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Estimation of Queue Lengths and Their Percentiles at 
Signalized Intersections 

by Ning Wu 

Abstract 

Queue lengths are important parameters in traffic engineering for determining the 
capacity and traffic quality of traffic control equipment. At signalized intersections, 
queue lengths at the end of red time (red-end) are of greatest importance for 
dimensioning the lengths of lane. While the average queue length reflects the capacity 
of traffic signals, the so-called 95th and 99th percentile of queue lengths at red-ends are 
used for determining the length of turning lanes, such that the risk of a blockage in the 
through lanes could be minimized. Furthermore, lengths of back-of-queue (queue length 
at queue-end) must be considered for determining the lengths of turning lanes at 
signalized intersections. 

The queue lengths and their distribution can be numerically calculated from Markov 
chains. The percentiles of queue lengths can be estimated from the distribution. Based 
on the results of Markov chains, regressions are undertaken for obtaining explicit 
formulas under stationary traffic conditions. For non-stationary traffic conditions, the 
formulas can be derived using the so-called transition techniques.  

Key-words: Traffic signals, Queue length, Percentiles of queue lengths,  
Stationary and non-stationary traffic, Free and bunched traffic 
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1 INTRODUCTION 

Queue lengths are important parameters in traffic engineering for judging the capacity 
and traffic quality of traffic control equipment. At signalized intersections, queue 
lengths at the end of red time (red-end, or RE) are very important for dimensioning the 
length of lanes. While the average queue length reflects the capacity of traffic signals, 
the so-called 95th and 99th percentile of queue lengths at RE are usually used for 
determining the lengths of turning lanes, such that a blockage in the through lanes could 
be avoided as far as possible. By the 95th or 99th percentile of queue lengths, one 
means the length of queue that should not be exceeded in 95% or 99% of all cycles 
respectively. In other words, only in 5%  or 1% of all cycles the queue length is larger. 
At traffic signals, queue lengths at queue-ends (lengths of back-of-queue, or QE) must 
also be considered. Queue lengths at green-ends (GE) are not critical, but they are basic 
parameters for calculating the queue lengths at RE and QE. Generally, the average 
queue length at RE or GE can be determined from queuing theory. The average queue 
length and the average delay under stationary traffic can be converted from each other 
by the rule of Little: queue length = delay • traffic flow. Under non-stationary traffic a 
certain relationship between the average queue length and the average delay also exists 
(Akcelik 1980). For the calculation of average queue lengths at GE and RE, there exist 
theories from several authors for different traffic conditions (Webster 1958; Miller 
1968; Kimber and Hollis 1979; Akcelik 1980; Wu 1990). 

The estimate of the 95th and 99th percentile of queue lengths at RE (or QE) is much 
more difficult. Until now no suitable analytical solutions have been obtained. Webster 
(1958) compiled with help of simulations two tables for estimating the 95th and 99th 
percentile of queue lengths at RE under stationary traffic conditions. Pöschl and 
Waglechner (1982) repeated the simulation with a more capable computer and slightly 
modified Webster's tables. The tables of Webster and Pöschl-Waglechner are up to now 
the only sources for estimating the 95th and 99th percentile of queue lengths at RE 
under stationary traffic condition. With these tables, repeated interpolations and/or 
extrapolations must be used. This is very impractical for computer calculations and for a 
manual calculation it is unwieldy and susceptible to errors. For non-stationary traffic, 
Akcelik and Chung (1994) obtained also by simulations a set of equations for 
calculating the percentiles (90th, 95th, and 98th percentile) of queue lengths at RE and 
QE (back-of-queue). These equations tend to over-estimate the percentiles of queue 
lengths, especially for saturation degree x > 0.8. The reason of this over-estimation may 
be in the assumption that the percentiles of queue lengths can always be expressed as a 
manifold of the average queue length over the entire range of the saturation degree x. 
This is not always plausible, especially for x > 0.8 under non-stationary traffic 
conditions. 

