical details of elliptic curves and describe
the problem at a very informal level.
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Let p be a prime and let IF, be the finite field of size p. Let IE be an elliptic curve over IF,
given by the affine Weierstrass equation of the form

v =2+ Ar+ B, 4A%>+27B%*#£0.

It is well known that the set E(IFp) of [F,-rational points of IE form an Abelian group under
an appropriate composition rule and with the point of infinity O as the neutral element. Let
Isg(n) be the family of sets of all possible pairs (E, G), where G is an element of prime order
from E and whose bitlength is of order n.

For a point P = (z,y) € E it is not clear how bit;(P) can be defined. In fact, (at least) two
choices are possible. We define bit;(P) as bit;(x), the i-th bit of the z-coordinate of the point
P. Setting bit;(P) := bit;(y) leads to similar results.

Now the Diffie-Hellman function for a point G € E (of prime order ¢) is defined as

DHg ¢(aG, bG) = abG.

For a P = (z,y) € |E and for a A € I}, the mapping ¢ is defined as ¢\(P) = (zA2, yA3) €
®»(E). For a point P € E define Py := ¢»(P). From [4] we have that for the mapping ¢, and
for a point (z,y) € E it holds that G = (zG), and yG, = (yG)x. Therefore the mapping
ox : E — ¢»(E) homomorphism. In fact it is easy to show that ¢, is an isomorphism. Hence,
computing the Diffie-Hellman function for all curves {#x(E)}rer; is as hard as computing
the Diffie-Hellman function in E.

We define the modified Diffie-Hellman function DH as

mE,g(Pﬂ Q’ A) = DH¢)‘(E),G/\ (P)\’ Q)\)

Note that this function basically uses A as an index indicating in which group to evaluate the
Diffie-Hellman function. Is has a similar function as the u in the definition of the modified
Diffie-Hellman function of the last subsection.

Theorem 8. Computing any bit of the modified Diffie-Hellman function DH is as hard as
computing all of DH.

The theorem follows from the following proposition.

Proposition 3. If there exists an oracle Opg such that
- _ 1. -
Pr[Opg(E, G, DHE ¢(aG, bG, X)) = bit;(abG)| — 5 i non-negligible,

probability taken over random choices of (E, G) € Igg(n) and A,a,b € F;. Then there exists
an oracle pptm DOoR such that

Pr[D%5(E, G, DHg ¢(aG, bG, X)) = abG] is non-negligible,

probability taken over all random choices of (B, G) € Igg(n), A,a,b € F, and the internal
coin tosses of DO,
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We give a basic idea of the proof. It essentially uses the following multiplicative structure of
the DH function as shown in [4]:

ﬁE,G(aGa bG, )‘) = DH¢A(E),¢A(G)(¢/\(GG)a ¢A(bG)) = ¢A(abG) = ()‘Zxa Agy)’

where abG = (z,y). Setting x as the hidden number, we have a similar structure as needed
by Theorem 5 to compute & with overwhelming probability of success. The main difference
is that we have an oracle that outputs bit;(c?x) instead of bit;(cz) on the input c. In [4] this
is refered as the Quadratic Hidden Number problem. Clearly this is just a problem of com-
puting roots what can be done efficiently. Hence, for the Quadratic Hidden Number problem
Theorem 5 also holds. Note that once we have computed the coordinate z of abG = (z,y),
the value y can also be computed by the Weierstrass equation. Hence, we have computed
the point abG = (z,y).

3.7 ElGamal bits

Define Ig := {(p,g) : p is a prime and g is a primitive element of Zy} and Ig(n) :=
Iy N ({0,1}" x {0,1}"). Let (p, g) € Ig. The ElGamal public key cryptosystem encrypts a
message = € Z, given a public key ¢g® by computing the tuple (¢°, zg). Here b is chosen
uniformly and at random from the set Z;. Decryption using the private key a is done by
computing (g°)® = g% and then dividing to obtain the plaintext z.

Thus in order to break this cryptosystem one has to “invert” the ElGamal encryption

E]'pagaavb(m) = (ga’ gb’ ‘/L‘gab)’

in a sense that given given (g%, g%, zg®°) one has to compute z. Clearly, the security of the
ELGamal cryptosystem relies on the CDH assumption for Z.

