Literatur:
[A] Anshel, I. - Anshel, M. - Goldfeld, D.:
An Algebraic method for public-keycryptography, Mathematical Research Letters
6 (1999) 287-291
[B] Birman, J.S.: Braids, Links, and Mapping Class
Groups, Annals of Mathematics Studies, Number 82, Princeton, New Jersey (1974)
[D] Dehornoy, P.: Braids and Self-Distributivity,
Progress in mathematics, Vol. 192, Birkhaeuser Verlag, Berlin (2000)
[KL] Ko, K.H. - Lee, S.J. - Cheon, J.H. - Han, J.W. - Kang,
J. - Park, Ch.: NewPublic-Key Cryptosystem Using Braid Groups, M. Bellare
(ed.):
CRYPTO 2000,LNCS 1880, pp.
166-183, 2000, Springer- Verlag, Berlin-Heidelberg (2000)
[LL] Lee S.J.- Lee E.: Potential Weaknesses of the
Commutator Key Agreement Protocol Based on Braid Groups, Crypto 2002, LNCS
2332, pp. 14-28
[LS] Lyndon, Roger C.- Schupp, Paul E. Combinatorial group theory. Reprint of the 1977 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
Vorläufiges Programm
Vortrag 1. Le Van Ly: "Zopfgruppen als Fundametalgruppen",
[B] pp. 5-14;
(Vortragstermin:
Di. 29.10.2002, 14-16 Uhr)
Vortrag 2. Stefanie Voll: "Zopfgruppen der Ebene",[B] pp. 17-24;
Vortrag 3. Natalie Ernst: "Freie Gruppen", [LS] pp. 1-10;
Vortrag 4. Anja Stenke: "Automorphismengruppen vonfreien Gruppen", [LS] pp. 21-28;
Vortrag 5. Moulaye Dagnogo: "Zopfgruppen als Automorphismengruppen von freien Gruppen", [B] pp. 25-34;
Vortrag 6. Hendrik Reimann: "Konjugationsproblem I", [B] pp. 70-80;
Vortrag 7. Arkadius Kalka: "Konjugationsproblem II", [B] pp. 81-91;
Vortrag 8. Adalbert Baszka: "Differentialkalkül von Fox", [B] pp. 102 - 109, [LS] pp. 67-71;
Vortrag 9. Carsten Schiller: "Magnus-Darstellung und Burau-Darstellung", [B] pp. 110-120;
Vortrag 10. Mark Paliga: "New Public-Key CryptosystemUsing Braid Groups", [KL];
Vortrag 11. Jana Schapiro: "An Algebraic Method for public-key cryptography", [A];
Vortrag 12. N.N. : "Potential Weaknesses of the Commutator Key Agreement Protocol Based on Braid Groups", [LL];
Für Einsicht in die Literatur bitte in Raum NA 2/34, NA 2/32 oder
NA 2/30 melden.