In this paper, a series of theoretical-empirical functions that represent the 95th and 99th 
percentile of queue lengths at RE (or QE) under stationary and non-stationary traffic is 
presented. Bunching in the traffic flow is also considered. The queue length for 
stationary traffic can be determined by regressions. The data base of the regression was 
calculated from Markov chains (Wu 1990). The distribution function of the queue 
lengths can be then determined for each selected point within the cycle time. The 
numerically determined values are exact under the model conditions. For the 95th and 



 

 Estimation of Queue Lengths and Their Percentiles at Signalized Intersections 3 

 

 

99th percentile of queue lengths at RE (or QE) under non-stationary traffic conditions, 
the functions are determined from the so-called transition technique (Kimber and Hollis 
1979). The bunching of the traffic flow is considered with a correction factor subjected 
to the queue length (Wu 1990). 

The following symbols are used: 

95% queue length 

 = 95th percentile of queue lengths 

 = queue length, which is not exceeded in 95% of the cycles  (veh) 

99% queue length 

 =  95th percentile of queue lengths  

 =  queue length, which is not exceeded in 99% of the cycles  (veh) 

W  =  average delay per vehicle  (s/veh) 

NGE  =  average queue length at green-end (GE) (veh) 

NGE95  =  95% queue length at GE  (veh) 

NGE99  =  99% queue length at GE  (veh) 

NRE  =  average queue length at red-end (RE)  (veh) 

NRE95  =  95% queue length at RE  (veh) 

NRE99  =  99% queue length at RE (veh) 

NQE  =  average queue length at queue-end (back-of-queue, or QE)  (veh) 

NQE95  =  95% queue length at QE (veh) 

NQE99  =  99% queue length at QE (veh) 

G  =  length of green time  (s) 

R  =  length of red time  (s) 

R'  =  apparent red time at QE  (s) 

C  =  length of cycle time = R + G (s) 

q  =  traffic flow  (veh/s) 

λ  =  green time ratio = G/C  (-) 

n  =  number of lanes  (-) 
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s  =  saturation traffic flow  (veh/s) 

 x =  saturation degree  (-) 

x   =  average saturation degree during the peak  
 period under non-stationary traffic  (-) 

c  =  capacity per cycle = s•G  (veh) 

Q  =  capacity of the traffic signal = c/C  (veh/s) 

T  =  length of the peak period (s) 

l  =  vehicle spacing at rest (m) 

xx  =  index for average, 95%, or 99% queue length  

XX  =  index for green-end (GE), red-end (RE), queue-end (QE)  

in  =  index for non-stationarity (or instationarity) 

Kg  =  correction factor for queue length under bunched traffic  (-) 

m =  Factor for randomness of the traffic flow (normally m=1) (-) 

Vs’ = Speed of vehicles leaving a queue (m/s) 

Vq’ = Speed of vehicles pulling into a queue (m/s) 

2 QUEUE LENGTHS AT RED-END UNDER STATIONARY AND FREE 
TRAFFIC  

Generally, the queue lengths NRExx (average, 95%, and 99% queue length) at RE can be 
expressed as functions of queue length NGExx at GE, the traffic flow q, the cycle time C, 
and the red time R. Therefore, a theoretical-empirical formula of the form 

 n
GExxRExx CqRqNN )()( ⋅⋅+⋅⋅+= γβα  (1) 

where the parameters α, β, γ, and n are different for the average, 95%, and 99% queue 
lengths respectively, can be used as the regression function for queue lengths at RE. 
Under stationary and free traffic, the queue lengths NGExx (average, 95%, and 99% 
queue lengths) at GE can be estimated as the product of the average queue length NGE at 
GE.  That is,  

 GEGExx NN ⋅= αα )(  (2) 

Eq. (1) consists of 3 terms. The first term describes the queue length at GE. It is a 
function of the average queue length NGE at GE. The second term is the increase of the 
queue length between GE and RE. This term depends on the number of vehicles that 
arrive during the red time R. The third term is a correction factor accounting for the 
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randomness of the traffic flow. It depends on the number of vehicles arriving during a 
cycle time C. The first and the third term represent the stochastic part of queue lengths; 
the second term describes the deterministic part. The parameters α, β, γ, and n can be 
determined through regressions in order to fit the database obtained from Markov 
chains. 