Theorem 9. Under the CDH assumption for Z,, every bit is a hard core of the ElGamal
function Elp, g 4.

The Theorem is a direct corollary of the following proposition.
Proposition 4. If there exists an oracle Og; such that

1
Pr[Omi(p, 9, El, 40 5(x)) = bit;(z)] — 3 is non-negligible,

probability taken over random choices of (p,g) € Im(n) and x,a,b € Z;. Then there exists
an oracle pptm D™ such that

Pr[DO(p, g, El, .a5(2)) = z] is non-negligible,

probability taken over all random choices of (p, g) € Im(n), x,a,b € Z} and the internal coin
tosses of D=1,

Note that given z and 2¢%, ¢*® can be computed and hence the CDH assumption is broken.
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Proof. Let p, g, g%, ¢°, £g®® be given. We again only concentrate on the non-negligible fraction
of (p, g) for that the oracle O has an non-negligible advantage over random guessing bit;(z).
Now to simulate the hidden number oracle choose random 7, s € Z; and set

Onz(c) := Om(p, g, 9%, g, ¢ - 2gl@trO9))
= OEl(pa g, Elp,g,a+r,b+s (Cl‘))
= bit;(cz),

where the last equation holds if the oracle did not lie. According to Theorem 5, we get the
hidden number x with non-negligible probability of success. O

3.8 Discrete Exponentiation Bits

Define Igxp := {(p, g) : pis a prime and g is a primitive element of Z7} and Igxp(n) := IgxpN
({0,1}* x {0,1}"). Let (p, g) € Iexp. The discrete exponentiation function on Z3 is defined
by EXP,, ,(z) := ¢*° mod p. Inverting the EXP, , function is believed to be computationally
hard on Z; (DL assumption).

Theorem 10. Let p be a prime and p—1 = 2!q and 1 < i < logp. Under the DL assumption,
bit; is a hard core of the discrete exponentiation function on Z, for almost all primes p.

By “almost all primes” it is to be understood that if p is chosen at random, the result holds
with probability 1 — o(1). Note that given EXP, ,(z) all the [ least significant bits of z are
“easy” since they can be found by the Pohlig-Hellman algorithm [22].

Proof. Let EXP, ,(z) = ¢° mod p and an oracle Ogxp such that
. 1. ..
Pr[Ogxe(p, 9, EXP, ,(2)) = bit;(z)] — 5 i non-negligible,

probability over random (p,g) € Iexp(n), * € Z, and the internal coin flips of the oracle.
Again we only need to concentrate on the non-negligible fraction of (p, g) for that the oracle
Ogpxp has an non-negligible advantage over random guessing bit;(z). Simulate a Hidden
Number oracle for the hidden number z as follows:

Op «(c) := Orxp(p, 9, EXP, ()¢ mod p)
= Ogxp(p, 9, EXP, 4(c- £ mod p — 1))
= bit;(cz mod p — 1),

where the last equation holds if the oracle did not lie. According to Theorem 5 we get z with
non-negligible probability or a non-trivial factor of ¢, if p — 1 = 2!¢q for odd g¢. This factor
of q does not help us much, but it is shown in [13] that this only happens with probability
1 — o(1) when each n-bit prime is chosen at random. O
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3.9 Paillier’s Bits

At Eurocrypt’99 Paillier [21] proposed a new encryption scheme based on higher residuosity
classes.

Let Ipar :={(N,g) : N =p-q,|p| = |q|,p, ¢ prime , g € Z}., 0rd(g) is a non zero multiple of
N} and Ipar(n) := Ipar N ({0,1}" x {0,1}?"). It can be shown that the pair (N, g) € Ipar
induces the following bijection:

Eng: Ty X Ty — T
(z,2) — ¢° - 2" mod N?

That means that for every w € Z}. there exists an unique pair (z, z) € Zy x Z} such that
w = g*-z"¥ mod N?. We denote the first component with the uniquely defined Classy 4(w) :=
z. Computing Classy 4(-) is considered to be a hard problem.

