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Abstract

Queue lengths are important parameters in traffic engineering for determining the
capacity and traffic quality of traffic control equipment. At signalized intersections,
gueue lengths at the end of red time (red-end) are of greatest importance for
dimensioning the lengths of lane. While the average queue length reflects the capacity of
traffic signas, the so-called 95th and 99th percentile of queue lengths at red-ends are
used for determining the length of turning lanes, such that the risk of a blockage in the
through lanes could be minimized. Furthermore, lengths of back-of-queue (queue length
a queue-end) must be considered for determining the lengths of turning lanes at
signalized intersections.

The queue lengths and their distribution can be numericaly calculated from Markov
chains. The percentiles of queue lengths can be estimated from the distribution. Based on
the results of Markov chains, regressions are undertaken for obtaining explicit formulas
under stationary traffic conditions. For non-stationary traffic conditions, the formulas can
be derived using the so-called transition techniques.
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1 INTRODUCTION

Queue lengths are important parameters in traffic engineering for judging the capacity
and traffic quality of traffic control equipment. At signalized intersections, queue lengths
at the end of red time (red-end, or RE) are very important for dimensioning the length of
lanes. While the average queue length reflects the capacity of traffic signals, the so-called
95th and 99th percentile of queue lengths at RE are usually used for determining the
lengths of turning lanes, such that a blockage in the through lanes could be avoided as far
as possible. By the 95th or 99th percentile of queue lengths, one means the length of
queue that should not be exceeded in 95% or 99% of all cycles respectively. In other
words, only in 5% or 1% of al cycles the queue length is larger. At traffic signals, queue
lengths at queue-ends (lengths of back-of-queue, or QE) must also be considered. Queue
lengths at green-ends (GE) are not critical, but they are basic parameters for calculating
the queue lengths at RE and QE. Generally, the average queue length at RE or GE can
be determined from queuing theory. The average queue length and the average delay
under stationary traffic can be converted from each other by the rule of Little: queue
length = delay e traffic flow. Under non-stationary traffic a certain relationship between
the average queue length and the average delay also exists (Akcelik 1980). For the
calculation of average queue lengths at GE and RE, there exist theories from several
authors for different traffic conditions (Webster 1958; Miller 1968; Kimber and Hollis
1979; Akcelik 1980; Wu 1990).

The estimate of the 95th and 99th percentile of queue lengths at RE (or QE) is much
more difficult. Until now no suitable analytical solutions have been obtained. Webster
(1958) compiled with help of simulations two tables for estimating the 95th and 99th
percentile of queue lengths at RE under stationary traffic conditions. Pdschl and
Waglechner (1982) repeated the smulation with a more capable computer and dlightly
modified Webster's tables. The tables of Webster and Pdschl-Waglechner are up to now
the only sources for estimating the 95th and 99th percentile of queue lengths at RE under
stationary traffic condition. With these tables, repeated interpolations and/or
extrapolations must be used. Thisis very impractical for computer calculations and for a
manual calculation it is unwieldy and susceptible to errors. For non-stationary traffic,
Akcdlik and Chung (1994) obtained also by simulations a set of equations for calculating
the percentiles (90th, 95th, and 98th percentile) of queue lengths at RE and QE (back-of -
gueue). These equations tend to over-estimate the percentiles of queue lengths,
especially for saturation degree x > 0.8. The reason of this over-estimation may be in the
assumption that the percentiles of queue lengths can always be expressed as a manifold
of the average queue length over the entire range of the saturation degree x. This is not
always plausible, especialy for x > 0.8 under non-stationary traffic conditions.

In this paper, a series of theoretical-empirical functions that represent the 95th and 99th
percentile of queue lengths at RE (or QE) under stationary and non-stationary traffic is
presented. Bunching in the traffic flow is aso considered. The queue length for
stationary traffic can be determined by regressions. The data base of the regression was
caculated from Markov chains (Wu 1990). The distribution function of the queue
lengths can be then determined for each selected point within the cycle time. The
numerically determined values are exact under the model conditions. For the 95th and
99th percentile of queue lengths at RE (or QE) under non-stationary traffic conditions,



the functions are determined from the so-called transition technique (Kimber and Hollis
1979). The bunching of the traffic flow is considered with a correction factor subjected
to the queue length (Wu 1990).

