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Abstract

We introduce a new information-theoretic primitive called programmable hash functions
(PHFs). PHFs can be used to program the output of a hash function such that it contains
solved or unsolved discrete logarithm instances with a certain probability. This is a technique
originally used for security proofs in the random oracle model. We give a variety of standard
model realizations of PHFs (with different parameters).

The programmability of PHFs make them a suitable tool to obtain black-box proofs of
cryptographic protocols when considering adaptive attacks. We propose generic digital signa-
ture schemes from the strong RSA problem and from some hardness assumption on bilinear
maps that can be instantiated with any PHF. Our schemes offer various improvements over
known constructions. In particular, for a reasonable choice of parameters, we obtain short
standard model digital signatures over bilinear maps.

Keywords: Hash functions, short signatures.

1 Introduction

1.1 Programmable Hash Functions

A group hash function is an efficiently computable function that maps binary strings into a
group G. We propose the concept of a programmable hash function which is a keyed group hash
function that can behave in two indistinguishable ways, depending on how the key is generated.
If the standard key generation algorithm is used, then the hash function fulfills its normal
functionality, i.e., it properly hashes its inputs into a group G. The alternative (trapdoor) key
generation algorithm outputs a key that is indistinguishable from the one output by the standard
algorithm. It furthermore generates some additional secret trapdoor information that depends
on two generators g and h from the group. This trapdoor information makes it possible to relate
the output of the hash function to g and h: for any input X, one obtains integers aX and bX
such that the relation H(X) = gaXhbX ∈ G holds. For the PHF to be (m,n)-programmable we
require that for all choices of X1, . . . , Xm and Z1, . . . , Zn with Xi 6= Zj , it holds that aXi = 0
but aZj 6= 0, with some non-negligible probability. Hence parameter m controls the number of
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elements X for which we can hope to have H(X) = hbX ; parameter n controls the number of
elements Z for which we can hope to have H(Z) = gaZhbZ for some aZ 6= 0.

The concept becomes useful in groups with hard discrete logarithms and when the trapdoor
key generation algorithm does not know the discrete logarithm of h to the basis g. It is then pos-
sible to program the hash function such that the hash images of all possible choices X1, . . . , Xm

of m inputs do not depend on g (since aX = 0). At the same time the hash images of all possible
choices Z1, . . . , Zn of n (different) inputs do depend on g in a known way (since aZ 6= 0).

Intuitively, this resembles a scenario we are often confronted with in “provable security”:
for some of the hash outputs we know the discrete logarithm, and for some we do not. This
situation appears naturally during a reduction that involves an adaptive adversary. Concretely,
knowledge of the discrete logarithms of some hash queries can be used to simulate, e.g., a signing
oracle for an adversary (which would normally require knowledge of a secret signing key). On
the other hand, once the adversary produces, e.g., a signature on its own, our hope is that this
signature corresponds to a hash query for which the we do not know the discrete logarithm.
This way, the adversary has produced a piece of nontrivial secret information which can be used
to break an underlying computational assumption.

This way of “programming” a hash function is very popular in the context of random or-
acles [5] (which, in a sense, are ideally programmable hash functions), and has been used to
derive proofs of the adaptive security of simple signature schemes [6].

An (m, poly)-PHF is a (m,n)-PHF for all polynomials n. A (poly,m)-PHF is defined the
same way. Note that, using this notation, a random oracle implies a (poly, 1)-PHF.1

Instantiations. As our central instantiation of a PHF we use the following function which was
originally introduced by Chaum et. al. [14] as a collision-resistant hash function. The “multi-
generator” hash function HMG : {0, 1}` → G is defined as HMG(X) := h0

∏`
i=1 h

Xi
i , where the

hi are public generators of the group and X = (X1, . . . , X`). After its discovery in [14] it
was also used in other constructions (e.g., [12, 15, 3, 36]), relying on other useful properties
beyond collision resistance. Specifically, in the analysis of his identity-based encryption scheme,
Waters [36] implicitly proved that, using our notation, HMG is a (1, poly)-programmable hash
function.

Our main result concerning instantiations of PHFs is a new analysis of HMG showing that
it is also a (2, 1)-PHF. Furthermore, we can use our new techniques to prove better bounds on
the (1, poly)-programmability of HMG. We stress that our analysis uses random walk techniques
and is different from the one implicitly given in [36].

Variations. The concept of PHFs can be extended to randomized programmable hash functions
(RPHFs). A RPHF is like a PHF whose input takes an additional parameter, the randomness.
Our main construction of a randomized hash function is RHPolym , which is (m, 1)-programmable.
Note that unlike HMG, the construction of the hash function depends on the parameter m. In
particular, the complexity of RHPolym grows quadratically in m.

In some applications (e.g., for RSA signatures) we need a special type a PHF which we call
bounded PHF. Essentially, for bounded PHFs we need to know a certain upper bound on the
|aX |, for all X. Whereas HMG is bounded, RHPolym is only bounded for m = 1.

1.2 Applications

Collision Resistant Hashing. We aim to use PHFs as a tool to provide black-box proofs

1 By programming the random oracle as H(X) = gaXhbX (for random aX , bX) with some sufficiently small
but noticeable probability p and H(X) = hbX with probability 1− p.
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for various cryptographic protocols. As a toy example let us sketch why, in prime-order groups
with hard discrete logarithms, any (1, 1)-PHF implies collision resistant hashing. Setting up
H using the trapdoor generation algorithm will remain unnoticed for an adversary, but any
collision H(X) = H(Z) with X 6= Z gives rise to an equation gaXhbX = H(X) = H(Z) = gaZhbZ

with known exponents. Since the hash function is (1, 1)-programmable we have that, with non-
negligible probability, aX = 0 and aZ 6= 0. This implies g = h(bX−bZ)/aZ , revealing the discrete
logarithm of h to the base g.

Generic Bilinear Map signatures. We propose the following generic Bilinear Maps signa-
ture scheme with respect to a group hash function H. The signature of a message X is defined
as the tuple

SIGBM[H] : sig = (H(X)
1
x+s , s) ∈ G× {0, 1}η, (1)

where s is a random η bit-string. Here x ∈ Z|G| is the secret key. The signature can be
verified with the help of the public key g, gx and a bilinear map. Our main theorem concerning
the Bilinear Map signatures states that if, for some m ≥ 1, H is an (m, 1)-programmable hash
function and the q-Strong Diffie-Hellman (q-SDH) assumption [7] holds, then the above signature
scheme is unforgeable against chosen message attacks [26]. Here, the parameter m controls the
size η = η(m) of the randomness s. For “80-bit security” and assuming the scheme establishes no
more than q = 230 signatures [6], we can choose η = 30+80/m such that η = 70 is sufficient when
using our (2, 1)-PHF HMG. The total signature size amounts to 160 + 70 = 230 bits. (See below
for details.) Furthermore, our generic Bilinear Map scheme can also be instantiated with any
randomized PHF. Then the signature of SIGBM[RH] is defined as sig := (RH(X; r)1/(x+s), s, r),
where r is chosen from the PRHF’s randomness space.

Generic RSA signatures. We propose the following generic RSA signature scheme with
respect to a group hash function H. The signature of a message X is defined as the tuple

SIGRSA[H] : sig = (H(X)1/e, e) ∈ ZN × {0, 1}η, (2)

where e is a η bit prime. The eth root can be computed using the factorization of N = pq which
is contained in the secret key. Our main theorem concerning RSA signatures states that if, for
some m ≥ 1, H is a bounded (m, 1)-programmable hash function and the strong RSA assumption
holds, then the above signature scheme is unforgeable against chosen message attacks. Again,
the parameter m controls the size of the prime as η ≈ 30 + 80/m. Our generic RSA scheme can
also be instantiated with a bounded randomized PHF.

Other applications. BLS signatures [9] are an example of “full-domain hash” (FDH) signa-
ture schemes [5]. Using the properties of a (poly, 1)-programmable hash function one can give a
black-box reduction from unforgeability of SIGBLS to breaking the CDH assumption. The same
reduction also holds for all full-domain hash signatures, for example also RSA-FDH. Unfortu-
nately, we do not know of any standard-model instantiation of (poly, 1)-PHFs. This fact may
be not too surprising given the impossibility results from [21].2

It is furthermore possible to reduce the security of Waters signatures [36] to breaking the
CDH assumption, when instantiated with a (1, poly)-programmable hash function. This explains
Waters’ specific analysis in our PHF framework. Furthermore, our improved bound on the
(1, poly)-programmability of HMG gives a (slightly) tighter security reduction for Waters IBE
and signature scheme.

2We remark that the impossibility results from [21] do not imply that (m, 1)-programmable hash functions
do not exist since they only rule out the possibility of proving the security of such constructions based on any
assumption which is satisfied by random functions, thus it might still be possible to construct such objects using,
say homomorphic properties.
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1.3 Short Signatures

Our main application of PHFs are short signatures in the standard model. We now discuss our
results in more detail. We refer to [9, 7] for applications of short signatures.

The birthday paradox and randomized signatures. A signature scheme SIGFisch by
Fischlin [22] (itself a variant of the RSA-based Cramer-Shoup signatures [19]) is defined as
follows. The signature for a message m is given by sig := (e, r, (h0h

r
1h
m+r mod 2`

2 )1/e mod N),
where e is a random η-bit prime and r is a random ` bit mask. The birthday paradox (for
uniformly sampled primes) tells us that after establishing q distinct Fischlin signatures, the
probability that there exist two signatures, (e, r1, y1) on m1 and (e, r2, y2) on m2, with the same
prime e is roughly q2η/2η. One can verify that in case of a collision, (e, 2r1 − r2, 2y1 − y2) is
a valid signature on the “message” 2m1 −m2 (with constant probability). Usually, for “k bit
security” one requires the adversary’s success ratio (i.e., the forging probability of an adversary
divided by its running time) to be upper bounded by 2−k. For k = 80 and assuming the number
of signature queries is upper bounded by q = 230, the length of the prime must therefore be at
least η > 80 + 30 = 110 bits to immunize against this bithday attack. We remark that for a
different, more technical reason, Fischlin’ signatures even require η ≥ 160 bits.

Beyond the birthday paradox. In fact, Fischlin’s signature scheme can be seen as our
generic RSA signatures scheme from (2), instantiated with a concrete (1, 1)-RPHF (RHPoly1).
In our notation, the programmability of the hash function is used at the point where an adversary
uses a given signature (e, y1) to create a forgery (e, y) with the same prime e. A simulator in the
security reduction has to be able to compute y1 = H(X)1/e but must use y = H(Z)1/e to break the
strong RSA challenge, i.e., to compute g1/e′ and e′ > 1 from g. However, since the hash function
is (1, 1)-programmable we can program H with g and h = ge such that, with some non-negligible
probability, H(X)1/e = hbX = gbX1 can be computed but H(Z)1/e = (gaZhbZ )1/e = gaZ/egbZ can
be used to break the strong RSA assumption since aZ 6= 0.

Our central improvement consists of instantiating the generic RSA signature scheme with
a (m, 1)-PHF to break the birthday bound. The observation is that such hash functions can
guarantee that after establishing up to m signatures with respect to the same prime, forging
is still impossible. In analogy to the above, with a (m, 1)-PHF the simulation is successful as
long as there are at most m many signatures that use the same prime as in the forgery. By the
generalized birthday paradox we know that after establishing q distinct generic RSA signatures
the probability that there exists m signatures with the same prime is roughly qm+1( η2η )m. Again,
the success ration has to be bounded by 2−80 for q = 230 which means that SIGRSA[H] instantiated
with a (2, 1)-PRF can have primes as small as η = 80 bits to be provably secure.3

The security proof for the bilinear map scheme SIGBM[H] is similar. Due to the extended
birthday paradox (for uniform random strings), SIGBM[H] instantiated with a (2, 1)-PRF only
needs η = 70 bits of randomness to be provably secure.