Paillier’s encryption scheme works as follows: To encrypt a message x € Z},, select a random
w € Z3 such that Classy 4(w) = 2. This can be done efficiently. w € Z}. is the cyphertext.
It is shown in [21] that, knowing the factorization of N, computing Classy 4(w) = z is easy.
It was already mentioned in [8] that the function Classy 4(-) has a homomorphic property
which is:

Classy 4(zy mod N?) = Classy 4(z) + Classy 4(y) mod N. (1)

This property was then exploited to show that, if computing the function Classy 4(-) is hard,
then the least significant bit is a hard core of the function £y ,. Under some non-standard
computational assumption it was then shown in the same paper that O(N) individual bits
and the collection of O(N) bits (simultaneously) are a hard core of the function &4 We
will improve the result about the O(n) individual bits to “every bit is secure”. Furthermore,
we do not need the non-standard computational assumption.

Unfortunately our result can not be used to show the security of the collection of more
than O(log N) bits. It is an open problem if for more than O(log N) simultaneous bits the
assumption made in [8] is crucial.

From equation (1) it follows that for every k € Z3%

Classy,4(z° mod N?) = ¢ Classy 4(z) mod N. (2)

This establishes our multiplicative property.

Theorem 11. If computing the function Classy4(-) is hard, then every bit is a hard core of
the function En 4.

Proof. Let Ey 4(z,z) = g®z" mod N? be given and assume there is an oracle Og such that
1
Pr[O¢(N, g,En4(z, 2)) = bit;(z)] — 5 is non-negligible,

probability over random (N, g) € Ipar(n), (z,2) € Zn X Z} and the internal coin flips of
the oracle. Again we only need to concentrate on the non-negligible fraction of (N, g, z) for
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that the oracle Og has an non-negligible advantage over random guessing bit;(z). We set
w := Eng(2, z) and simulate a Hidden Number oracle for the hidden number z as follows:

On(c) := Og(N, g,w® mod N?),

which is bit;(Classy 4(w®)) in case the oracle did not lie. Exploiting equation (2) this is
bit;(cz mod N).

According to Theorem 5 we get x with non-negligible probability or a non-trivial factor of
N which nevertheless allows us to compute x. This is a contradiction to the assumption that
computing Classy 4(-) is hard and thus the oracle Og cannot exist. O

3.10 Proof sketch of Theorem 5.

As already stated in the introduction, the proof of this Theorem is analogous to the one given
in [13] to show the security of every RSA bit. Going through the details of the RSA proof
one encounters that the oracle is only queried for O(c- RSA(z)) for a given ¢ and RSA(z).
This is exactly the structure of the Hidden Number Problem. Due to space limitations we
will only can briefly sketch the proof of the security of the least significant bit and for the
special case when I is the set of all odd primes. This proof is due to Alexi et al. [1]. Now,
what happens if N is not a prime? First, when N is even then one can use the Chinese
remainder Theorem to concentrate only on the odd part of the modulus. So lets assume N
is odd. When going deeper into the proof technique of [13] it becomes clear that one has to
invert a special function ¢ modulo N. At this point we either can invert this function or we
get a non-trivial factor of N. Again the reader is encouraged to read [13] for more details.

Proof sketch of Theorem 5, special case i = 0, the Isb. Fix a prime p = N € I and z € Z,,
Let there be a polynomial P and a hidden number oracle such that

1
4+ —

Pr[Oy 4(c) = Isb(cz mod p)] > P(n)’

DO | =

probability taken over all a € Z; and the internal coin tosses. We have to show that we can
compute x with non-negligible probability of success.

We first describe an inverting algorithm using a parity subroutine. Then we describe how to
implement this parity subroutine using the hidden number oracle for the Isb.

Inverting Algorithm:

1. Chose at random a, b € Zj,

2. Apply a Brent-Kung binary gcd procedure [6] to the instances az and bz. This binary ged
procedure queries a parity subroutine to get parities of the form par(k;a-z) and par(ksb-x)
for known k; and ks. If the gecd algorithm is successful we get a d with dz = ged(az, bx).

3. If we were lucky in choosing a and b, then axz and bx are relatively prime, what happens
with asymptotical probability of 6/72. In this case we have dz mod p = 1 and therefore
r =d ! mod p.
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There are two sources of errors: first the parity subroutine can err and secondly the elements
a and b can be chosen “unluckily”. But a detailed analysis shows that the success probability
of the inverting algorithm still is non-negligible.

It leaves to show how to implement the parity subroutine. The parity of an element = of
Z3 is defined as Ish(z), if z < p/2, and as Isb(p — z) otherwise. We only want to compute
parities of the form par(dz) for a given d. We further assume that dz is “small”.