The following symbols are used:
95% queue length

95th percentile of queue lengths

queue length, which is not exceeded in 95% of the cycles (veh)
99% queue length

95th percentile of queue lengths

= queue length, which is not exceeded in 99% of the cycles (veh)
W = average delay per vehicle (s/veh)
Nce = average queue length at green-end (GE) (veh)
NoEos = 95% queue length at GE (veh)
NoEgo = 99% queue length at GE (veh)
Nre = average queue length at red-end (RE) (veh)
NRreos = 95% queue length at RE (veh)
NRrego = 99% queue length at RE (veh)
Noe = average queue length at queue-end (back-of-queue, or QE) (veh)
Nokeos = 95% queue length at QE (veh)
NoEego = 99% queue length at QE (veh)
G = length of greentime (9
R = length of red time (9
R = apparent red time at QE (9
C = length of cycletime=R+ G (9
q = traffic flow (vehls)
I = greentimeratio= G/C )

n = number of lanes )



S = saturation traffic flow (vehls)
X = saturation degree )
X = average saturation degree during the peak

period under non-stationary traffic )
C = capacity per cycle=sG (veh)
Q = capacity of thetraffic signal = ¢/C (vehls)
T = length of the peak period )
I = vehicle spacing at rest (m)
XX = index for average, 95%, or 99% queue length
XX = index for green-end (GE), red-end (RE), queue-end (QE)
in = index for non-stationarity (or instationarity)
Kg = correction factor for queue length under bunched traffic )
m = Factor for randomness of the traffic flow (normally m=1) )
Vs = Speed of vehicles leaving a queue (m/s)
\s} = Speed of vehicles pulling into a queue (m/s)

2 QUEUE LENGTHSAT RED-END UNDER STATIONARY AND FREE
TRAFFIC

Generaly, the queue lengths Nrex (average, 95%, and 99% queue length) at RE can be
expressed as functions of queue length Ngexw @ GE, the traffic flow g, the cycle time C,
and the red time R. Therefore, a theoretical-empirical formula of the form

Neeo = Noeo (@) +b xR +g X(q>C)" D

where the parameters a, b, g, and n are different for the average, 95%, and 99% queue
lengths respectively, can be used as the regression function for queue lengths at RE.
Under stationary and free traffic, the queue lengths Nge« (average, 95%, and 99% gueue
lengths) at GE can be estimated as the product of the average queue length Nge at GE.
That is,

Nego (@) =a Nge (2

Eq. (1) consists of 3 terms. The first term describes the queue length at GE. It is a
function of the average queue length Nge at GE. The second term is the increase of the
gueue length between GE and RE. This term depends on the number of vehicles that
arrive during the red time R. The third term is a correction factor accounting for the



randomness of the traffic flow. It depends on the number of vehicles arriving during a
cycletime C. The first and the third term represent the stochastic part of queue lengths;
the second term describes the deterministic part. The parameters a, b, g, and n can be
determined through regressions in order to fit the database obtained from Markov chains.

For the average, 95%, and 99% queue lengths, 560 combinations of green time G
(G =10-50 s with increments of 10 s), saturation degree x (x = 0.3-0.98 with increments
of 0.02), and cycle time C (C=60-90s with increments of 10s) were calculated
according to the theory of Markov chains (Wu 1990). The regression parameters a, b, g,
and n were determined by the method of the smallest error squares. The obtained
parameters for eg. (1) are shownin Tab. 1.