For the average, 95%, and 99% queue lengths, 560 combinations of green time G 
(G = 10-50 s with increments of 10 s), saturation degree x (x = 0.3-0.98 with increments 
of 0.02), and cycle time C (C = 60-90 s with increments of 10 s) were calculated 
according to the theory of Markov chains (Wu 1990). The regression parameters α, β, γ, 
and n were determined by the method of the smallest error squares. The obtained 
parameters for eq. (1) are shown in Tab. 1. 

 

Queue length α β γ n standard deviation s 

NRE 1.00 1.00 0.00 0.00 0.027 

NRE95 2.97 1.20 1.29 0.26 0.291 

NRE99 4.65 1.19 1.84 0.39 0.601 

Tab. 1 - Parameters for eq. (1) 

 

Tab. 1 shows, that the deviations between values from regression and values from 
calculation according to Markov chains are always below 1 vehicle (standard deviation 
s < 1). 
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Fig. 1 - Queue lengths at GE under stationary a and free traffic conditions 

The average queue length NGE at GE can be calculated from Miller (1968): 

 
)1(2

)/)1(33.1exp(
x

xxGsN GE −
−⋅⋅−

=  (3) 

Eq. (3) was verified by the results from Markov chains. An very good agreement 
between eq. (3) and Markov chains was found (Brilon and Wu 1990; Wu 1990). In Fig. 
1, the shape of the queue length NGE at GE as a function of the saturation degree x is 
illustrated. It shows that the queue length NGE at GE increases with decreasing values of 
s⋅G. 

Inserting eq. (3) and the parameters in Tab. 1 into eq. (1), one obtains 

 Rq
x

xxGsN RE ⋅+
−

−⋅⋅−
=

)1(2
)/)1(33.1exp(  (4) 

 26.0
95 )(29.120.1

)1(2
)/)1(33.1exp(97.2 CqRq

x
xxGsN RE ⋅+⋅⋅+

−
−⋅⋅−⋅

=  (5) 

and 

 39.0
99 )(84.119.1

)1(2
)/)1(33.1exp(65.4 CqRq

x
xxGsN RE ⋅⋅+⋅⋅+

−
−⋅⋅−⋅

=  (6) 

The relationship between NRE, NRE95, and NRE99 is shown in Fig. 2. In this example, 
C = 60 s, G = 20 s, s = 0.5 veh/s, and q = 0.1 veh/s are used. 
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Fig. 2 - Queue lengths at RE under stationary and free traffic conditions 

  
x 

c  

 λ 
2 

S    R 
5 

S    R 
10 

S    R 
15 

S    R 
20 

S    R 
30 

S    R 
40 

S    R 
  0.2 2 2 3 3 5 5 7 7 9 8 12 11 15 14 
 0.30 0.4 2 2 3 3 4 4 6 6 7 7 9 9 12 12 
  0.6 1 2 2 3 3 4 4 5 5 5 7 7 9 9 
  0.8 1 2 1 2 2 3 3 3 3 4 4 5 5 6 
  0.2 3 3 5 5 8 7 10 10 13 12 18 18 23 23 
 0.50 0.4 3 3 4 4 6 6 8 8 10 10 14 14 18 18 
  0.6 2 3 3 3 5 5 6 6 8 8 10 10 13 13 
  0.8 2 2 2 3 3 4 4 4 5 5 6 7 8 8 
  0.2 5 5 7 7 10 10 14 14 17 17 24 24 31 31 

95% 0.70 0.4 5 5 6 6 9 8 11 11 14 14 19 19 24 24 
queue  0.6 4 5 5 5 7 7 8 8 10 10 14 14 17 17 

lengths  0.8 4 4 4 5 4 5 5 6 6 7 8 9 10 10 
at RE  0.2 8 8 9  10 13 13 17 17 20 20 28 28 35 35 