Comparison. Table 1 compares the signature sizes of our and known signatures assuming
q = 230. For RSA signatures our scheme SIGRSA[HMG] offers a short alternative to Fischlin’s
signature scheme. More importantly, generating a random 80 bit prime will be considerably
faster than a 160 bit one. We expect that, compared to the one by Fischlin, our new scheme
roughly halves the signing time.

The main advantage of our bilinear maps scheme SIGBM[HMG] is its very compact signatures
of only 230 bits. This saves 90 bits compared to the short signatures scheme from Boneh-

3A remark in [22] concerning a signature variant that can be securely instantiated with η = 80 bit primes
turned out to be not correct.

4



Scheme Type Signature Size Key Size
Boneh-Boyen [7] Bilinear |G|+ |Zp| = 320 2|G| = 320
Ours: SIGBM[HMG] Bilinear |G|+ |s| = 230 (`+ 2)|G| = 26k
Cramer-Shoup [19] RSA 2× |ZN |+ |e| = 2208 3× |ZN |+ |e| = 3232
Fischlin [22] (=SIGRSA[RHPoly1 ]) RSA |ZN |+ |r|+ |e| = 1344 4× |ZN | = 4096
Ours: SIGRSA[HMG] RSA |ZN |+ |e| = 1104 (`+ 1)|ZN | = 164k

Table 1: Recommended signature sizes of different schemes. The parameters are chosen to
provide unforgeability with k = 80 bits security after revealing maximal q = 230 signatures.
RSA signatures are instantiated with a modulus of |N | = 1024 bits, bilinear maps signatures
in asymmetric pairings with |G| = log p = 160 bits. We assume without loss of generality that
messages are of size ` bits (otherwise, we can apply a collision-resistant hash function first),
where ` must be in the order of 2k = 160 in order to provide k bits of security.

Boyen [7] and is only 70 bits larger than the random oracle BLS signatures. However, a drawback
of our constructions is the size of the verification key since it includes the group hash key κ. For
example, for HMG : {0, 1}` → G, κ contains ` + 1 group elements, where ` = 160. Concretely,
that makes a verification key of 26k bits compared to 160 bits from [7].

We remark that our concrete security reductions for the two generic schemes are not tight,
i.e., the reductions roughly lose log(q/δ) bits of security (cf. Theorems 4.2 and 4.5). Strictly
speaking, a non-tight reduction has to be penalized by having to choose a larger group order.
Even though this is usually not done in the literature [19, 22], we also consider concrete signature
size when additionally taking the non-tight security reduction into account. Since all known RSA
schemes [19, 22] have the same non-tight reduction as we have, we only consider schemes based
on bilinear maps. A rigorous comparison will be done in Section 5.

Related Signature Schemes. Our generic bilinear map signature scheme belongs to the class
of “inversion-based” signature schemes originally proposed in [33] and first formally analyzed
in [7]. Other related standard-model schemes can be found in [25, 10]. We stress that our
signatures derive from the above since the message does not appear in the denominator of the
exponent. This is an essential feature to get around the birthday bounds. Our generic RSA
signature scheme builds on [22] which itself is based on the early work by Cramer and Shoup [19].
Other standard-model RSA schemes are [24, 13, 37, 17, 31, 27, 20].

1.4 Open problems

We show that PHFs provide a useful primitive to obtain black-box proofs for certain signature
schemes. We leave it for future research to extend the application of PHFs to other types of
protocols.

We leave it as an open problem to prove or disprove the standard-model existence of (poly, 1)-
RPHFs. (Note that a positive result would imply a security proof for FDH signatures like [9]).
Moreover, we are asking for a concrete construction of a deterministic (3, 1)-PHF that would
make it possible to shrink the signature size of SIGBM[H] to ≈ 215 bits. A bounded (10, 1)-RPHF
would make it possible to shrink the size of the prime in SIGRSA[RH] to roughly 40 bits. This
is interesting since generating random 40 bit primes is very inexpensive. Finally, a (2, 1) or
(1, poly)-PHF with more compact parameters would have dramatic impact on the practicability
of our signature schemes or Waters’ IBE scheme [36].
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2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N
then 1k denotes the string of k ones. For n ∈ N, we write [n] shorthand for {1, . . . , n}. If S is
a set then s

$← S denotes the operation of picking an element s of S uniformly at random. We
write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and by z $← A(x, y, . . .)
we denote the operation of running A with inputs (x, y, . . .) and letting z be the output. With
PPT we denote probabilistic polynomial time. For random variables X and Y , we write X

γ
≡ Y

if their statistical distance is at most γ.

2.2 Digital signatures

A digital signature scheme SIG consists of the PPT algorithms. The key generation algororithm
generates a secret signing and a public verification key. The signing algorithm inputs the signing
key and a message and returns a signature. The deterministic verification algorithm inputs the
verfication key and returns accept or reject. We demand the usual correctness properties.

We recall the definition for unforgeability against chosen-message attacks (UF-CMA), played
between a challenger and a forger F :

1. The challenger generates verification/signing key, and gives the verification key to F ;

2. F makes a number of signing queries to the challenger; each such query is a message mi;
the challenger signs mi, and sends the result sig i to F ;

3. F outputs a message m and a signature sig .

We say that forger F wins the game if sig is a valid signature on m and it has not queried
a signature on m before. Forger F (t, q, ε)-breaks the UF-CMA security of SIG if its running
time is bounded by t, it makes at most Q signing queries, and the probability that it wins the
above game is bounded by ε. Finally, SIG is UF-CMA secure if no forger can (t, q, ε)-break the
UF-CMA security of SIG for polynomial t and q and non-negligible ε.

2.3 Pairing groups and the q-SDH assumption

Our pairing schemes will be defined on families of bilinear groups (PGk)k∈N. A pairing group
PG = PGk = (G,GT , p, ê, g) consist of a multiplicative cyclic group G of prime order p, where
2k < p < 2k+1, a multiplicative cyclic group GT of the same order, a generator g ∈ G, and a
non-degenerate bilinear pairing ê: G×G→ GT . See [7] for a description of the properties of such
pairings. We say an adversary A (t, ε)-breaks the q-strong Diffie-Hellman (q-SDH) assumption
if its running time is bounded by t and

Pr[(s, g
1
x+s ) $← A(g, gx, . . . , gx

q
)] ≥ ε,

where g $← GT and x
$← Z∗p. We require that in PG the q-SDH [7] assumption holds meaning

that no adversary can (t, ε) break the q-SDH problem for a polynomial t and non-negligible ε.
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2.4 RSA groups and the strong RSA assumption

Our RSA schemes will be defined on families of RSA groups (RGk)k∈N. A safe RSA group
RG = RGk = (p, q) consists of two distinct safe prime p and q of k/2 bits. Let QRN denote
the cyclic group of quadratic residues modulo an RSA number N = pq. We say an adversary A
(t, ε)-breaks the strong RSA assumption if its running time is bounded by t and

Pr[(e > 1, z1/e) $← A(N = pq, z)] ≥ ε,

where z $← ZN . We require that in RG the strong RSA assumption [2, 23] holds meaning that
no adversary can (t, ε)-break the strong RSA problem for a polynomial t and non-negligible ε.

3 Programmable Hash Functions

3.1 Definitions

A group family G = (Gk) is a family of cyclic groups Gk, indexed by the security parameter
k ∈ N. When the reference to the security parameter k is clear, we will simply write G instead
of Gk. A group hash function H = (PHF.Gen,PHF.Eval) for a group family G = (Gk) and with
input length ` = `(k) consists of two PPT algorithms. For security parameter k ∈ N, a key κ $←
PHF.Gen(1k) is generated by the key generation algorithm PHF.Gen. This key κ can then be used
for the deterministic evaluation algorithm PHF.Eval to evaluate H via y ← PHF.Eval(κ,X) ∈ G
for any X ∈ {0, 1}`. We write Hκ(X) = PHF.Eval(κ,X).

Definition 3.1 A group hash function H is an (m,n, γ, δ)-programmable hash function if there
are PPT algorithms PHF.TrapGen (the trapdoor key generation algorithm) and PHF.TrapEval
(the deterministic trapdoor evaluation algorithm) such that the following holds:

Syntactics: For g, h ∈ G, the trapdoor key generation (κ′, t) $← PHF.TrapGen(1k, g, h) produces
a key κ′ along with a trapdoor t. Moreover, (aX , bX) ← PHF.TrapEval(t,X) produces
integers aX and bX for any X ∈ {0, 1}`.

Correctness: We demand Hκ′(X) = PHF.Eval(κ′, X) = gaXhbX for all generators g, h ∈ G
and all possible (κ′, t) $← PHF.TrapGen(1k, g, h), for all X ∈ {0, 1}` and the corresponding
(aX , bX)← PHF.TrapEval(t,X).

Statistically close trapdoor keys: For all generators g, h ∈ G and for κ $← PHF.Eval(1k) and
(κ′, t) $← PHF.Eval(1k, g, h), the keys κ and κ′ are statistically γ-close: κ

γ
≡ κ′.

Well-distributed logarithms: For all generators g, h ∈ G and all possible κ′ in the range of
(the first component of) PHF.TrapGen(1k, g, h), for all X1, . . . , Xm, Z1, . . . , Zn ∈ {0, 1}`
such that Xi 6= Zj for any i, j, and for the corresponding (aXi , bXi)← PHF.TrapEval(t,Xi)
and (aZi , bZi)← PHF.TrapEval(t, Zi), we have

Pr [aX1 = . . . = aXm = 0 ∧ aZ1 , . . . , aZn 6= 0] ≥ δ, (3)

where the probability is over the trapdoor t that was produced along with κ′.

We simply say that H is an (m,n)-programmable hash function if there is a negligible γ and
a noticeable δ such that H is (m,n, γ, δ)-programmable. Furthermore, we call H (poly, n)-
programmable if H is (q, n)-programmable for every polynomial q = q(k). We say that H is
(m, poly)-programmable (resp. (poly, poly)-programmable) if the obvious holds.
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We remark that the requirement of the statistically close trapdoor keys is somewhat reminiscent
to the concept of “lossy trapdoor functions” [32]. Note that a group hash function can be a
(m,n)-programmable hash function for different parameters m,n with different trapdoor key
generation and trapdoor evaluation algorithms.

In our RSA application, the following additional definition will prove useful:

Definition 3.2 In the situation of Definition 3.1, we say that H is β-bounded (m,n, γ, δ)-
programmable if |ax| ≤ β(k) always.

3.2 Instantiations

As a first example, note that a (programmable) random oracle O (i.e., a random oracle which
we can completely control during a proof) is trivially a (c, poly) or (poly, c)-programmable hash
function, for any constant c > 0: given generators g and h, we simply define the values O(Xi)
and O(Zj) in dependance of the Xi and Zj as suitable expressions gahb.4

We will now give an example of a programmable hash function in the standard model.

Definition 3.3 [Multi-Generator PHF] Let G = (Gk) be a group family, and let ` = `(k) be a
polynomial. Then, HMG = (PHF.Gen,PHF.Eval) is the following group hash function:

• PHF.Gen(1k) returns a uniformly and independently sampled κ = (h0, . . . , h`) ∈ G`+1.

• PHF.Eval(κ,X) parses κ = (h0, . . . , h`) ∈ G`+1 and X = (x1, . . . , x`) ∈ {0, 1}` computes
and returns

HMG
κ (X) = h0

∏̀
i=1

hxii

Essentially this function was already used, with an objective similar to ours in mind, in a
construction from [36]. Here we provide a new use case and a useful abstraction of this function;
also, we shed light on the properties of this function from different angles (i.e., for different
values of m and n). In [36], it was implicitly proved that HMG is a (1, poly)-PHF:

Theorem 3.4 For any fixed polynomial q = q(k) and group G with known order, the function
HMG is a (1, q)-programmable hash function with γ = 0 and δ = 1/8(`+ 1)q.

The proof builds upon the fact that m = 1 and does not scale in the m-component. With a
completely different analysis, we can show that

Theorem 3.5 For any group G with known order, the function HMG is a (2, 1)-programmable
hash function with γ = 0 and δ = Θ(1/`).