Queue length a b g n standard deviation s
Nre 1.00 1.00 0.00 0.00 0.027
Ngeos 2.97 1.20 1.29 0.26 0.291
Nrego 4.65 1.19 1.84 0.39 0.601

Tab. 1 - Parametersfor eg. (1)

Tab. 1 shows, that the deviations between values from regression and values from
calculation according to Markov chains are always below 1 vehicle (standard deviation
s<1).
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Fig. 1 - Queuelengthsat GE under stationary a and freetraffic conditions



The average queue length Nge at GE can be calculated from Miller (1968):

_ exp(- 1.33VsxG X(1- x)/Xx)

N
eE 2(1- X)

(3)

Eqg. (3) was verified by the results from Markov chains. An very good agreement
between eg. (3) and Markov chains was found (Brilon and Wu 1990; Wu 1990). In Fig.
1, the shape of the queue length Nge at GE as a function of the saturation degree X is

illustrated. It shows that the queue length Nge at GE increases with decreasing vaues of
SG.

Inserting eg. (3) and the parametersin Tab. 1 into eg. (1), one obtains

N = exp(- 1.33Vs>G {1- x)/X) R @)
2(1- x)

_2.97xexp(- 1.33Vs>XG {1- X)/X)

Nrcos = 20 %) +1.20 xR +1.29(q>C)°** (5)
and

2(1- x)

The relationship between Nre, Nregs, and Nrego IS shown in Fig. 2. In this example,
C=60s,G=20s,s=0.5veh/s, and q= 0.1 veh/s are used.
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Fig. 2 - Queuelengths at RE under stationary and free traffic conditions
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Comparing the results of egs. (5) and (6) with the tables from Pdschl and Waglechner
(1982), where values are obtained from simulations, one can see, that the agreement is
amazingly good (Tab. 2). The absolute deviation totals maximaly 2 vehicles. The
deviation is evidently the result of rounding of numbers and of stochastic-conditional
deviations of the simulation mode.

3 QUEUE LENGTHSAT QUEUE-END (QE) UNDER STATIONARY AND
FREE TRAFFIC

Egs. (5) and (6) describe the 95% and 99% queue lengths at RE under stationary and
free traffic conditions. However, the queue length at RE is not the maximum back-of-
gueue length within the cycle. While the queue length discharges forwards from the stop
line after the beginning of green time, the queue length still increases backwards at end of
the queue. More vehicles still have to stop after the RE (green-begin). For a vehicle
approaching to the traffic signal, the red time appears longer than it is. Denoting the time
from GE (red-begin) up to the instant that the queue length is discharged completely as
R, and inserting R' into egs. (5) and (6), one obtains the 95% and 99% queue length at
QE (back-of-queue).
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Fig. 3 - Queuelength at queue-end (in thisfigureis Nse max=NoE)

The value of R can be determined from continuum theory. Here, only the so-called
deterministic queue length is considered. The deterministic queue length from the stop
line up to the queue-end (QE) can be represented by a time-space-diagram (Fig. 3).



Here, Vs is the speed that the queue is discharged away from the stop line and Vq the
speed that the queue at the queue-end increases backwards. Assuming that vehicles leave
the front of the queue with speed Vs and pull in behind of the queue with speed V', one
obtains according to the continuum theory

0-q _s-0
1 q Vs—s 1 (7)
I

R Vst

From the geometry of the time-space-diagram (Fig. 3), R can be written as

R¢= (8)

R
q.,1l s 1 ¢
- 0 0 ved

For Vg and Vs, the average speed the vehicles move away from the queue and into the
queue (in meters per second) should be used. Rewriting eg. (8) in the following form

|
R
R¢= S x
q.,l s 1 q q
- A Z- Z. 1- 2
s>(l stg/(l qug S
and setting
29
_ S
K= q.,l1 s./1 q ©)
G v G vl
s | Vvs¢/ I Vg
one obtains
R
R¢= K x—— (20
1- 4
S

The parameter K depends on the speeds V' and Vs and on the traffic flows q and s.
Inserting VS =Vq' =11.11m/s (40 km/h) and | =6 m into eg. (9), one obtains K
between 1 (with g = 0) and 0.73 (with g = s). The shape of K as a function of the traffic
flow qispresented in Fig. 4. Note that K isalinear function of q for the case Vs = V(.
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Fig. 4 - Factor K for queue lengths at QE (back-of-queue)