 0.80 0.4 7 8 8 9 11 11 14 14 16 16 22 22 27 28 
  0.6 7 7 7 8 9 9 11 11 12 13 16 16 20 20 
  0.8 6 7 6 7 7 7 7 8 8 9 10 10 12 12 
  0.2 15 16 17 17 20 21 24 24 28 28 35 36 43 44 
 0.90 0.4 15 15 16 16 18 19 21 21 24 24 29 30 35 36 
  0.6 14 15 15 15 16 16 18 18 20 20 23 23 27 27 
  0.8 14 14 14 14 14 14 15 15 16 15 17 17 19 18 
  0.2 30 31 32 32 35 36 39 39 43 43 50 51 58 59 
 0.95 0.4 29 30 31 31 33 33 36 36 39 39 44 44 50 50 
  0.6 29 30 30 30 31 31 33 33 35 34 38 38 42 41 
  0.8 29 29 29 29 29 29 30 29 31 30 32 31 34 32 
  0.2 3 3 4 4 7 6 9 8 11 10 14 13 17 17 
 0.30 0.4 2 2 4 4 6 5 7 7 9 8 11 11 14 14 
  0.6 2 2 3 3 4 5 6 6 7 7 9 9 11 11 
  0.8 2 2 2 3 3 4 4 5 4 6 6 7 7 8 
  0.2 4 4 6 6 9 9 12 12 15 15 21 20 26 25 
 0.50 0.4 4 4 5 5 8 8 10 10 12 12 17 17 21 21 
  0.6 3 4 4 5 6 6 8 8 9 10 12 13 15 16 
  0.8 3 3 3 4 4 5 5 6 6 7 8 9 9 11 
  0.2 7 7 9 9 13 12 16 16 20 20 27 27 34 34 

99% 0.70 0.4 7 7 8 8 11 11 14 13 16 16 22 22 27 27 
queue  0.6 7 7 7 7 9 9 11 11 12 13 16 17 20 21 

lengths  0.8 6 6 6 6 7 7 7 8 8 10 10 12 12 14 
at RE  0.2 11 11 13 13 17 16 20 20 24 24 31 32 39 39 

 0.80 0.4 11 11 12 12 15 14 17 17 20 20 26 26 31 32 
  0.6 10 11 11 11 13 13 14 14 16 16 19 20 23 24 
  0.8 10 10 10 10 11 11 11 11 12 12 13 14 15 17 
  0.2 23 23 25 25 28 28 32 32 35 35 43 43 50 51 
 0.90 0.4 22 23 24 24 26 26 29 28 31 31 37 37 42 43 
  0.6 22 23 23 23 24 24 26 25 27 27 31 30 34 34 
  0.8 22 22 22 22 22 22 23 22 23 22 25 24 26 26 
  0.2 45 47 48 48 51 51 55 55 58 58 66 66 73 74 
 0.95 0.4 45 46 47 47 49 49 52 51 54 54 60 59 65 65 
  0.6 44 46 46 46 47 47 49 48 50 49 54 53 57 56 
  0.8 44 45 45 45 45 44 46 45 46 45 48 46 49 47 

S  - Simulation from Pöschl   R  - Regression from eq. (5) and (6)   
41 - deviation = 1 vehicle  23 - deviation = 2 vehicle 
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Tab. 2 - Queue length at RE 

 

Comparing the results of eqs. (5) and (6) with the tables from Pöschl and Waglechner 
(1982), where values are obtained from simulations, one can see, that the agreement is 
amazingly good (Tab. 2). The absolute deviation totals maximally 2 vehicles. The 
deviation is evidently the result of rounding of numbers and of stochastic-conditional 
deviations of the simulation model.  