Proof: We give only the intuition here and postpone the full (and somewhat technical) proof
to Appendix A.1. Consider the following algorithms:

• PHF.TrapGen(1k, g, h) chooses uniformly and independently a0, . . . , a` ∈ {−1, 0, 1} and
random group exponents5 b0, . . . , b`. It sets h0 = ga0−1hb0 and hi = gaihbi for 1 ≤ i ≤ `
and returns κ = (h0, . . . , h`) and t = (a0, b0, . . . , a`, b`).

4 For example, by using Coron’s method [18]: the random oracle on some input X is defined to be as O(X) :=

g∆X ·ãX ·h(1−∆X )b̃X , where ∆X is a random biased coin with Pr[∆X = 1] := 1/(2q(k)) and ãX and b̃X are uniform
values from Z|G|. Then (3) is fulfilled with probability (1− 1/(2q(k)))q(k) · (1/(2q(k)))c ≥ 1/(4q(k))c, meaning it
is a (poly, c)-programmable hash function.

5If |G| is not known, this may only be possible approximately.
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• PHF.TrapEval(t,X) parses X = (x1, . . . , x`) ∈ {0, 1}` and returns a = a0 − 1 +
∑`

i=1 aixi
and b = b0 +

∑`
i=1 bixi.

It is clear that this fulfills the syntactic and correctness requirements of Definition 3.1. Also,
since the bi are chosen independently and uniformly, so are the hi, and the trapdoor keys
indistinguishability requirement follows. It is more challenging to prove (3) (for m = 2, n = 1),
i.e., that for all strings X1, X2 and Z1 6∈ {X1, X2}, we have that

Pr [aX1 = aX2 = 0 ∧ aZ1 6= 0] = Θ(1/`) . (4)

We will only give an intuition here. First, note that the X1, X2, Z1 are independent of the ai,
since they are masked by the bi in hi = gaihbi . If we view, e.g., X1 as a subset of [`] (where we
define i ∈ X1 iff the i-th component x1i of X1 is 1), then the value

aX1 = a0 − 1 +
∑̀
i=1

aix1i = −1 + a0 +
∑
i∈X1

ai

essentially6 constitutes a random walk of length |X1| ≤ `. Theory says that it is likely that this
random walk ends up with an aX1 of small absolute value. That is, for any d with |d| = O(

√
`),

the probability that aX1 = d is Θ(1/
√
`). In particular, the probability for aX1 = 0 is Θ(1/

√
`).

Now if X1 and X2 were disjoint and there was no a0 in the sum, then aX1 and aX2 would
be independent and we would get that aX1 = aX2 = 0 with probability Θ(1/`). But even if
X1 ∩ X2 6= ∅, and taking into account a0, we can conclude similarly by lower bounding the
probability that aX1\X2

= aX2\X1
= −aX1∩X2 .

The additional requirement from (4) that aZ1 6= 0 is intuitively much more obvious, but also
much harder to formally prove. First, without loss of generality, we can assume that Z1 ⊆
X1 ∪X2, since otherwise, there is a “partial random walk” aZ1\(X1∪X2) that contributes to aZ1

but is independent of aX1 and aX2 . Hence, even when already assuming aX1 = aX2 = 0, aZ1

still is sufficiently randomized to take a non-zero value with constant probability. Also, we can
assume Z1 not to “split” X1 in the sense that Z1 ∩X1 ∈ {∅, X1} (similarly for X2). Otherwise,
even assuming a fixed value of aX1 , there is still some uncertainty about aZ1∩X1 and hence about
aZ1 (in which case with some probability, aZ1 does not equal any fixed value). The remaining
cases can be handled with a similar “no-splitting” argument. However, note that the additional
“−1” in the g-exponent of h0 is essential: without it, picking X1 and X2 disjoint and setting
Z1 = X1 ∪X2 achieves aZ1 = aX1 + aX2 = 0. A full proof is given in Appendix A.1.

Using techniques from the proof of Theorem 3.5, we can asymptotically improve the bounds
from Theorem 3.4 as follows (a proof can be found in Appendix A):

Theorem 3.6 For any fixed polynomial q = q(k) and group G with known order, the function
HMG is a (1, q)-programmable hash function with γ = 0 and δ = O( 1

q
√
`
).

One may wonder whether the scalability of HMG with respect to m reaches further. Unfortu-
nately, it does not (the proof is in Appendix A):

Theorem 3.7 Assume ` = `(k) ≥ 2. Say |G| is known and prime, and the discrete logarithm
problem in G is hard. Then HMG is not (3, 1)-programmable.

6Usually, random walks are formalized as a sum of independent values ai ∈ {−1, 1}; for us, it is more convenient
to assume ai ∈ {−1, 0, 1}. However, this does not change things significantly.
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If the group order G is not known (as will be the case in our upcoming RSA-based signature
scheme), then it may not even be possible to sample group exponents uniformly. However,
for the special case where G = QRN is the group of quadratic residues modulo N = pq for
safe distinct primes p and q, we can approximate a uniform exponent with a random element
from ZN2 . In this case, the statistical distance between keys produced by PHF.Gen and those
produced by PHF.TrapGen is smaller than (`+ 1)/N . We get

Theorem 3.8 For the group G = QRN of quadratic residues modulo N = pq for safe distinct
primes p and q, the function HMG is O(q2`)-bounded (1, q, (`+1)/N, 1/8(`+1)q)-programmable
as well as O(q2`)-bounded (2, 1, (`+ 1)/N,O(1/`))-programmable.

Similarly (using Lemma 4.6), one can show analogues of Theorem 3.7 and Theorem 4.1 for
G = QRN , only with the strong RSA assumption in place of the discrete log problem. We omit
the details.

Instantiations from dedicated Hash functions. As shown before, random oracles [5]
can be viewed as excellent programmable hash functions. For common applications such as
full-domain hash signatures or OAEP, one usually instantiates the random oracle with a fixed,
dedicated hash function (such as SHA1 [34]), Therefore, one may ask the question if such concrete
hash functions (when used as keyed hash functions, i.e, Hκ(X) := H(κ ‖X)) can serve as good
programmable hash functions. More concretely, is SHA1 a (m,n)-PRF for parameters m,n ≥ 1?

Even though it seems hard to actually disprove, our intuition says that this is very likely
not the case. In fact, one of the key design maxims of hash functions like SHA1 is to destroy
all algebraic structure. In contrast, the definition of programmable hash functions requires that
there is a relation over an algebraic structure. (I.e., we require that H(X) = gaXhbX over the
group G.) Therefore, we do not recommend to use dedicated hash functions as a PHF.

3.3 Randomized Programmable Hash Functions (RPHFs)

In Appendix B we further generalize the notion of PHFs to randomized programmable hash
functions (RPHFs). Briefly, RPHFs are PHFs whose evaluation is randomized, and where this
randomness is added to the image (so that verification is possible). We show how to adapt the
PHF definition to the randomized case, in a way suitable for the upcoming applications. We
also give instantiations of RPHFs for parameters for which we do not know how to instantiate
PHFs.

4 Applications of PHFs

4.1 Collision resistant hashing

As a warm-up, we can show the natural result that any (non-trivially) programmable hash
function is collision-resistant.

Theorem 4.1 Assume |G| is known and prime, and the discrete logarithm problem in G is
hard. Let H be a (1, 1)-programmable hash function. Then H is collision-resistant.

Proof: Fix PPT algorithms PHF.TrapGen and PHF.TrapEval. To show H’s collision-resistance,
assume an adversary A that outputs a collision with non-negligible probability with keys κ $←
PHF.Gen(1k). Now by the key closeness of Definition 3.1, A will also do so with keys κ′ from
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(κ′, t) $← PHF.TrapGen(1k, g, h), for any g, h. Any collision Hκ(X) = Hκ′(X ′) with X 6= X ′ gives
rise to an equation

gahb = Hκ′(X) = Hκ′(X ′) = ga
′
hb
′
,

where (a, b)← PHF.TrapEval(t,X) and (a′, b′)← PHF.TrapEval(t,X ′). (3) states that with non-
negligible probability, we have a = 0 and a′ 6= 0, in which case we can compute dlogh(g) =
(b− b′)/a′ mod |G|.

4.2 Generic signatures from Bilinear Maps

Let PG = (G,GT , p = |G|, g, ê : G×G→ GT ) be a pairing group. Let n = n(k) and η = η(k) be
two arbitrary polynomials. Our signature scheme signs messages m ∈ {0, 1}n using randomness
s ∈ {0, 1}η.7 Let a group hash function H = (PHF.Gen,PHF.Eval) with inputs from {0, 1}n and
outputs from G be given. We are ready to define our generic bilinear map signature scheme
SIGBM[H].

Key-Generation: Generate PG such that H can be used for the group G. Generate a key for
H via κ $← PHF.Gen(1k). Pick a random index x ∈ Zp and compute X = gx ∈ G. Return
the public verification key (PG, X, κ) and the secret signing key x.

Signing: To sign m ∈ {0, 1}n, pick a random η-bit integer s and compute y = Hκ(m)
1
x+s ∈ G.

The signature is the tuple (s, y) ∈ {0, 1}η ×G.

Verification: To verify that (s, y) ∈ {0, 1}η × G is a correct signature on a given message m,
check that s is of length η, and that

ê(y,X · gs) = ê(H(m), g).

Theorem 4.2 Let H be a (m, 1, γ, δ)-programmable hash function. Let F be a (t, q, ε)-forger in
the existential forgery under an adaptive chosen message attack experiment with SIGBM. Then
there exists an adversary A that (t′, ε′)-breaks the q-SDH assumption with t′ ≈ t and

ε ≤ q

δ
· ε′ + qm+1

2mη−1
+ γ .

We remark that the scheme can also be instantiated in asymmetric pairing groups where
the pairing is given by ê : G1 × G2 → GT and G1 6= G2. In that case we let the element y
from the signature be in G1 such that y can be represented in 160 bits [7]. Also, in asymmetric
pairings, verification can equivalently check if ê(y,X) = ê(H(m) · y−1/s, g). This way we avoid
any expensive exponentiation in G2 and verificiation time becomes roughly the same as in
the Boneh-Boyen short signatures [7]. It can be verified that the following proof also holds
in asymmetric pairing groups (assuming there exists an efficiently computable isomorphism
ψ : G2 → G1).

An efficiency comparison of the scheme instantiated with the (2, 1)-PHF HMG from Defini-
tion 3.3 is done in Section 5.

Proof of Theorem 4.2: Let F be the adversary against the signature scheme. Throughout
this proof, we assume that H is a (m,n, γ, δ)-programmable hash function. Furthermore, we fix
some notation. Let mi be the i-th query to the signing oracle and (si, yi) denote the answer.
Let m and (s, y) be the forgery output by the adversary. We introduce two types of forgers:

7For signing arbitrary bitstrings, a collision resistant hash function CR : {0, 1}∗ → {0, 1}n can be applied first.
Due to the birthday paradox we choose n = 2k when k bits of security are actually desired.
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Type I: It always holds that s = si for some i.
Type II: It always holds that s 6= si for all i.

By F1 (resp., F2) we denote the forger who runs F but then only outputs the forgery if it is of
type I (resp., type II). We now show that both types of forgers can be reduced to the q+ 1-SDH
problem. Theorem 4.2 then follows by a standard hybrid argument.

Type I forgers.

Lemma 4.3 Let F1 be a forger of type I that (t1, q, ε1)-breaks the existential unforgeability
of SIGBM[H]. Then there exists an adversary A that (t′, ε′)-breaks the q-SDH assumption with
t′ ≈ t and

ε′ ≥ δ

q

(
ε1 −

qm+1

2mη
− γ
)
.

To prove the lemma we proceed in games. In the following, Xi denotes the probability for the
adversary to successfully forge a signature in Game i.

Game 0. Let F1 be a type I forger that (t1, q, ε1)-breaks the existential unforgeability of
SIGBM[H]. By definition, we have

Pr [X0] = ε1. (5)

Game 1. We now use the trapdoor key generation (κ′, t) $← PHF.TrapGen(1k, g, h) for uniformly
selected generators g, h ∈ G to generate a H-key for public verification key of SIGBM[H]. By the
programmability of H,

Pr [X1] ≥ Pr [X0]− γ. (6)

Game 2. Now we select the random values si used for answering signing queries not upon each
signing query, but at the beginning of the experiment. Since the si were selected independently
anyway, this change is only conceptual. Let E =

⋃q
i=1{si} be the set of all si, and let Ei = E\{i}.