In the practice, the traffic flow q lies usually in the area between 1/4- and 1/2-fold of the
saturation traffic flow s. In order to ssimplify eqg. (10), K can be replaced by its average
value in this area. The average value in this area is approximately 0.9. Eg. (10) can be
then rewritten as

R¢=0.9% (11)

Also, Akcelik (1980) proposed a factor 0.9 for accounting for the back-of-queue.
However, his finding was based on practical observations. Replacing R within eg. (1)
with R (eg. (10) ), one obtains a genera formula for queue lengths at QE under
stationary and free traffic conditions:

R n
Noex = Neew (@) +b 30K *—g +gX>C)
1- 2
N (12)
=a N +bqK X—q+g Xq>C)"

1- 2
S

Inserting the a, b, g, and n values into eg. (12), the 95% and 99% queue length at QE
yidd

R
Noegs =2.97 N +1.20>0K x—q+1.29>(q>c)o.ze (13)

1- 2
S

and



R
Noges =465 Nge +119004K x— +1.84(>C)*® (14)

1- 2
S

The average queue length at QE is (cf. a'so Akcelik 1980)

Noe = Nge +qXK xi » Nge +O_9>qxi (15)
. .
S S

4 QUEUE LENGTHSUNDER NON-STATIONARY TRAFFIC CONDITIONS

Under non-stationary traffic conditions, the traffic flow does not remain constant over
time. Queue lengths of all types (average, 95%, and 99% queue lengths) are accordingly
also dependent on time. In traffic engineering, one is interested only in a certain period of
time, namely the peak period (or rush-hour). The pattern of the traffic flow in this period

is predefined (e.g., as a rectangle or a parabola). The average values of queue lengths
and delays should be determined for this period.

=== Ns=f(xs) = NT=f(xT) = Nd=f(xd)

queue length N [veh]

Saturation degree x [-]

Fig. 5 - Principle of the transition technique

The queue lengths under non-stationary traffic conditions can be determined by the so-
called transition technique introduced by Kimber and Hollis (1979). This technique can
beillustrated with Fig. 5.

In Fig. 5, the stochastic queue length Ns for stationary traffic, the deterministic queue
length Ny at overloaded state (x > 1) for non-stationary traffic, and the total queue length



Nr (stochastic + deterministic) for non-stationary and stochastic traffic are shown
together. Ny is the parameter to be found by the transition technique. The principle of the
transition technique is the postulate a =b for the equal queue length

N,=N; =N, =n (16)

More redlistically, one should postulate that instead the absolute distance a=b the
relative distance a/Xsmax1 = b/Xq. That is, one postul ates

distance a _ distance b b 1- Xg _ Xg- Xp

17
1 Xy 1 X4 (17)

Eq. (17) yieldsthe relationship
X = Xg XXy (18)

Using for N different formulae of queue lengths in stationary traffic (average, 95%, and
99% queue lengths), one obtains accordingly for Ny the transited approximate formulae
for calculating queue lengths under non-stationary traffic conditions. The deterministic
gueue length at the overloaded state Ny is a constant function. It is the same for every
percentile. The parameter Ny depends on the length of the peak period T and has the
value

i QXT  for x, 31
P (X - D= ‘
Nd =i

¥O for x, <1

(19)

To facilitate the transition, a smplification for calculating the average queue length Nge
a GE in stationary traffic is meaningful and necessary. Here, instead of eq. (3), the
approximation

m xx 2

Noge = e X
s,GE (1_ Xs) S>G

isused. In eq.(20), mis a parameter for the randomness that depends on the coordination
of traffic signas and controller settings. It should be vaidated by measurements.
Normally, one can use m=0.5.