3 QUEUE LENGTHS AT QUEUE-END (QE) UNDER STATIONARY AND 
FREE TRAFFIC 

Eqs. (5) and (6) describe the 95% and 99% queue lengths at RE under stationary and 
free traffic conditions. However, the queue length at RE is not the maximum back-of-
queue length within the cycle. While the queue length discharges forwards from the 
stop line after the beginning of green time, the queue length still increases backwards at 
end of the queue. More vehicles still have to stop after the RE (green-begin). For a 
vehicle approaching to the traffic signal, the red time appears longer than it is. Denoting 
the time from GE (red-begin) up to the instant that the queue length is discharged 
completely as R', and inserting R' into eqs. (5) and (6), one obtains the 95% and 99% 
queue length at QE (back-of-queue). 
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Fig. 3 - Queue length at queue-end (in this figure is NSE,max=NQE) 
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The value of R' can be determined from continuum theory. Here, only the so-called 
deterministic queue length is considered. The deterministic queue length from the stop 
line up to the queue-end (QE) can be represented by a time-space-diagram (Fig. 3). 
Here, Vs is the speed that the queue is discharged away from the stop line and Vq the 
speed that the queue at the queue-end increases backwards. Assuming that vehicles 
leave the front of the queue with speed Vs' and pull in behind of the queue with speed 
Vq', one obtains according to the continuum theory 
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From the geometry of the time-space-diagram (Fig. 3), R' can be written as 
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For Vq' and Vs', the average speed the vehicles move away from the queue and into the 
queue (in meters per second) should be used. Rewriting eq. (8) in the following form 
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one obtains 

 

s
q

RKR
−

⋅=′
1

 (10) 

The parameter K depends on the speeds Vq' and Vs' and on the traffic flows q and s. 
Inserting Vs' = Vq' = 11.11 m/s (40 km/h) and l = 6 m into eq. (9), one obtains K 
between 1 (with q = 0) and 0.73 (with q = s). The shape of K as a function of the traffic 
flow q is presented in Fig. 4. Note that K is a linear function of q for the case Vs' = Vq'. 
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Fig. 4 - Factor K for queue lengths at QE (back-of-queue) 

 

In the practice, the traffic flow q lies usually in the area between 1/4- and 1/2-fold of the 
saturation traffic flow s. In order to simplify eq. (10), K can be replaced by its average 
value in this area. The average value in this area is approximately 0.9. Eq. (10) can be 
then rewritten as 

 

s
q

RR
−

⋅=′
1

9.0  (11) 

Also, Akcelik (1980) proposed a factor 0.9 for accounting for the back-of-queue. 
However, his finding was based on practical observations. Replacing R within eq. (1) 
with R' (eq. (10) ), one obtains a general formula for queue lengths at QE under 
stationary and free traffic conditions: 

 
n
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⋅⋅⋅+=
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 (12) 

Inserting the α, β, γ, and n values into eq. (12), the 95% and 99% queue length at QE 
yield 
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and 
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The average queue length at QE is (cf. also Akcelik 1980) 
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4 QUEUE LENGTHS UNDER NON-STATIONARY TRAFFIC CONDITIONS 

Under non-stationary traffic conditions, the traffic flow does not remain constant over 
time. Queue lengths of all types (average, 95%, and 99% queue lengths) are accordingly 
also dependent on time. In traffic engineering, one is interested only in a certain period 
of time, namely the peak period (or rush-hour). The pattern of the traffic flow in this 
period is predefined (e.g., as a rectangle or a parabola). The average values of queue 
lengths and delays should be determined for this period. 
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Fig. 5 - Principle of the transition technique 

 

The queue lengths under non-stationary traffic conditions can be determined by the so-
called transition technique introduced by Kimber and Hollis (1979). This technique can 
be illustrated with Fig. 5. 