We also change the selection of the elements g, h used during (κ′, t) $← PHF.TrapGen(1k, g, h) as
follows. First, we uniformly choose i∗ ∈ [q] and a generator g̃ ∈ G. Define p∗(η) =

∏
t∈E∗(η+ t)

and p(η) =
∏
t∈E(η + t) and note that deg(p∗) ≤ q − 1 and deg(p) ≤ q. Hence the values

g = g̃p
∗(x), h = g̃p(x), and X = gx = g̃xp

∗(x) can be computed from g̃, g̃x, . . . , g̃x
q
. Here the index

x ∈ Z|G| is the secret key of the scheme. We then set E∗ = E \ {si∗}, E∗,i = E∗ \ {i}, and

g = g̃p
∗(x) = g̃

Q
t∈E∗ (x−t), h = g̃p(x) = g̃

Q
t∈E(x−t).

Note that we can compute (x+ si)-th roots for i 6= i∗ from g and for all i from h. This change
is purely conceptual:

Pr [X2] = Pr [X1] . (7)

Observe also that i∗ is independent of the adversary’s view.

Game 3. In this game, we change the way signature requests from the adversary are answered.
First, observe that the way we modified the generation of g and h in Game 2 implies that for
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any i with si 6= si∗ , we have

yi = Hκ′(mi)
1

x+si =
(
gamihbmi

) 1
x+si

=
(
g̃ami

Q
t∈E∗ (x−t)g̃bmi

Q
t∈E(x−t)

) 1
x+si = g̃ami

Q
t∈E∗,i (x−t)g̃bmi

Q
t∈Ei (x−t) (8)

for (ami , bmi) ← PHF.TrapEval(t,mi). Hence for i 6= i∗, we can generate the signature (si, yi)
without explicitly knowing the secret key x, but instead using the right-hand side of (8) for
computing yi. Obviously, this change in computing signatures is only conceptual, and so

Pr [X3] = Pr [X2] . (9)

Observe that i∗ is still independent of the adversary’s view.

Game 4. We now abort and raise event abortcoll if an si occurs more than m times, i.e., if there
are pairwise distinct indices i1, . . . , im+1 with si1 = . . . = sim+1 . There are

(
q

m+1

)
such tuples

(i1, . . . , im). For each tuple, the probability for si1 = . . . = sim+1 is 1/2mη A union bound shows
that a (m+ 1)-wise collision occurs with probability at most

Pr [abortcoll] ≤
(

q

m+ 1

)
1

2mη
≤ qm+1

2mη
.

Hence,

Pr [X4] ≥ Pr [X3]− Pr [abortcoll] > Pr [X3]− qm+1

2mη
. (10)

Game 5. We now abort and raise event abortbad.s if the adversary returns an s ∈ E∗, i.e.,
the adversary returns a forgery attempt (s, y) with s = si for some i, but s 6= si∗ . Since i∗ is
independent from the adversary’s view, we have Pr [abortbad.s] ≤ 1 − 1/q for any choice of the
si, so we get

Pr [X5] = Pr [X4 ∧ ¬abortbad.s] ≥
1
q
Pr [X4] . (11)

Game 6. We now abort and raise event abortbad.a if there is an index i with si = si∗ but ami 6= 0,
or if am = 0 for the adversary’s forgery message. In other words, we raise abortbad.a iff we do
not have ami = 0 for all i with si = si∗ and ami 6= 0. Since we have limited the number of such
i to m in Game 4, we can use the programmability of H. We hence have Pr [abortbad.a] ≤ 1− δ
for any choice of the mi and si, so we get

Pr [X6] ≥ Pr [X5 ∧ ¬abortbad.a] ≥ δ · Pr [X5] . (12)

Note that in Game 6, the experiment never really uses secret key x to generate signatures: to
generate the yi for si 6= si∗ , we already use (8), which requires no x. But if abortbad.a does not
occur, then ami = 0 whenever si = si∗ , so we can also use (8) to sign without knowing x. On the
other hand, if abortbad.a does occur, we must abort anyway, so actually no signature is required.

This means that Game 6 does not use knowledge about the secret key x. On the other hand, the
adversary in Game 6 produces (whenever X6 happens, which implies ¬abortbad.a and ¬abortbad.s)
during a forgery

y = Hκ′(m)1/(x+s) =
(
g̃am

Q
t∈E∗ (x+t)g̃bm

Q
t∈E(x+t)

) 1
x+s = g̃

amp
∗(x)

x+s g̃bmp
∗(x).
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From y and its knowledge about h and the si, the experiment can derive

y′ =
(

y

gbm

)1/am

= g̃
p∗(x)
x+s .

Since gcd(η + s, p∗(η)) = 1 (where we interpret η + s and p∗(η) as polynomials in η), we can
write p∗(η)/(η + s) = p′(η) + q0/(η + s) for some polynomial p′(η) of degree at most q − 2 and
some q0 6= 0. Again, we can compute g′ = g̃p

′(x). We finally obtain

y′′ = (y′/g′)1/q0 =
(
g̃
p(x)

(x+s)
−p′(x)

)1/q0

= g̃
1
x+s .

This means that the from the experiment performed in Game 6, we can construct an adversary
A that (t′, ε′)-breaks the q-SDH assumption. A’s running time t′ is approximately t plus a small
number of exponentiations, and A is successful whenever X6 happens:

ε′ ≥ Pr [X6] . (13)

Putting (5-13) together yields Lemma 4.3.

Type II forgers.

Lemma 4.4 Let F2 be a forger of type II that (t1, q, ε1)-breaks the existential unforgeability of
SIGBM[H]. Then there exists an adversary A that (t′, ε′)-breaks the q-SDH assumption and an
adversary A∗ that (t′′, ε′′)-breaks the discrete logarithm problem in G such that t′, t′′ ≈ t and

ε′ + ε′′ ≥ δ · (ε2 − γ) .

Note that the discrete logarithm problem is at least as hard as the q-SDH problem, so for
Theorem 4.2, we can assume ε′ ≥ ε′′ without loss of generality.

For the proof, we again proceed in games. The proof is very similar to the proof for type I
forgers, so we will be brief where similarities occur.

Game 0. Let F2 be a type II forger that (t2, q, ε2)-breaks the existential unforgeability of
SIGBM[H]. By definition, we have

Pr [X0] = ε2. (14)

Game 1. We now use the trapdoor key generation (κ′, t) $← PHF.TrapGen(1k, g, h) for uniformly
selected generators g, h ∈ G to generate a H-key for the public verification key of SIGBM[H]. By
the programmability of H,

Pr [X1] ≥ Pr [X0]− γ. (15)

Game 2. Now we select the used randomness si used for answering signing queries at the
beginning of the experiment and set E =

⋃q
i=1{si}. We select the elements g, h passed to

PHF.TrapGen(1k, g, h) as follows: We uniformly choose a generator g̃ ∈ G. Define p(η) =∏
t∈E(η + t) and note that deg(p) ≤ q. Hence the values g = g̃p(x) and X = gx = g̃xp(x) can be

computed from g̃, g̃x, . . . , g̃x
q+1

. We choose c ∈ Z|G| uniformly and set

g = g̃p(x), h = g̃cp(x).
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Note that we can compute (x + si)-th roots from g and h for all i. These change is purely
conceptual:

Pr [X2] = Pr [X1] . (16)

Game 3. We answer all signature requests from the adversary as in Game 3 of the proof of
Lemma 4.3. That is, we use the way that g and h are chosen to avoid having to compute the
(x+ si)th root. This change is only conceptual, and we have

Pr [X3] = Pr [X2] . (17)

Game 4. We now abort and raise event abortlog if am + c · bm = 0 mod |G| for the adverary’s
forged message m. Since we chose c as a uniform exponent and only pass g and h = gc (but no
further information about c) to adversary and PHF.TrapGen, these algorithms break a discrete
logarith problem. We get

Pr [X4] ≥ Pr [X3 ∧ ¬abortlog] ≥ Pr [X3]− ε′′ (18)

for a suitable (t′′, ε′′)-attacker A∗ on the discrete logarithm problem in G.

Game 5. We now abort and raise event abortbad.a if am (obtained from PHF.TrapEval(t,m)) is
zero for the adversary’s forgery message m. The programmability of H directly implies

Pr [X5] ≥ Pr [X4 ∧ ¬abortbad.a] ≥ δ · Pr [X4] . (19)

Now from Game 5, we can now construct an adversary A on the q+1-SDH assumption. A takes
inputs g̃, g̃x, . . . , g̃x

q+1
and simulates Game 5 with adversary F2. A uses its inputs as if it was

selected by the experiment; note that in Game 5, the secret key x is not used anymore. Now
whenever F2 outputs a forgery y with

y =
(
gamhbm

) 1
x+s =

(
g̃(am+c·bm)

Q
x∈E x

) 1
x+s

.

Since we have am + c · bm 6= 0 mod |G|, we can compute a nontrivial root of the challenge g̃.
Therefore, from

y′ = y
1

cam+dbm = g̃
p(x)
x+s

one can compute g̃1/(x+s), like in the proof of Lemma 4.3. Putting (14-19) together (and using
that δ ≤ 1) yields Lemma 4.4.

4.3 Generic signatures from RSA

Let G = QRN be the group of quadratic residues modulo an RSA number N = pq, where p and
q are safe primes. Let n = n(k) and η = η(k) be two polynomials. Let a group hash function
H = (PHF.Gen,PHF.Eval) with inputs from {0, 1}n and outputs from G be given. We are ready
to define our generic RSA-based signature scheme SIGRSA[H]:

Key-Generation: Generate N = pq for safe distinct primes p, q ≥ 2η+2, such that H can be
used for the group G = QRN . κ $← PHF.Gen(1k). Return the public verification key (N,κ)
and the secret signing key (p, q).
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Signing: To sign m ∈ {0, 1}n, pick a random η-bit prime e and compute y = Hκ(m)1/e mod N.
The e-th root can be computed using p and q. The signature is the tuple (e, y) ∈ {0, 1}η×
ZN .

Verification: To verify that (e, y) ∈ {0, 1}η × ZN is a correct signature on a given message m,
check that e is odd and of length η, and that ye = H(m) mod N . It is not necessary to
check specifically that e is a prime.

Theorem 4.5 Let H be a β-bounded (m, 1, γ, δ)-programmable hash function for β ≤ 2η and
m ≥ 1. Let F be a (t, q, ε)-forger in the existential forgery under an adaptive chosen message
attack experiment with SIGRSA[H]. Then there exists an adversary A that (t′, ε′)-breaks the
strong RSA assumption with t′ ≈ t and

ε = Θ
(q
δ
ε′
)

+
qm+1(η + 1)m

2mη−1
+ γ .

The proof is similar to the case of bilinear maps (Theorem 4.2).
Let us again consider the instantiation SIGRSA[HMG] for the (2, 1)-PHF HMG. Pluggin in the

values from Theorem 3.8 the reduction from Theorem 4.5 leads to ε = Θ(q`ε′) + q3(η+1)2

22η−1 . As
explained in the introduction, for q = 230 and k = 80 bits we are now able to choose η ≈ 80 bit
primes.

Proof of Theorem 4.5: We first state the following simple lemma due to [28].

Lemma 4.6 Given x, z ∈ Z∗n, along with a, b ∈ Z, such that xa = zb, one can efficiently compute
x̃ ∈ Z∗n such that x̃ = z

gcd(a,b)
a .

To prove this lemma one can use the extended Euclidean algorithm to compute integers f, g
such that bf + ag = gcd(a, b). One can check that x̃ := xfzg satiesfies the above equation.