Parity subroutine:

Pick a random r € Z3 and query the oracle for the Isb of rz and (r+d)z. Since dz is small,
with very high probability no wrap around 0 occurs when adding rx to dz. If no such
wrap around occurs, then par(dz) =1 <= lsb(rz) # Isb((r + d)z). Now do a majority
decision over many randomly chosen r to determine, with overwhelming probability of
success, the parity of dz.

The problem is that the Isb oracle now may err on both ends Isb(rz) and Isb((r + d)z). To
get around with this a technique called “pairwise independent sampling” may be applied.
See [1] for more details. 0

4 Hard Core Predicates and Universal Hash Functions

4.1 Definitions

Definition 4 (hash family). An (N;n, m)-hash family is a set H of N functions h : X —
Y where | X|=n and |Y| = m.

There will be no loss in generality assuming n > m.

Definition 5 (c-universal hash family). An (N;n,m)-hash family is called e-universal
provided that for any two distinct elements x1,x5 € X, there exist at most e N functions
h € H such that h(z1) = h(zs).

Using the notation of probability we write for two distinct z;, x5 € X:
Pr[h(xl) = h(xz)] S g,

where the function h is picked at random and uniformly from the set . The special case
e = L is known as universal hashing. This definition was first given in 1979 by Carter and

m
Wegman [7].
Three examples of universal hash functions are common in the literature:

— Multiplication by a randomly chosen boolean matrix over GF[2].
— Linear functions on GF[2"].
— Linear functions on Z,.

Theorems 1 and 2 show that all these universal hash functions give hard core predicates.
Goldmann and Néslund [9] investigated how efficiently general hard core functions can be
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computed. As a measure of simplicity /complexity the model of small depth circuits is used.
That is, how large/deep a circuit of Boolean AND/OR/NOT-gates is needed to compute a
hard core function. All of the constructions of general hard core functions mentioned above
can be computed with circuits of depth logarithmic (in n), polynomial size, and constant
fan-in. In [9] it is shown that these are the simplest possible constructions. Another approach
to determine the complexity of general hard core functions in terms of bounds on Fourier
spectra was taken by Goldmann and Russell [10]. It is an interesting fact that precisely the
same lower bounds hold for universal hash functions, see the paper by Mansour, Nisan and
Tiwari [17].

In summary, on one hand all known constructions of general hard core functions rely
on universal hash functions, and on the other hand hard core functions and universal hash
functions share the same complexity lower bounds. This raised the question first asked by
Néslund [18] in his 1995 paper “Universal Hash Functions & Hard Core Bits” and later in
[10,19], whether there is a “nice connection” between universal hash functions and hard core
functions. We formalize this conjecture as follows, where (r) denotes some integer encoding
of the bitstring 7.

Question 1. Let H, = {h',... A"} be a set of universal hash functions, where A’ : {0,1}" —
{0,1}. Let f be an arbitrary length-regular one-way function, and let g be defined by
g(z,7) := (f(z),r) where log, Njzy = |r| = ¢ - |z| for a constant c. Let b(z,r) := h{"(z).
Question: Is the predicate b always a hard core of the function ¢?

In the next section we will construct a simple example that gives a negative answer to this
question. We modify a given set of universal hash functions that gives a hard core predicate
and get a new set by first applying a one-way permutation f and then the universal hash
function. Then we show that the constructed set of universal hash functions is not a hard
core for this specific one-way permutation f.

4.2 Universal Hash Functions Giving no Hard Cores

For the counterexample we will use a slightly modified version of the discrete exponentiation
on the group Z; as the one-way function. For (p,a) € Igxp, the discrete exponentiation
function is defined as EXP,, = a” mod p. We denote some integer encoding of v and v by

(u, v).

Construction 1 For a fized n-bit prime p and a primitive element a of Z, let hé"’w (z) :=

(uz + v mod p) mod 2 and let S, = {héu’v); u € Zj,v € Zyp} be the (Ny; p,2)-set of universal
hash functions where N, = p(p — 1). Let fpo : Zp — Zyp be the one-way permutation defined
as

0 : z=0
a®*modp : otherwise

frala) = {

and let gy be defined by gp oz, u,v) := (fp.a(T), u,v).
Define the (Np; p,2)-set of universal hash functions

Hy,o = {h1<,“7”> O fpa; U € Zn,v € Zy}.
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Further let

vmod2 : =0

= (u’v) —
bpa (@, U, v) = by 0 f.a(@) {ucvz +vmod pmod 2 : otherwise,

where u € Zy, v € Zyp.