In Fig. 5, the stochastic queue length Ns for stationary traffic, the deterministic queue 
length Nd at overloaded state (x > 1) for non-stationary traffic, and the total queue 
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length NT (stochastic + deterministic) for non-stationary and stochastic traffic are shown 
together. NT is the parameter to be found by the transition technique. The principle of 
the transition technique is the postulate  a = b  for the equal queue length 

 nNNN dTs ===  (16) 

More realistically, one should postulate that instead the absolute distance a = b the 
relative distance a/xs,max≡1 = b/xd. That is, one postulates 

 
d
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distance  (17) 

Eq. (17) yields the relationship 

 dsT xxx ⋅=  (18) 

Using for Ns different formulae of queue lengths in stationary traffic (average, 95%, and 
99% queue lengths), one obtains accordingly for NT the transited approximate formulae 
for calculating queue lengths under non-stationary traffic conditions. The deterministic 
queue length at the overloaded state Nd is a constant function. It is the same for every 
percentile. The parameter Nd depends on the length of the peak period T and has the 
value  
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To facilitate the transition, a simplification for calculating the average queue length NGE 
at GE in stationary traffic is meaningful and necessary. Here, instead of eq. (3), the 
approximation 
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is used. In eq.(20), m is a parameter for the randomness that depends on the 
coordination of traffic signals and controller settings. It should be validated by 
measurements. Normally, one can use m = 0.5. 

Solving eq. (19) for xd and eq. (20) for xs and setting xd =f(Nd) and xs = f(Ns) into eq. 
(18), one obtains 
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Setting Nd = Ns,GE = NGE,in and xT = x and solving for NGE,in yields 
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This equation should be used for the rang of 4 ≤ s⋅G ≤ 40. Certainly, also other formulae 
(Akcelik 1980; Kimber and Hollis 1979; Brilon and Wu 1990; Wu 1990; HCM 2000 
(Catalina Engineering, Inc. 1997) ) for calculating the queue length NGE,in at GE under 
non-stationary traffic conditions can be used. For instance, the formula of Wu (1990) 
which is based on a parabola traffic pattern for the peak period is used in the German 
Highway Capacity Manual (Brilon, Grossmann and Blanke 1994).  

Eq. (22) can also be used for calculating the average delay for non-stationary traffic 
conditions. The average delay in the peak period can be calculated with the formula 
(Akcelik 1980) 
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Replacing eq. (20) with Ns,GExx(α) = α•Ns,GE for the 95% and 99% queue lengths, one 
obtains the corresponding formulae for calculating the 95% and 99% queue lengths at 
GE for non-stationary and free traffic conditions: 
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The only difference in eq. (24) compared with eq. (22) is that the second term within the 
square is multiplied by the parameter α. In agreement with the delay formula in the 
proposed 2000 HCM (Catalina Engineering, Inc. 1997), using 
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instead eq.(20) one obtains the equation 
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for calculating the queue length NGExx,in at GE. 

According to the proposed 2000 HCM (Catalina Engineering, Inc. 1997) one can use 
m = k⋅l to take the effect of coordination and controller settings into account. The values 
of k and l are given in the proposed 2000 HCM (Catalina Engineering, Inc. 1997).  

Using eqs. (1) and (12), the general formulae for the queue lengths at RE and QE for 
non-stationary and free traffic can be written as: 
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Fig. 6 - Queue lengths at RE under non-stationary and free traffic conditions 

 

In Fig. 6, the deterministic (NdRE), the average (NRE), the 95% (NRE95), and the 99% 
(NRE99) queue lengths at RE for non-stationary and free traffic are illustrated.  

5 ACCOUNTING FOR BUNCHING EFFECTS WITHIN THE ARRIVAL 
PATTERNS 

The assumption that the moving vehicles have no influence on each other - described by 
the concept "free traffic" - is not always correct for real world traffic conditions, 
especially on busy single-lane streets. A vehicle in heavy traffic must watch out for the 
vehicle ahead and leave a time and space headway to it. In this case, the traffic is 
bunched. The smallest possible time headway for traffic approaching signalized 
intersections is denoted as the minimal arrival headway τ. The bunching of traffic flow 
can be estimated by a factor  Kg  for calculating queue lengths at traffic signals 
(Wu 1990): 
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where τ is the minimal arrival headway between consecutive vehicles. Depending on 
the type of vehicles and driving behavior, the value of τ could be different. If the 
variance of the distribution of the minimal arrival headway τ is known, the factor Kg 
can be calculated as follows (Wu 1990):   

 
x
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According to Böhm (1968), an average minimal arrival headway τ  = 1.6 s was 
observed. The variance σ τ

2  of the Erlang-distributed minimal arrival headway τ is 
accordingly: 

 2
22

2 43.0
6
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6
s===
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Inserting τ  = 1.6 s and σ τ
2  = 0.43 s2 into eq. (29), one obtains 
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Thus Kg is always between 0 and 1, i.e., the queue length is reduced by bunching of 
traffic flow. Replacing the factor α by α' = α•Kg in the equations, one obtains the 
formula for calculating the queue length accounting for bunching effects in the arriving 
traffic flow. 