Now let F be the adversary against the signature scheme. Throughout this proof, we assume
that H is a (m,n, γ, δ)-programmable hash function. Furthermore, we fix some notation. Let
mi the ith query to the signing oracle an (ei, yi) denote the answer. Let m and (e, y) be the
forgery output by the adversary. We introduce two types of forgers:

Type I: It always holds that e = ei for some i.
Type II: It always holds that e 6= ei for all i.

By F1 (resp., F2) we denote the forger who runs F but then only outputs the forgery if it is
of type I (resp., type II). We now show that both types of forgers can be reduced to the strong
RSA problem. Theorem 4.5 then follows by a standard hybrid argument.

Type I forgers.

Lemma 4.7 Let F1 be a forger of type I that (t1, q, ε1)-breaks the existential unforgeability of
SIGRSA[H]. Then there exists an adversary A that (t′, ε′)-breaks the strong RSA assumption
with t′ ≈ t and

ε′ ≥ δ

q
·
(
ε1 −

qm+1(η + 1)m

2mη−1
− γ
)
.

To prove the lemma we proceed in games.

16



Game 0. Let F1 be a type I forger that (t1, q, ε1)-breaks the existential unforgeability of
SIGRSA[H]. By definition, we have

Pr [X0] = ε1. (20)

Game 1. We now use the trapdoor key generation (κ′, t) $← PHF.TrapGen(1k, g, h) for uniformly
selected generators g, h ∈ QRN to generate a H-key for the public verification key of SIGRSA[H].
By the programmability of H,

Pr [X1] ≥ Pr [X0]− γ. (21)

Game 2. Now we select the used primes ei used for answering signing queries not upon each sign-
ing query, but at the beginning of the experiment. Since the ei were selected independently any-
way, this change is only conceptual. Let E =

⋃q
i=1 ei be the set of all ei, and let Ei = E\{i}. We

also change the selection of h′ and the elements g, h used during (κ′, t) $← PHF.TrapGen(1k, g, h)
as follows. First, we uniformly choose i∗ ∈ [q] and generators g̃ ∈ Z∗N , h̃ ∈ QRN . We then set
E∗ = E \ {ei∗}, E∗,i = E∗ \ {ei}, and

g = g̃2
Q
x∈E∗ x, h = h̃

Q
x∈E x.

Note that we can extract an ei-th root for i 6= i∗ from g and for all i from h. Unless none
of the ei divides |G|, the induced distribution on g and h is the same as in Game 1. Since
G = |QRN | = p′q′ for primes p′ = (p−1)/2 and q′ = (q−1)/2, and we assumed that p, q ≥ 2η+2,
however,

∏
ei does not divide |G|.

Pr [X2] = Pr [X1] . (22)

Observe also that i∗ is independent of the adversary’s view.

Game 3. In this game, we change the way signature requests from the adversary are answered.
First, observe that the way we modified the generation of g and h in Game 2 implies that for
any i with ei 6= ei∗ , we have that yi can be written as

Hκ′(mi)1/ei =
(
gamihbmi

)1/ei
=
(
g̃2ami

Q
x∈E∗ xh̃bmi

Q
x∈E x

)1/ei
= g̃2ami

Q
x∈E∗,i xh̃bmi

Q
x∈Ei x.

for (ami , bmi) ← PHF.TrapEval(t,mi). Hence for i 6= i∗, we can generate the signature (ei, yi)
without explicit exponent inversion, but instead using this alternative presentation of yi. Obvi-
ously, this change in computing signatures is only conceptual, and so

Pr [X3] = Pr [X2] . (23)

Observe that i∗ is still independent of the adversary’s view.

Game 4. We now abort and raise event abortcoll if an ei occurs more than m times, i.e., if there
are pairwise distinct indices i1, . . . , im+1 with ei1 = . . . = eim+1 . There are

(
q

m+1

)
such tuples

(i1, . . . , im). For each tuple, the probability for ei1 = . . . = eim+1 is 1/Pm, where P denotes the
number of primes8 of length η. Since P > 2η/3(η+1) log 2 (see, e.g., [35, Theorem 5.7]), a union
bound shows that a (m+ 1)-wise collision occurs with probability at most

Pr [abortcoll] ≤
(

q

m+ 1

)(
3(η + 1) log 2

2η

)m
≤ qm+1(η + 1)m

2mη
· (3 log 2)m

(m+ 1)!
<
qm+1(η + 1)m

2mη−1
.

8For simplicity, we assume a uniform distribution among all primes of length η.
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Hence,

Pr [X4] ≥ Pr [X3]− Pr [abortcoll] > Pr [X3]− qm+1(η + 1)m

2mη−1
. (24)

Game 5. We now abort and raise event abortbad.e if the adversary returns an e ∈ E∗, i.e.,
the adversary returns a forgery attempt (e, y) with e = ei for some i, but e 6= ei∗ . Since i∗ is
independent from the adversary’s view, we have Pr [abortbad.e] ≤ 1 − 1/q for any choice of the
ei, so we get

Pr [X5] = Pr [X4 ∧ ¬abortbad.e] ≥
1
q
Pr [X4] . (25)

Game 6. We now abort and raise event abortbad.a if there is an index i with ei = ei∗ but ami 6= 0,
or if am = 0 for the adversary’s forgery message. In other words, we raise abortbad.a iff we do
not have ami = 0 for all i with ei = ei∗ and am 6= 0. Since we have limited the number of such
i to m in Game 4, we can use the programmability of H. We hence have Pr [abortbad.a] ≤ 1− δ
for any choice of the mi and ei, so we get

Pr [X6] ≥ Pr [X5 ∧ ¬abortbad.a] ≥ δ · Pr [X5] . (26)

Note that in Game 6, the experiment never really needs to invert exponents to generate signa-
tures: to generate the yi for ei 6= ei∗ , we already use the method of Game 3, which requires no
inversion. But if abortbad.a does not occur, then ami = 0 whenever ei = ei∗ , so we can also use
that method to sign without inversion. On the other hand, if abortbad.a does occur, we must
abort anyway, so actually no signature is required.

This means that Game 6 does not use knowledge about the factorization of N . On the other
hand, the adversary in Game 6 produces (whenever X6 happens, which implies ¬abortbad.a and
¬abortbad.e) during a forgery

y =
(
h′Hκ′(m)

)1/e =
(
g̃2am

Q
x∈E∗ xh̃bm

Q
x∈E xh̃′c

Q
x∈E∗ x

)1/e
= g̃

2am
Q
x∈E∗ x
e · h̃bm

Q
x∈E∗ x.

From y and its knowledge about h̃, h̃′, and the ei, the experiment can derive

y′ =
y

h̃bm
Q
x∈E∗ x

= g̃
2am

Q
x∈E∗ x
e .

We have gcd(2am
∏
x∈E∗ x, e) = 1 because e is larger than |am| by H’s boundedness, so that

Lemma 4.6 finally allows to obtain y′′ = g̃1/e. Since g̃ was chosen initially independently and
uniformly from Z∗N , this means that the from the experiment performed in Game 6, we can
construct an adversary A that (t′, ε′)-breaks the strong RSA assumption. A’s running time t′

is approximately t plus a small number of exponentiations, and A is successful whenever X6

happens:
ε′ ≥ Pr [X6] . (27)

Putting (20-27) together yields Lemma 4.7.

Type II forgers.

Lemma 4.8 Let F2 be a forger of type II that (t1, q, ε1)-breaks the existential unforgeability
of SIGRSA[H]. Then there exists an adversary A that (t′, ε′)-breaks the strong RSA assumption
with t′ ≈ t and

ε′ ≥ δ

2
· (ε2 − γ) .
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Again we proceed in games. The proof is very similar to the proof for type I forgers, so we will
be brief where similarities occur.

Game 0. Let F2 be a type II forger that (t2, q, ε2)-breaks the existential unforgeability of
SIGRSA[H]. By definition, we have

Pr [X0] = ε2. (28)

Game 1. We now use the trapdoor key generation (κ′, t) $← PHF.TrapGen(1k, g, h) for uniformly
selected generators g, h ∈ QRN to generate a H-key for public verification key of SIGRSA[H]. By
the programmability of H,

Pr [X1] ≥ Pr [X0]− γ. (29)

Game 2. Now we select the used primes ei used for answering signing queries at the beginning of
the experiment and set E =

⋃q
i=1 ei. We select the elements g, h passed to PHF.TrapGen(1k, g, h)

as follows: we choose g̃ ∈ Z∗N and c ∈ ZN2 uniformly and set

g = g̃2
Q
x∈E x, h = gc = g̃2c

Q
x∈E x.

Note that we can extract an ei-th root from g and h for all i. These change is purely conceptual:

Pr [X2] = Pr [X1] . (30)

Game 3. We answer all signature requests from the adversary as in Game 3 of the proof of
Lemma 4.7. That is, we use the way that g and h are chosen to avoid having to invert exponents.
This change is only conceptual, and we have

Pr [X3] = Pr [X2] . (31)

Game 4. We now abort and raise event abortbad.e if e divides am + c · bm over the integers.
Recall that |G| = |QRN | = p′q′ for primes p′, q′ with N = (2p′ + 1)(2q′ + 1). Recall also that c
is chosen uniformly from ZN2 , so we can write c = c1 + c2|G| with 0 ≤ c1 < |G|. Note that c2

is statistically 1/N -close to being uniformly distributed over {0, . . . , bN2−1
p′q′ c} and independent

of c1. However, the only information about c released to the adversary and the PHF.TrapGen
algorithm is h = gc and hence c1 = c mod |G|.
Now let d = gcd(bm, e). If d = e, then e|bm and hence, since |am| < e by H’s boundedness, we
get e 6 |am + c · bm, which implies ¬abortbad.e. On the other hand, if d 6 |am, then because d|c · bm
and d|e by construction, e 6 |am + c · bm, and again ¬abortbad.e is implied. So we can assume
d 6= e and d|am. Then abortbad.e is equivalent to

am+c ·bm = 0 mod e ⇔ am
d

+(c1 +c2|G|)
bm
d

mod
e

d
⇔ c2 = −|G|−1

(
am
d

+
(
bm
d

)−1

c1

)
,

which occurs with probability at most 1/3 + 1/N due to the distribution of c2. (Note that
|G| = p′q′ is invertible modulo e/d since |p′|, |q′| are prime and longer than e, and bm/d is
invertible by construction of d.) We get

Pr [X4] ≥ Pr [X3 ∧ ¬abortbad.e] ≥
(

2
3
− 1
N

)
Pr [X3] ≥ 1

2
· Pr [X3] . (32)
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Game 5. We now abort and raise event abortbad.a if am (obtained from PHF.TrapEval(t,m)) is
zero for the adversary’s forgery message m. The programmability of H directly implies

Pr [X5] ≥ Pr [X4 ∧ ¬abortbad.a] ≥ δPr [X4] . (33)

Now from Game 5, we can now construct an adversary A on the strong RSA assumption. A
takes inputs N and g̃ ∈ Z∗N and simulates Game 5 with adversary F2. A uses g̃ as well as N
just as if it was selected by the experiment; note that in Game 5, no inversion of exponents
is necessary anymore. Now whenever F2 outputs a forgery, this implies in particular that no
abortbad.e event was raised and we have

f := gcd(am + c · bm, e) = gcd(2(am + c · bm)
∏
x∈E

x) < e,

so that we can use Lemma 4.6 to compute g̃e/f from every successful forgery

y =
(
gamhbm

)1/e
=
(
g̃2(am+c·bm)

Q
x∈E x

)1/e
.

Hence we can compute a nontrivial root of the challenge g̃ and thus break the strong RSA
assumption:

ε′ ≥ Pr [X5] . (34)

Putting (28-34) together yields Lemma 4.8 and completes the proof of Theorem 4.5

4.4 Other applications

As already discussed in the introduction, PHFs have other applications.

• A (poly, 1)-PHF is sufficient to instantiate the hash function used in full-domain hash
signatures like BLS signatures or RSA-FDH. A fair number of other protocols (e.g., the
Boneh/Frankin IBE scheme [8]) are based on the same “full-domain hash” properties of
the hash function. Unfortunately, we do not know if (poly, 1)-PHFs do exist, or not.