Proposition 5. Let b, o and g, be defined as in Construction 1. Then the predicate by o 15
not a hard core of the function gpq.

Proof. Since the discrete exponentiation function EXP, , is a bijective one-way function on
Z,, the function f,, is a natural extension of EXP, , to a one-way permutation on Z,. S,
is a set of universal hash functions (see for example Carter and Wegman [7]). Because f, o
is a permutation on Z,, H,, is a set of universal hash functions, too.

Now, to follow definition 1, the algorithm D (predictor), given g, (2, u,v) = (fp.a(2),u,v)
and (the coding of) the mapping b, o, has to compute b, (z,u,v) with success probability
significantly greater than 1/2. The predicate b, o is constructed as bpo(z) = b o fpa(z).
Because S, = {héu’v); u € Zy,v € Zyp} is a set of universal hash functions there must be an
efficient algorithm S, that computes h,<,u’v> (z) for every input tuple (z,u,v).

Now define the output of algorithm D as Dy, (z,u,v)) = Sp(fpa(z), u,v) = byalz, u,v).
Then for all n Pr[D(gpa(z)) = bpo(x)] = 1, where z is chosen from {0,1}" at uniform
distribution. Therefore b, , is not a hard core predicate for the one-way function gy 4. a

Note that proposition 5 now is giving a negative answer to Question 1 on the relation between
universal hash functions and hardcore predicates.

This example can be generalized to any set S of universal hash functions where s : X — {0,1}
for s € S and any one-way permutation f on X.

Construction 2 Let S, = {h',...,h™"} be a set of universal hash functions where h® :
{0,1}" — {0, 1} for everyi. Let f be an arbitrary one-way permutation, and let g be defined
by g(z, ) := (f(x),r) where logy N, = |r| = c-|z| for a constant c.

Define the set of universal hash functions H, = {h' o f,...,h"" o f} and let b(z,7) :=
R o f(z).

Proposition 6. Let b and g be defined as in Construction 2. Then the predicate b is not a
hard core of the function g.

The simple proof is analogous to that of proposition 5.

4.3 A 2/3-universal Hash Function Giving a Hard Core

In this section we present an “almost universal” set of hash functions giving a hard core. For

a prime p, let H2'S" = {h,(z) = (rz mod p) mod 2,7 € Z3}. From Theorem 3 it follows that

b(z,r) := (rz mod p) mod 2 is a hard core of any one-way function of the form g(z,r) =
(f(z), 7).

Proposition 7. %g}glt 18 %—universal. Moreover, for infinitely many primes, this set is not

. 2
e-universal for any € < 3.
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To this end, we introduce the following notation:
1 *
Tp(ho, h1) == o {z € Z,, : 1sb(hoz) = Isb(h12)}|.

In other words, 7,(ho, h1) is the fraction of prime residues z on which hgz and hyz share
the least significant bit. Trivial equalities are 7,(h, h) = 1,7,(h, —h) = 0 and 7,(h¢, —h1) =
1 — 7,(ho, h1). We may therefore focus on the case hy # hg, hy # p — 1 — hy. Another (more
or less) easy observation is that

Tp(ho, hl) = Tp(l, halhl)

We therefore focus on the case hg = 1 and hy; # 1, h; # p — 2. For the sake of simplicity, we
set 7,(h) := 7,(1, h). Note that 7,(—h) =1 — 1,(h).

Lemma 1 ([14]). For each prime p and for each h € Z;\ {1,p — 2}, 5 < 7p(ho, h1) <
Moreover, for each prime of the form p = 6q + 1, for each h € {3,4q + 1} and each h' €

{6g — 2,2q¢}, we have T,(h) = % and 1,(h') = % 4

2
3

Proof of proposition 7. For two distinct elements z,y € Z;, we get from lemma 1:

Pr[h(z) = h(y)] = Prllsh(rz) = Isb(ry)] = m(z,y) = H(z 'y) <

Y

[SCIN )

where the first probability refers to a uniformly chosen h € 7{2}‘2‘“ and the second to a
uniformly chosen r € Z3. This equation (and again lemma 1) also shows that for infinitely
2

many primes 3 is minimal regarding the universality of Hgf‘zﬂt. O

4.4 A new Construction of Hard Cores of any One-way Permutation

Let h be a hard core predicate for any (modified) one-way function. In this subsection,
we pursue the following question: Which permutations ¢(z) lead to hard-core predicates
h(¢(z),r), given a one-way function of the form g(z,r) = (f(z),r)?