(20)

Solving eg. (19) for x4 and eg. (20) for xs and setting x4 =f(Ng) and xs = f(Ns) into eq.
(18), one obtains

R, w2 1o, Nooe oy (21)
g QXT 4 2Xm +N

Setting Ng= Nsce = Ngg,in @nd Xr= X and solving for Ngg,in yields



QT & 8><m><x « 2 0

NGE,in 4 x(éx' 1+\/(X' 1) QXT \/—

This equation should be used for the rang of 4 £ G £ 40. Certainly, aso other formulae
(Akcdlik 1980; Kimber and Hollis 1979; Brilon and Wu 1990; Wu 1990, HCM 2000
(Catalina Engineering, Inc. 1997) ) for calculating the queue length Nggin a GE under
non-stationary traffic conditions can be used. For instance, the formula of Wu (1990)
which is based on a parabola traffic pattern for the peak period is used in the German
Highway Capacity Manual (Brilon, Grossmann and Blanke 1994).

(22)

Eq. (22) can aso be used for calculating the average delay for non-stationary traffic
conditions. The average delay in the peak period can be calculated with the formula
(Akcedlik 1980)

_C1- 1), Neeyy 23
201 %) Q

Replacing eg. (20) with Nscex(@) = a*Nsce for the 95% and 99% queue lengths, one
obtains the corresponding formulae for calculating the 95% and 99% queue lengths at
GE for non-stationary and free traffic conditions:

Negain(@) = QT%éx 1+J(x P2 ra BIX, 2 (24)

QT JsG

Q- 1o

The only difference in eq. (24) compared with eq. (22) is that the second term within the
sguare is multiplied by the parameter a. In agreement with the delay formula in the
proposed 2000 HCM (Cataina Engineering, Inc. 1997), using

—_ mxXS
s,GE (1_ Xs)
instead eg.(20) one obtains the equation
0
Noogn(@) = Lo 14 (- 12 42 2% (25
4 8 QXT p

for calculating the queue length Ngexin @ GE.

According to the proposed 2000 HCM (Cataina Engineering, Inc. 1997) one can use
m = k% to take the effect of coordination and controller settings into account. The values
of k and | are given in the proposed 2000 HCM (Catalina Engineering, Inc. 1997).

Using egs. (1) and (12), the general formulae for the queue lengths at RE and QE for
non-stationary and free traffic can be written as:



NRExx,in = NGExx.in (a) + b >q XR+g >(q >C)n (26)

and

R
I\IQExx,in = I\IGExx.in (a) +b q X x—q +g >(q >C)n (27)

1- 2
S
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Fig. 6 - Queuelengths at RE under non-stationary and free traffic conditions

In Fig. 6, the deterministic (Ngre), the average (Nge), the 95% (Ngregs), and the 99%
(Nreso) queue lengths at RE for non-stationary and free traffic are illustrated.

5 ACCOUNTING FOR BUNCHING EFFECTSWITHIN THE ARRIVAL
PATTERNS

The assumption that the moving vehicles have no influence on each other - described by
the concept "free traffic" - is not always correct for real world traffic conditions,
especialy on busy single-lane streets. A vehicle in heavy traffic must watch out for the
vehicle ahead and leave a time and space headway to it. In this case, the traffic is
bunched. The smallest possible time headway for traffic approaching signalized
intersections is denoted as the minima arrival headway t. The bunching of traffic flow

can be estimated by a factor Kg for calculating queue lengths at traffic signals
(Wu 1990):



~1-(1-gx)°

Kg=1
g 2-X

(28)

where t isthe minimal arrival headway between consecutive vehicles. Depending on the
type of vehicles and driving behavior, the value of t could be different. If the variance of
the distribution of the minimal arrival headway t is known, the factor Kg can be
calculated as follows (Wu 1990):

2 2 2
Kg=1- 1- (-t z)x' q s (29)

According to Béhm (1968), an average minima arrival headway t =1.6s was
observed. The variance s; of the Erlang-distributed minima arrival headway t is
accordingly:

Insertingt =1.6sand s 2 = 0.43 & into eg. (29), one obtains

1- (1- 16>9)® - g*>>043
) 2- X
1 32x- 3x9°
2- X

Kg=1

(30)

Thus Kg is always between 0 and 1, i.e.,, the queue length is reduced by bunching of
traffic flow. Replacing the factor a by a'=ae<Kg in the equations, one obtains the
formula for calculating the queue length accounting for bunching effects in the arriving
traffic flow.