• A (1, poly)-PHF is sufficient to instantiate the “hash function” used in Waters’ IBE and
signature scheme [36]. In fact, the (1, poly)-PHF HMG is the original hash function Waters
used in his IBE scheme. Our new bound from Theorem 3.6 can be used to improve the
bound in the security reduction of Waters’ IBE and signature scheme. We expect that the
same improvements can be achieved for schemes based on Waters’ IBE, e.g., [1, 4, 11, 29,
30].

5 Signature Sizes

In this section we compute the concrete size of our bilinear maps signatures SIGBM[H] when
instantiated with the multi-generator PHF HMG and compare it to the size of known schemes.
A similar comparison can be made for our RSA signatures SIGRSA[H].
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5.1 Concrete Security

We follow the concrete security approach by Bellare and Ristenpart [4]. For any adversary A
running in time T(A) and gaining advantage ε we define the success ratio of A to be SR(A) :=
ε/T(A). The ratio of A’s advantage to its running time provides a measure of the efficiency of
the adversary. Generally speaking, to resist an adversary with success ration SR(A), a scheme
should have its security parameter (bits of security) such that SR(A) ≤ 2−k.

Security of the q-DH Assumption. We consider Cheon’s attacks against the q-DH assump-
tion [16] over groups of prime order p. The main result of [16] is that there exists an adversary
P such that

SR(P) =
εp

T(P)
=

T2(P) · q
p ·T(P)

= Ω(
√
q/p) .

For our analysis we make the assumption that
√
q/p is the maximal success ratio of an adversary

against the q-DH problem, i.e., that

SR(B) ≤
√
q/p, (35)

for all possible adversaries B. (We note that SR(P) = Θ(
√
q/p) matches the generic lower

bounds from [7].)

Our signature scheme SIGBM[H]. For our setting, we consider an uf-cma adversary A against
the signature scheme SIGBM[H] that makes q signing queries, runs in time T(A), and has ad-
vantage ε. We can relate the success ratio of A to the success ration of the adversary B against
the q-DH problem from our reduction. Namely, applying Theorem 4.2 we have that

SR(A) ≤ 1
T(B)

· (q
δ
· ε′ + qm+1

2ηm
) =

q

δ
· SR(B) +

qm+1

2ηm
· 1
T(B)

≤ q

δ
· SR(B) +

qm

2ηm
. (36)

We want that the signature scheme has k bit security, i.e., that SR(A) ≤ 2−k. Combining
this with (35) with (36) we obtain

SR(A) ≤ q

δ
·
√
q/p+

qm

2ηm
≤ 2−k . (37)

We are interested in the minimal choice of the group order p and the (bit-)length η of the
randomness such that the above equation holds. Clearly, (37) is satisfied if both,

η ≥ log q +
k

m
(38)

and
log p ≥ 2k + 3 log q − 2 log δ (39)

hold.

The signature scheme by Boneh and Boyen. The security reduction for Boneh/Boyen
signatures to the q-DH assumption is tight, i.e., SR(A) ≈ SR(B) ≤

√
p/q which, for k bit

security, again has to be bounded by 2−k. Therefore we need to chose p such that

log p ≥ 2k + 2 log q . (40)

Note the size of the randomness η in the Boneh/Boyen signatures is always fixed, i.e., η = 2 log p.
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5.2 Concrete comparison

We make a comparison for k = 80 bits. For concreteness we consider the instantiation SIGBM[HMG]
for the hash function HMG from Definition 3.3. By Theorem 3.5 this is a the (2, 1)-PHF with
δ = 1

c` ≈ 2−3 log k and γ = 0. We will perform two types of comparisons.

Ignoring increase of the group. First, as it is common in the literature [19, 22, 7], we ignore
the penalty imposed on the group size due to the non-tight reduction and Cheon’s attack. That
is, ignoring (39) and (40) we always chose log p = 2k bits, independent of the number of signature
queries an adversary can make. This is reasonable when one views a security reduction as an
asymptotic indicator of security. However, the bound from (38) on the randomness η cannot be
ignored since, as shown in the introduction, this may lead to an actual attack on the signature
scheme. The signatures of SIGBM[H] consist of one group element plus η bit randomness, the
signatures of SIGBB of one group element plus randomness which consists of one element from Zp.
On special Bilinear Maps with the representation of one element in |G| takes exactly log p = 2k
bits [7], we obtain

|SIGBM[H]| = log p+ η = 2k + log q +
k

m
, |SIGBB| = 2 log p = 4k .

For different choices of k and q the resulting signature sizes are given in the top two rows of
Table 2. For example, for k = 80 bits security, it seems realistic to assume that an adversary
makes maximal q ∈ {220, 230, 240} signature queries.

Taking the increase of the group into account. We now compute the signature sizes
when also taking the increase of the underlying group size into account. Using (39) and (38) for
SIGBM[H] and (40) for SIGBB we obtain

|SIGBM[H]| = log p+ η = k(2 +
1
m

) + 6 log k + 4 log q, |SIGBB| = 2 log p = 4k + 4 log q .

For different choices of k and q the signature sizes are given in the bottom two rows of Table 2.

Scheme Signature size

k = 80 k = 128 k = 256

q = 220 q = 230 q = 240 q = 232 q = 248 q = 264 q = 264 q = 296 q = 2128

Fixed Group Size

Boneh-Boyen [7] 320 320 320 512 512 512 1024 1024 1024

Ours: SIGBM[HMG] 220 230 240 352 368 384 704 736 768

Variable Group Size

Boneh-Boyen [7] 400 440 480 640 704 768 2304 2432 2560

Ours: SIGBM[HMG] 316 356 396 490 554 618 944 1072 1200

Table 2: Recommended signature sizes of different schemes. The top two rows give the sizes
when ignoring the increase of the group due to the non-tight generic bounds and the bottom
two rows take the latter into accound.
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A Proofs from Section 3

A.1 Random walks and the full proof of Theorem 3.5

The goal of this section is to prove Theorem 3.5. As indicated, this requires some work; in
particular, we need some theory about random walks. The first theorem summarizes some
elementary facts about one-dimensional random walks:

Theorem A.1 [Random walks with {−1, 1}-steps] Let µ ∈ N>0 and a′1, . . . , a
′
µ ∈ {−1, 1} be

independently and uniformly distributed random variables. For i ∈ Z, let

p′µ(i) := Pr

 µ∑
j=1

a′j = i

 ,
where the probability is over the a′i. Then

p′µ(i) = 0 if i 6≡ µ mod 2, (41)

p′µ(−i) = p′µ(i) for i ∈ Z, (42)

p′µ(i+ 2) < p′µ(i) for i ≡ µ mod 2, (43)

p′µ+2(0) < p′µ(0). (44)

Furthermore, there exists Λ′ > 0 and, for every c > 0, also λ′c > 0, such that for all i with
i ≡ µ mod 2 and |i| ≤ c√µ,

λ′c ≤ p′µ(i)
√
µ ≤ Λ′. (45)

Proof: (41) and (42) follow from the definition, and (43) is easiest seen by writing

p′µ(i) = 2−µ
(

µ

(µ+ i)/2

)
= 2−µ

µ!
(µ/2 + i/2)!(µ/2− i/2)!

(for i ≡ µ mod 2) for p′µ(i) and p′µ(i+ 2) and subtracting them. (44) follows by observing that

p′µ+2(0) =
p′µ(−2) + 2p′µ(0) + p′µ(2)

4
(42)
=

p′µ(2) + p′µ(0)
2

(43)
< p′µ(0).

To see the upper bound in (45), we may assume i ≥ 0 because of (42). Note that

p′µ(i)
(43)

≤ p′µ(i mod 2) = 2−µ
(

µ

dµ/2e

)
= 2−µ

µ!
dµ/2e!bµ/2c!

(∗)
= Θ(1/

√
µ),

where (∗) uses Stirling’s approximation. (Θ is asymptotic in µ.) For the lower bound, m′ :=
bc√µc, and m := m′ − ((µ−m′) mod 2), so m is the largest possible value for i in (45). Now

p′µ(i)
(43)

≥ p′µ(m) = 2−µ
(

µ

(µ+m)/2

)
= 2−µ

µ!
((µ+m)/2)!((µ−m)/2)!

(∗)
= Θ

(√
µ

(µ+m)(µ−m)
· µ2µ

(µ+m)µ+m(µ−m)µ−m

)
= Θ

√ 1
µ
· 1

(1− m2

µ2 )µ−m
· 1

(1 + m
µ )2m


≥ Θ

(
1
√
µ
· 1

(1 + c√
µ)2c

√
µ

)
= Θ

(
1
√
µ
· e−2c2

)
= Θ

(
1
√
µ

)
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as desired, where (∗) denotes again Stirling’s approximation.

However, for our purposes, it is more useful to allow zero-steps, since this avoids (41).

Theorem A.2 [Random walks with {−1, 0, 1}-steps] Let µ ∈ N>0 and a1, . . . , aµ ∈ {−1, 0, 1}
be independently and uniformly distributed random variables. For i ∈ Z, let

pµ(i) := Pr

 µ∑
j=1

aj = i

 ,
where the probability is over the ai. Then

pµ(−i) = pµ(i) for i ∈ Z, (46)

pµ(i+ 1) < pµ(i) for i ∈ N0. (47)

Furthermore, there exists Λ > 0 and, for every c > 0, also λc > 0, such that for all i with
|i| ≤ c√µ,

λc ≤ pµ(i)
√
µ ≤ Λ. (48)

Also,
λc
Λ
pµ(i1) ≤ pµ(i2) ≤ Λ

λc
pµ(i1) (49)

for arbitrary i1, i2 with |i1|, |i2| ≤ c
√
µ. Finally, for every c > 0, there exists Γc > 0 independent

of µ such that

Pr

∣∣∣∣∣∣
µ∑
j=1

aj

∣∣∣∣∣∣ ≤ c√µ
 ≥ Γc. (50)

Proof: (46) follows from the definition. (47) can be seen by induction on µ. For µ = 1, (47) is
clear. Now assume (47) for µ and, for i ≥ 0, consider

pµ+1(i) =
pµ(i− 1) + pµ(i) + pµ(i+ 1)

3
>
pµ(i) + pµ(i+ 1) + pµ(i+ 2)

3
= pµ+1(i+ 1).

This shows (47) for µ + 1, and hence in general. Next, we prove the upper bound in (48). To
this end, let n0 := |{j | aj = 0}| be the number of zeros among the aj . Clearly, the expectation
value of n0 is µ/3. Hence, using Hoeffding’s inequality, we first obtain

Pr [n0 ≥ µ/2] ≤ e−µ/72. (51)

We get

pµ(i)
(47)

≤ pµ(0) = Pr

∑
aj 6=0

aj = 0

 =
bµ/2c∑
i=0

Pr

∑
aj 6=0

aj = 0 | n0 = µ− 2i

Pr [n0 = µ− 2i]

=
bµ/2c∑
i=0

p′2i(0)Pr [n0 = µ− 2i]
(51)

≤ e−µ/72 +
bµ/2c∑
i=bµ/4c

p′2i(0)Pr [n0 = µ− 2i]

(44)

≤ e−µ/72 +
bµ/2c∑
i=bµ/4c

p′2bµ/4c(0)Pr [n0 = µ− 2i] ≤ e−µ/72 + p′2bµ/4c(0)
(45)
= Θ(1/

√
µ).
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This provides an upper bound Λ on pµ(i)/
√
µ. To derive a lower bound, assume a fixed c > 0,

and write m := 2dc√µ/2e (i.e., m is the smallest even upper bound on c
√
µ). We get:

pµ(i)
(47)

≥ pµ(m) = Pr

∑
aj 6=0

aj = m

 =
bµ/2c∑
i=0

Pr

∑
aj 6=0

aj = m | n0 = µ− 2i

Pr [n0 = µ− 2i]

=
bµ/2c∑
i=0

p′2i(m)Pr [n0 = µ− 2i]
(51)

≥ −e−µ/72 +
bµ/2c∑
i=bµ/4c

p′2i(m)Pr [n0 = µ− 2i | n0 ≤ µ/2]

(45)

≥ −e−µ/72 +
bµ/2c∑
i=bµ/4c

λd√
2i

Pr [n0 = µ− 2i | n0 ≤ µ/2] = Θ(
λd√

2bµ/2c
) = Θ(1/

√
µ),

where d is a (asymptotic in µ) constant upper bound on m/
√

2bµ/4c = 2dc√µ/2e/
√

2bµ/4c, so
that we can use (45).