A function ¢ : {0,1}* — {0, 1}* is said to be hard to compute, if for every pptm A, Pr[A(z) =
¢(z)] is negligible in n, where z is chosen at random from {0, 1}" according to the uniform
distribution.

Proposition 8 (General construction). Let h(y,r) be a hard core predicate for any
length-regqular one-way function of the form ¢'(y,r) = (f'(y),r).

Let f : {0,1}* — {0,1}* be a permutation that is hard to invert and ¢ : {0,1}* — {0,1}*
be an arbitrary permutation such that f o o' is computable in polynomial time. Define
g(z,r) = (f(z),r) and b(z,r) := h(p(z), ).

Then the predicate b is a hard core of g iff oo f!

18 hard to compute.

* We briefly note that, according to a Theorem of Dirichlet [16], infinitely many primes actually are of the form
cq + d, if (c,d) is a fixed pair of pairwise prime positive integers (e.g., c =6, d = 1).
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Proof. Let po f~! be not hard to compute, i.e. assume there exists a pptm A for which ¢, :=
Pr[A(y) = ¢ o f~'(y)] is non-negligible, where the probability refers to a uniformly chosen
y € {0,1}". Since f o p~! is computable in polynomial time, we can test if a given output of
A is correct. Now, to follow Definition 1, define the output of algorithm D (predictor) as

[ h(A(f(z)),r) : if Ais correct

Dlg(@,r)) := { random bit : otherwise.

If A is correct, D outputs h(A(f(z)),7) = h(po f~to f)(x),r) = h(p(z),r) = b(x,7). If A
was wrong, D outputs a random bit which is the correct answer with probability at least %
Thus Pr[D(g(z,7)) = b(z,7)] > €14+ (1 —¢,) -5 =3+ 3 - &, and b is not a hard core of g.
Now let ¢ o f! be hard to compute. Assume that b is not a hard core of g. Then there is
an oracle A that, given g(z,r) = (f(x),r), computes the predicate b(z,r) = h(p(x),r) with
probability significantly better than random guessing.

For any y set z = ¢~ '(y) and use A(f o ¢~ '(y),r) to compute h(p(p~'(y)),7) = h(y,7)
with probability significantly better than random guessing. This contradicts to the fact that
h(y,r) is a hard core of the one-way permutation ¢'(y,7) = (f o ¢ 1(y), 7). O

Corollary 1. Let f: {0,1}* — {0,1}* be a one-way permutation and ¢ : {0,1}* — {0,1}*
be an arbitrary permutation such that f o ¢=1 is computable in polynomial time. For every
Jj=7j(n) €{0,...,n — 1} define bj(z,r) := bit;(r¢(z) mod p), where n = |z|, p is a n-bit
prime and r € Zy. Let g be the one-way permutation defined by g(x,r) := (f(x),7).

Then the predicate b; is a hard core of the one-way permutation g iff p o f~* is hard to
compute.

Example 1. Let f be an arbitrary length-regular one-way function, and let g be defined by
g(z,r) == (f(x),r) where n = |z|, p is a n-bit prime and r € Z;. For every j = j(n) €
{0,...,n — 1} define b;(x,r) := bit;(Z mod p). Then the predicate b; is a hard core of the
function g.

This follows from corollary 1 using ¢(z) := ™! and the fact that f%(y) is hard to compute

iff f1(y) is.

5 Conclusions

We introduced a cryptographic primitive, the hidden number problem, which has multitude
of applications in the context of bitsecurity. This primitive can be use to prove that every
individual bit as well as every O(logn) simultaneous bits are a hard core of the following
well known cryptographic functions: The RSA encryption function, the ElIGamal encryption
function, a Modified Diffie-Hellman function, the Diffie-Hellman function on Elliptic Curves,
the Discrete Exponentiation function, the Rabin encryption function and Paillier’s encryp-
tion function.