6 OTHER PERCENTILES OF QUEUE LENGTHS 

In the earlier sections, equations were introduced for calculating the 95% and 99% 
queue lengths for different traffic conditions. Other percentiles of queue lengths can be 
determined using these parameters through an appropriate interpolation / extrapolation 
function. 

Theoretically, the distribution function of queue lengths should be used as the 
interpolation / extrapolation function. Since this distribution function of queue lengths 
at signalized intersections is unknown, an approximate function is introduced for 
representing the distribution of queue lengths. Normally, one can assume that the 
distribution function F(n) of queue lengths n can be approximately expressed through 
the function (Wu 1994): 

 )1(1)( +⋅−= nBAxnF  (31) 
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where A and B are parameters to be determined. This approximate function yields 
reasonable results for calculating the distribution of queue lengths, especially in the area 
where the subjected queue length n is larger than the average queue length N. 

Inserting the 95% and 99% queue lengths into eq. (31), one obtains 
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which correspond to  
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Solving the system (33) for A and B one obtains  
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Inserting A and B into eq. (31), one then obtains the ϕ-th percentile of queue lengths 
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For example, one can determine the 90% and 98% queue lengths using eq. (34): 
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7 SUMMARY 

queue length α´ β´ γ´ n´ 

 NGE  0   

average value NRE 1.00•Kg 1.00 0 0 

 NQE  K/(1-q/s)   

 NGE95  0   

95%-value NRE95 2.97•Kg 1.20 1.29 0.26 

 NQE95  1.20•K/(1-q/s)   

 NGE99  0   

99%-value NRE99 4.65•Kg 1.19 1.84 0.39 

 NQE99  1.19•K/(1-q/s)   

Tab. 3 - Parameters for queue lengths at signalized intersections 

 

Equations for calculating queue lengths at signalized intersections under different traffic 
conditions are derived. The general formula for calculating the queue length can be 
expressed as 

 ′⋅⋅′+⋅⋅′+′= n
GExxXXxx CqRqNN )()( γβα  (35) 

For different traffic conditions, the parameters α´, β´, γ´, and n´ are assembled in Tab. 3. 
NGExx(α´) is in general a function of α´. For stationary traffic, NGExx(α´) is 
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For non-stationary traffic, NGExx(α´) is 
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or in agreement with the delay formula in the proposed 2000 HCM (Catalina 
Engineering, Inc. 1997) 
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Other parameters in Tab. 3 are 
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and 
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These formulae should be used according to Tab. 4. 

 

 traffic in peak period traffic in normal period 

multi-lane street non-stationary and free traffic 
eq. (37) or (38) and Kg = 1 

stationary and free traffic  
eq. (36) and Kg = 1 

Single lane street non-stationary and bunched traffic
eq. (37) or (38) and Kg ≠ 1 

stationary and bunched traffic 
eq. (36) and Kg ≠ 1 

Tab. 4 - Recommendations for the application of the formula 

 

Here, the "peak period" means that the traffic flow before and after the considered time 
interval is significantly, i.e., at least 15%, smaller than the traffic flow within the 
considered time interval. For multi-lane streets, it is assumed that the traffic is 
distributed at the stop line evenly over all lanes. The "normal period" means that before, 
within, and after the considered time interval the traffic conditions remain constant. 

Other ϕ-th percentiles (85%, 90%, 98% etc.) of queue lengths of all types can be 
approximately estimated by the interpolation and/or extrapolation function: 
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