Finally, (49) and (50) are immediate consequences of (48).

We establish a small piece of notation: for a1, . . . , aµ ∈ {−1, 0, 1} and X ⊆ [µ], we abbreviate∑
i∈X ai with a(X). The following lemma is the “non-splitting” argument already mentioned in

the informal proof of Theorem 3.5.

Lemma A.3 Let µ ∈ N>0 and a1, . . . , aµ ∈ {−1, 0, 1} be independently and uniformly dis-
tributed random variables. Let ∅ ( R ( S ⊂ [µ]. Let c > 0 and t ∈ Z with |t| ≤ c

√
|S| be

arbitrary. Then

max
i

Pr [a(R) = i | a(S) = t] ≤ 1

1 + λ1λc+1

Λ2

. (52)

Proof: Without loss of generality, assume t ≥ 0; the case t < 0 is symmetric. Fix a value i∗ for
i that maximizes (52). We first claim that 0 ≤ i∗ ≤ t. To see this, consider

Pr [a(R) = i∗ | a(S) = t] =
Pr [a(R) = i∗ ∧ a(S) = t]

Pr [a(S) = t]

=
Pr [a(R) = i∗ ∧ a(S \R) = t− i∗]

Pr [a(S) = t]
=

Pr [a(R) = i∗] Pr [a(S \R) = t− i∗]
Pr [a(S) = t]

. (53)

If i∗ < 0, then Pr [a(R) = i∗] < Pr [a(R) = 0] and Pr [a(S \R) = t− i∗] < Pr [a(S \R) = t− 0]
by (47), which contradicts the choice i∗ as a value that maximizes (53). Similarly, i∗ > t
implied Pr [a(R) = i∗] < Pr [a(R) = t] and Pr [a(S \R) = t− i∗] < Pr [a(S \R) = t− t], which
again contradicts the choice of i∗. Hence, 0 ≤ i∗ ≤ t. In fact, we can assume that:

(a) i∗ ≤ c
√
|R|, or

(b) t− i∗ ≤ c
√
|S \R|.

Namely, if neither (a) nor (b) were satisfied, we would have the contradiction

t = i∗ + (t− i∗) > c
√
|R|+ c

√
|S \R| > c

√
|R|+ |S \R| = c

√
|S| ≥ t.

If (a) holds, then i∗ + 1 ≤ c
√
|R|+ 1 ≤ (c+ 1)

√
|R|, so

Pr [a(R) = i∗ + 1] = p|R|(i
∗ + 1)

(49)

≥ λc+1

Λ
p|R|(i

∗) =
λc+1

Λ
Pr [a(R) = i∗] . (54)
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Furthermore,

Pr [a(S \R) = t− (i∗ + 1)] = p|S\R|(t− (i∗ + 1)) ≥ λ1

Λ
p|S\R|(t− (i∗ + 1)) =

λ1

Λ
Pr [a(R) = t− i∗]

(55)
either trivially by (47) (in case i∗ < t, and using that λ1 ≤ Λ), or by (49) (in case i∗ = t, and
using that then |t− i∗|, |t− (i∗ + 1)| ≤ 1 ≤

√
|S \R|). Combining (54,55) yields

Pr [a(R) = i∗ + 1 ∧ a(S) = t] ≥ λ1λc+1

Λ2
Pr [a(R) = i∗ ∧ a(S) = t] ,

whence

max
i

Pr [a(R) = i | a(S) = t] =
Pr [a(S) = t ∧ a(R) = i∗]

Pr [a(S) = t]
≤ Pr [a(S) = t ∧ a(R) = i∗]

Pr [a(R) ∈ {i∗, i∗ + 1} ∧ a(S) = t]

≤ Pr [a(S) = t ∧ a(R) = i∗]
Pr [a(R) = i∗ ∧ a(S) = t] + Pr [a(R) = i∗ + 1 ∧ a(S) = t]

≤ 1

1 + λ1λc+1

Λ2

,

which shows (52). The case (b) is symmetric.

Lemma A.4 Let µ ∈ N>0 and a1, . . . , aµ ∈ {−1, 0, 1} be independently and uniformly dis-
tributed random variables. Assume fixed nonempty sets X,Y ⊆ [µ]. Define ∆X := X \ Y ,
∆Y := Y \X, and ∆XY = X ∩ Y . Denote by SMALL the event that

a(∆X), a(∆Y ), a(∆XY ) ≤
√

min{|∆X |, |∆Y |, |∆XY |}+ 1

Then
Pr [a(X) = a(Y ) = 1 ∧ SMALL] ≥ 2λ1λ2Γ1

µ
(56)

Proof: Note that ∆X ∪∆Y ∪∆XY = X ∪ Y , where the union on the left-hand side is disjoint.
First, we treat the case |∆XY | ≥ |∆X |, |∆Y |. In this case, we assume without loss of generality
|∆X | ≥ |∆Y | and hence |∆XY | ≥ |∆X | ≥ |∆Y |. Let E denote the event that |a(∆Y )| ≤

√
|∆Y |,

and let F denote the event that a(∆X) = a(∆Y ). We obtain

Pr [E] = Pr

∣∣∣∣∣∣
∑
j∈∆Y

aj

∣∣∣∣∣∣ ≤√|∆Y |

 (50)

≥ Γ1 (57)

and

Pr [F | E] ≥ min
|i|≤|∆Y |

Pr [a(∆X) = i | E]
(∗)
= min
|i|≤|∆Y |

Pr [a(∆X) = i]

= min
|i|≤|∆Y |

p|∆X |(i)

(48)
|∆Y |≤|∆X |
≥ λ1√

|∆X |
, (58)

where (∗) uses that E is independent of a(∆X). Combining (57,58) gives

Pr [E ∧ F ] = Pr [F | E] Pr [E] ≥ λ1Γ1/
√
|∆X |. (59)
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Now since E ∧ F implies a(X) = a(Y ) as well as |a(∆X)| = |a(∆Y )| ≤
√
|∆Y | ≤

√
|∆XY |,

Pr [a(X) = a(Y ) = 1 | E ∧ F ] = Pr [a(∆XY ) = 1− a(∆X) | E ∧ F ]

≥ min
|i|≤
√
|∆Y |+1

Pr [a(∆XY ) = i | E ∧ F ]
(∗)
= min
|i|≤
√
|∆Y |+1

Pr [a(∆XY ) = i]

= min
|i|≤
√
|∆Y |+1

p|∆XY |(i)

(48)√
|∆Y |+1≤2

√
|∆XY |

≥ λ2√
|∆XY |

, (60)

where (∗) uses that E∧F is independent of a(∆XY ). Now observe that a(X) = a(Y ) = 1∧E∧F
implies |a(∆X)| = |a(∆Y )| ≤

√
|∆Y | along with |a(∆XY )| = |1− a(∆Y )| ≤

√
|∆Y |+ 1. Hence,

a(X) = a(Y ) = 1 ∧ E ∧ F implies SMALL, and we obtain

Pr [a(X) = a(Y ) = 1 ∧ SMALL] ≥ Pr [a(X) = a(Y ) = 1 ∧ E ∧ F ]

= Pr [a(X) = a(Y ) = 1 | E ∧ F ] Pr [E ∧ F ]
(59,60)

≥ λ1λ2Γ1√
|∆X | · |∆XY |

(∗)
≥ 2λ1λ2Γ1

µ

as desired, where (∗) uses that |∆X |+ |∆XY | = |X| ≤ µ and hence9 |∆X | · |∆XY | ≤ (µ/2)2.

The cases |∆X | ≥ |∆XY |, |∆Y | and |∆Y | ≥ |∆XY |, |∆X | can be treated analogously.

Lemma A.5 In the situation of Lemma A.4, let additionally Z ⊆ [µ], Z 6= ∅, X, Y . Then

Pr [a(Z) 6= 1 | a(X) = a(Y ) = 1 ∧ SMALL] ≥ λ1λ2

λ1λ2 + Λ2
. (61)

Proof: Let ZX := Z ∩∆X , ZY := Z ∩∆Y , and ZXY := Z ∩∆XY . Write G shorthand for the
event a(X) = a(Y ) = 1 ∧ SMALL.

Now first, if Z 6= ZX ∪ ZY ∪ ZXY , then there is an index j ∈ Z \ (X ∪ Y ), and hence

Pr [a(Z) 6= 1 | G] = Pr [aj 6= 1− a(Z \ {j}) | G] ≥ min
|i|≤1

Pr [aj 6= i | G]
(∗)
= min
|i|≤1

Pr [aj 6= i] = 2/3.

Here, (∗) uses the fact that G and aj are independent. Since 0 < λc ≤ Λ for all c, we have
2/3 ≥ 1/2 ≥ λ1λ2

λ1λ2+Λ2 , and (61) follows. Hence, we may assume that Z completely decomposes
into ZX , ZY , and ZXY .

Next, assume ZX 6= ∅,∆X , so ∅ ( ZX ( ∆X . Observe that for mutually exclusive events Bi
with Pr [

∨
iBi] = 1, and arbitrary A, we have

Pr [A] =
∑
i

Pr [A ∧Bi] =
∑
i

Pr [A | Bi] Pr [Bi] ≤ max
i

Pr [A | Bi]
∑
i

Pr [Bi] = max
i

Pr [A | Bi] .

(62)
Since G implies |a(∆X)| ≤

√
|∆X |, we obtain

Pr [a(Z) = 1 | G]
(62)

≤ max
|t|≤
√
|∆X |

Pr [a(Z) = 1 | G ∧ a(∆X) = t]

(∗)
= max
|t|≤
√
|∆X |
i

Pr [a(ZX) = i | G ∧ a(∆X) = t]
(∗)
= max
|t|≤
√
|∆X |
i

Pr [a(ZX) = i | a(∆X) = t]
(†)
≤ 1

1 + λ1λ2
Λ2

9for a, b ∈ R, we have a2 − 2ab+ b2 = (a− b)2 ≥ 0⇒ a2 + 2ab+ b2 = (a+ b)2 ≥ 4ab⇒ ((a+ b)/2)2 ≥ ab
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which implies (61). Here, (∗) uses that G only depends on a(∆X) (but not on the individual aj
for j ∈ ∆X), and (†) uses Lemma A.3 with R = ZX , S = ∆X . Analogous reasoning shows that
this holds also when ZY 6= ∅,∆Y and when ZXY 6= ∅,∆XY .

So far we have shown (61) unless all of the following conditions are fulfilled: Z = ZX∪ZY ∪ZXY ,
ZX ∈ {∅,∆X}, ZY ∈ {∅,∆Y }, and ZXY ∈ {∅,∆XY }. That leaves only the following remaining
possibilities:

• Z = X, or Z = Y , or Z = ∅: this cannot happen by assumption.
• Z = ∆X or Z = ∆Y or Z = ∆XY : using Lemma A.3 (e.g., in case Z = ∆X with
R = Z = ∆X and S = X) shows (61).

Summarizing, this shows (61) in general.

Now we can combine Lemma A.4 and Lemma A.5 to obtain

Theorem A.6 Let µ ∈ N>0 and a1, . . . , aµ ∈ {−1, 0, 1} be independently and uniformly dis-
tributed random variables. Assume fixed nonempty sets X,Y, Z ⊆ [µ] with Z 6= X,Y . Then

Pr [a(X) = a(Y ) = 1 6= a(Z)] ≥ λ2
1λ

2
2Γ1

λ1λ2 + Λ2
· 1
µ
.