Whereas the results for the RSA, Rabin and Discrete Exponentiation case where known
beforehand the other cases are completely new results.
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Furthermore the hidden number problem provides a new method to get O(logn) simultane-
ous hard bits of any (modified) one-way function. This method could be shown to be more
efficient than the original Goldreich-Levin method.

Furthermore we could disprove a conjecture made by Naslund about the connection between
universal hash functions and hard core predicates. We gave an example of a UHF giving no
hard core predicate. On the other hand we gave a hash function that is “only” 2/3 universal
and still giving a hard core predicate.

Acknowledgment. This paper greatly benefited from the helpful insight of Hans Ulrich
Simon. Furthermore I send handshakes to Jiirgen Forster and Mats Naslund for interesting
discussions and fruitful comments.

References

1. W. Alexi, B. Z. Chor, O. Goldreich, and C.-P. Schnorr. RSA and Rabin functions: Certain parts are as hard as
the whole. SIAM Journal on Computing, 17(2):194-209, April 1988. Special issue on cryptography.
2. M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudorandom bits. SIAM Journal
on Computing, 13(4):850-864, 1984.
3. D. Boneh. The decision Diffie-Hellman problem. Lecture Notes in Computer Science, 1423:48-63, 1998.
4. D. Boneh and I. Shparlinski. Hard core bits for the elliptic curve Diffie-Hellman secret. In Advances in Cryptology
- CRYPTO ’ 2001, Lecture Notes in Computer Science. Springer-Verlag, Berlin Germany, 2001.
5. D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in Diffie-Hellman
and related schemes. Proc. of CRYPTO 1996, pages 129-142, 1996.
6. R. P. Brent and H. T. Kung. Systolic VLSI arrays for polynomial gcd computation. IEEE Transactions on
Computers, 33(8):731-736, August 1984.
7. J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences,
18(2):143-154, April 1979.
8. D. Catalano, R. Gennaro, and N. A. Howgrave-Graham. The bit security of Paillier’s encryption scheme and its
applications. Proc. of EUROCRYPT’01. Lecture Notes in Computer Science, 2045:229-244, 2001.
9. M. Goldmann and M. Néslund. The complexity of computing hard core predicates. Proc. of CRYPTO’97.
Lecture Notes in Computer Science, 1294:1-15, 1997.
10. M. Goldmann and A. Russell. Spectral bounds on general hard core predicates. In Proc. of STACS, pages
614-625, 2000.
11. O. Goldreich. Foundations of Cryptography (Fragments of a Book). http://theory.lcs.mit.edu/ oded/frag.html,
1995.
12. O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. Proc. of STOC, pages 25-32, 1989.
13. J. Hastad and M. Néaslund. The security of all RSA and discrete log bits. ECCC Report TR99-037, pages 1-48,
1999.
14. E. Kiltz and Hans Ulrich Simon. manuscript. unpublished, 2001.
15. Eike Kiltz. A useful primitive to prove security of every bit and about hard core predicates and universal hash
functions. Proc. of FCT’01. Lecture Notes in Computer Science, 2138:388-392, 2001.
16. E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen. Teubner Verlag, 1909.
17. Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing. Theoretical Computer
Science, 107(1):121-133, January 1993.
18. M. Néislund. Universal hash functions & hard core bits. Lecture Notes in Computer Science, 921:356-366, 1995.
19. M. Néslund. All bits in az + b mod p are hard (extended abstract). In Proc. of CRYPTO ’96, pages 114-128,
1996.
20. P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. Proc. of Cryptography and Lattices Conference.
Lecture Notes in Computer Science, 2146, 2001.
21. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. Proc. of EUROCRYPT’99,
pages 223-238, 1999.
22. S. C. Pohlig and M. Hellman. An improved algorithm for computing logarithms over GF(p). IEEE Trans. on
Information Theory, pages 106-110, 1978.

21



23. M. I. Gonzélez Vasco and M. Néslund. A survey of hard core functions. Proc. Workshop on Cryptography and
Computational Number Theory, pages 177-195, 2001.

24. M. I. Gonzélez Vasco and I. Shparlinski. On the security of diffie-hellman bits. Proc. Workshop on Cryptography
and Comp. Number Theory (CCNT’99), 2000.

22