This finally proves Theorem 3.5 if we just adapt notation: in the situation of the proof
sketch of Theorem 3.5 and Definition 3.1, set X = (1, X1) (i.e., a X is X1 with a prepended 1),
Y = (1, X2), Z = (1, Z1), and µ = `+ 1, then apply Theorem A.6.

A.2 Proof of Theorem 3.6

Proof: We use PHF.Gen and PHF.TrapGen algorithms similar to those from Theorem 3.5. First,
let J = J(k) be a positive function (we will optimize the choice of J later). Then define

• PHF.TrapGen(1k, g, h) chooses uniformly and independently aij ∈ {−1, 0, 1} for 0 ≤ i ≤ `

and 1 ≤ j ≤ J , as well as random group exponents b0, . . . , b`. It sets ai =
∑J

j=1 aij
and then h0 = ga0−1hb0 and hi = gaihbi for all i. It finally returns κ = (h0, . . . , h`) and
t = (a0, b0, . . . , a`, b`).
• PHF.TrapEval(t,X) parses X = (x1, . . . , x`) ∈ {0, 1}` and returns a = a0 +

∑`
i=1 aixi and

b = b0 +
∑`

i=1 bixi.

The main difference to the functions from Theorem 3.5 is that the ai are not chosen from
{−1, 0, 1} but instead in turn as random walks of length J . Now adding r independent random
walks of length J just yields a random walk of length rJ . Hence, we obtain that for all keys κ′,
all X ∈ {0, 1}`, and for the exponent aX output by PHF.TrapEval(t,X):

Θ
(

1/
√
`J
)
≤ Pr [aX = 0] ≤ Θ

(
1/
√
J
)
,

and with techniques from Appendix A.1, we obtain for all X,Y ∈ {0, 1}` with X 6= Y :

Pr [aZ = 0 | aX = 0] = Θ(1/
√
J)

Hence for all X1, Z1, . . . , Zq, we have

Pr
[
aX1 = 0 ∧ aZ1 , . . . , aZq 6= 0

]
= Pr [aX1 = 0] Pr

[
aZ1 , . . . , aZq 6= 0 | aX1 = 0

]
≥ Θ(1/

√
`J)

(
1−

q∑
i=1

Pr [aZi = 0 | aX1 = 0]

)
≥ Θ(1/

√
`J)(1− qΘ(1/

√
J)).
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Setting J suitably in the order of q2 proves the theorem.

A.3 Proof of Theorem 3.7

Proof: Fix PPT algorithms PHF.TrapGen and PHF.TrapEval and assume ` = 2 without loss
of generality. Consider X1 = (1, 1), X2 = (1, 0), X3 = (0, 0), and Z1 = (0, 1). Assume that
κ′, t have been generated via PHF.TrapGen(1k, g, h) for uniform g, h ∈ G. Define (aX , bX) for
X ∈ {0, 1}` as the result of PHF.TrapEval(t,X). Assume that aX1 = aX2 = aX3 = 0, which
implies that

HMG
κ′ (X1) = h0h1h2 = hbX1 , HMG

κ′ (X2) = h0h1 = hbX2 , HMG
κ′ (X3) = h0 = hbX3 .

We will show now that aZ1 6= 0 allows to efficiently compute dlogh(g), which proves the theorem.
Namely, aZ1 6= 0 implies

gaZ1hbZ1 = HMG
κ′ (Z1) = h0h2 =

HMG
κ′ (X1) ·HMG

κ′ (X3)
HMG
κ′ (X2)

.

Considering the discrete logarithms to base h yields

dlogh(g)aZ1 + bZ1 = bX1 − bX2 + bX3 mod |G|

and hence, whenever aZ1 6= 0 and |G| is known and prime, we can efficiently obtain dlogh(g),
solving the discrete logarithm problem for h and g.

B Randomized Programmable Hash Functions

B.1 Definitions

A randomized group hash function RH = (RPHF.Gen,RPHF.Eval) for a group family G = (Gk)
and with input length ` = `(k) and randomness space R = (Rk) consists of two PPT algorithms.
For security parameter k ∈ N, a key κ

$← RPHF.Gen(1k) is generated by the key generation
algorithm RPHF.Gen. This key κ can then be used for the deterministic evaluation algorithm
RPHF.Eval to evaluate RH via y ← RPHF.Eval(κ,X; r) ∈ G for any X ∈ {0, 1}` and r ∈ R. We
write RHκ(X; r) = RPHF.Eval(κ,X; r).

Definition B.1 A randomized group hash function RH is an (m,n, γ, δ)-programmable random-
ized hash function if there are PPT algorithms RPHF.TrapGen (the trapdoor key generation algo-
rithm), RPHF.TrapEval (the deterministic trapdoor evaluation algorithm), and RPHF.TrapRand
(the deterministic randomness generator) such that the following holds:
Syntactics: For g, h ∈ G, the trapdoor key generation (κ′, t) $← RPHF.TrapGen(1k, g, h) out-

puts a key κ′ and a trapdoor t. Trapdoor evaluation (a(·), b(·)) ← RPHF.TrapEval(t,X)
produces two deterministic polynomial-time functions a(·) and b(·), for any X ∈ {0, 1}`.
Moreover, r ← RPHF.TrapRand(t,X, i) produces an element r from R, for any X ∈ {0, 1}`
and index 1 ≤ i ≤ m.

Correctness: We demand RHκ′(X; r) = RPHF.Eval(κ′, X; r) = ga(r)hb(r) for all g, h ∈ G and all
possible (κ′, t) $← RPHF.TrapGen(1k, g, h), for all X ∈ {0, 1}` and 1 ≤ i ≤ m, (a(·), b(·))←
RPHF.TrapEval(t,X), and for r ← RPHF.TrapEval(t,X, i).
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Statistically close trapdoor keys: For κ $← RPHF.Eval(1k) and (κ′, t) $← RPHF.Eval(1k), the
keys κ and κ′ are statistically γ-close: κ

γ
≡ κ′.

Uniform randomness: For all g, h ∈ G and all κ′ in the range of (the first component of)
RPHF.TrapGen(1k, g, h), for all X1, . . . , Xm, and rXi ← RPHF.TrapRand(t,Xi, i), the rXi
are independent random variables, uniformly distributed over R (over all possible t).

Well-distributed logarithms: For all g, h ∈ G and all κ′ in the range of (the first compo-
nent of) RPHF.TrapGen(1k, g, h), for all X1, . . . , Xm, Z1, . . . , Zn ∈ {0, 1}` with Xi 6= Zj
for any i, j, for all r̃1, . . . , r̃n ∈ R, and (aXi(·), bXi(·)) ← RPHF.TrapEval(t,Xi), rXi ←
RPHF.TrapRand(t,Xi, i) and (aZi(·), bZi(·))← RPHF.TrapEval(t, Zi), we have

Pr [aX1(rX1) = . . . = aXm(rXm) = 0 ∧ aZ1(r̃1), . . . , aZn(r̃n) 6= 0] ≥ δ, (63)

where the probability is over the trapdoor t that was produced along with κ′. Here Xi

may depend on all Xj and rXj for j < i, and the Z1, . . . , Zn may depend on all Xi and rXi .
If γ is negligible and δ is noticeable, we simply call RH (m,n)-programmable.

We remark that RPHFs are a strict generalization of PHFs from Section 3. Furthermore, it
can be verified that our two applications of PHFs from Section 4 can also be securely instantiated
with RPHFs.

B.2 Constructions

In the following we denote [x]2` := x mod 2`. The first randomized programmable hash function
is variant of a hash function implicitly used in a construction by Fischlin [22].

Definition B.2 Let G = (Gk) be a group family, and let ` = `(k) be a polynomial. Then,
RHFisch = (RPHF.Gen,RPHF.Eval) is the following group hash function:
• RPHF.Gen(1k) returns a uniformly and independently sampled κ = (h0, h1, h2) ∈ G3.
• RPHF.Eval(κ,X; r) parses κ = (h0, h1, h2) ∈ G3, X ∈ {0, 1}`, r ∈ {0, 1}`, computes and

returns
RHFisch

κ (X; r) = h0h
r
1h

[r+X]
2`

2

Theorem B.3 For any group G with known order, the function RHFisch is a (1, 1, 0, 1/2)-
programmable randomized hash function.

Proof: Consider the following algorithms:

• RPHF.TrapGen(1k, g, h) chooses uniformly and independently r1 ∈ {0, 1}` and random
group exponents b0, b1, b2. It picks a random vector ∆ = (∆1,∆2) ∈ {(1, 0), (0, 1)}. It
sets h0 = g−r1hb0 , h1 = g∆1hb1 , h2 = g∆2hb2 . It returns κ = (h0, h1, h2) and t =
(r1, b0, b1, b2,∆).
• RPHF.TrapEval(t,X, 1): It defines and returns the functions a(s) and b(s) as a(s) = −r1 +

∆1s+ ∆2[s+X]2` , b(s) = b0 + b1s+ b2[s+X]2` .
• RPHF.TrapRand(t,X, 1): It computes and returns r = ∆1r1 + ∆2[r1 −X]2` .

Clearly, rX1 ← RPHF.TrapRand(t,X1, 1) equals r1 which is uniform random, for any κ. We
have to show that for all X1 6= Z1 ∈ {0, 1}`, for all r̃1 ∈ R, and for the corresponding
(aX1(·), bX1(·), rX1) ← RPHF.TrapEval(t,X1, 1) and (aZ1(·), bZ1(·)) ← RPHF.TrapEval(t, Z1,⊥),
we have

Pr [aX1(rX1) = 0 ∧ aZ1(r̃1) 6= 0] ≥ δ.
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By construction we have

aX1(rX1) = −r1 + ∆1(∆1r1 + ∆2[r1 +X1]2`) + ∆2(∆1r1 + ∆2[[r1 +X1]2` −X1]2`) = 0,

always, and independent of everything else. It leaves to consider Pr[aZ1(r̃1) 6= 0]. We distinguish
between two cases. If r̃1 6= rX1 , then

Pr[aZ1(r̃1) 6= 0] ≥ Pr[aZ1(r̃1) 6= 0 | ∆ = (1, 0)] Pr[∆ = (1, 0)] =
1
2

Pr[−r1 + r̃1 6= 0] =
1
2
,

since ∆ = (1, 0) implies r̃1 = rX1 = r1. If r̃1 = rX1 , then

Pr[aZ1(r̃1) 6= 0] ≥ Pr[aZ1(r̃1) 6= 0 | ∆ = (0, 1)] Pr[∆ = (0, 1)]

=
1
2

Pr[−r1 + [Z1 + [r1 −X1]2` ]2` 6= 0] =
1
2
,

since ∆ = (0, 1) implies r̃1 = rX1 = [r1 −X1]2` .

Again, the above theorem also generalizes to groups of unknown order.

Theorem B.4 For the group G = QRN of quadratic residues modulo N = pq for safe distinct
primes p and q, the function RHFisch is a 2`-bounded (1, 1, 3/N, 1/2)-programmable randomized
hash function.

We now generalize RHFisch to make it (m, 1)-programmable, for m ≥ 2. The idea is to build
a polynomial of degree m in the exponent whose secret zeros can be revealed one-by-one by the
trapdoor evaluation algorithm.

Definition B.5 Let G = (Gk) be a group family, and let ` = `(k) be a polynomial. Then,
RHPolym = (RPHF.Gen,RPHF.Eval) is the following randomized group hash function for R =
{0, 1}`:
• RPHF.Gen(1k) returns a uniformly and independently sampled κ = (h0, h11 . . . , hmm) ∈

Gm2+1.
• RPHF.Eval(κ,X; r) computes and returns

RHPolym
κ (X; r) = h0

m∏
i,j=1

h
([iX+r]

2`
)j

ij

Theorem B.6 For any group G with known order, the function RHPolym is a (m, 1, 0, 1/m)-
programmable randomized hash function. For the group G = QRN of quadratic residues modulo
N = pq for safe distinct primes p and q, the function RHPolym is a 2m`-bounded (m, 1, (m2 +
1)/N, 1/m)-programmable randomized hash function.

The proof generalizes the proof of Theorem B.3 and will be given in the full version.
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