6 OTHER PERCENTILESOF QUEUE LENGTHS

In the earlier sections, equations were introduced for calculating the 95% and 99%
gueue lengths for different traffic conditions. Other percentiles of queue lengths can be
determined using these parameters through an appropriate interpolation / extrapolation
function.

Theoretically, the distribution function of queue lengths should be used as the
interpolation / extrapolation function. Since this distribution function of queue lengths at
signalized intersections is unknown, an approximate function is introduced for
representing the distribution of queue lengths. Normally, one can assume that the
distribution function F(n) of queue lengths n can be approximately expressed through the
function (Wu 1994):

F(n) =1- x &™) (31)



where A and B are parameters to be determined. This approximate function yields
reasonable results for calculating the distribution of queue lengths, especialy in the area
where the subjected queue length nis larger than the average queue length N.

Inserting the 95% and 99% queue lengths into eq. (31), one obtains

I F(Ngs) =0.95=1- XA(BW%*l)

32
’:\F(Ngg) =099=1- XA(B>N99+1) ( )

which correspond to

10.05 = X&)

33
%0.01 = xA(BNw*D) (33)
Solving the system (33) for A and B one obtains

A= IN(0.05) XN, - In(0.01) XN,
© () X(Ng - Ngg)

In(0.01) - In(0.05)
"~ In(0.05) XNy, - In(0.01) XN

Inserting A and B into eg. (31), one then obtains the j -th percentile of queue lengths
N. =N

i |F(n)=i /100
1 In(2- F(n))
= as! In(x) A (34)

In(1- 1100)
= Nog - (1.86+——100) (N, - Ny,)

For example, one can determine the 90% and 98% queue lengths using eq. (34):

In(1- 0.85
Ng = Ny - (1.86+%)>(N99 - Ng)
= Ng; - 0.68XNg - Nog)

In(1- 0.98
Ngg = N - (1.86+%)>(N99 - Ng)
= Ngs - 0.57X(Ngg - Ngs)



7 SUMMARY

queue length a’ b’ g n’
Noe 0
average value Nre 1.00-Kg 1.00 0 0

Noe K/(1-q/9)
Noeos 0

95%-value Ngeos 2.97°Kg 1.20 1.29 0.26
Noeos 1.20-K/(1-g/s)
Noego 0

99%-value Nregg 4.65Kg 1.19 1.84 0.39
Noego 1.19¢K/(1-g/9)

Tab. 3 - Parametersfor queuelengths at signalized inter sections

Equations for calculating queue lengths at signalized intersections under different traffic
conditions are derived. The genera formula for calculating the queue length can be
expressed as

Ny = Naeo (@9 + b 00>R+g&{(q>C)"™ (35

For different traffic conditions, the parametersa’, b”, g, and n” are assembled in Tab. 3.
Neex(@") isin general afunction of a”. For stationary traffic, Neex(a") is

exp(- 1.33Vs>G q1- x)/x)

N a')=a'x 36
GExx( ) 2(1_ X) ( )
For non-stationary traffic, Neex(a') is
W QT & \/ — ., .8mx_ 2 9
Nee, (@') ==——&x- 1+_[(x- 1)* +a'x X ' 37

or in agreement with the delay formula in the proposed 2000 HCM (Cataina
Engineering, Inc. 1997)

Neew (@) = LT o8x- 14 [(x- 17 2 n &2 (39
v g o7 ;



Other parametersin Tab. 3 are

1.
_ s
K—l_q>(1- S (}- q » 0.9 (39
s | stg I qu,)
and

N 2
:::1- 329- 3q° for single lane traffic

Kg={ 2-x (40)
%1 for multilane traffic

These formul ae should be used according to Tab. 4.

traffic in peak period traffic in normal period
multi-lane street non-stationary and free traffic stationary and free traffic
eg. (37) or (38) andKg=1 eg. (36) andKg=1

Single lane street | non-stationary and bunched traffic | stationary and bunched traffic
eg. (37) or (38) andKg?! 1 eg. (36) andKg?* 1

Tab. 4 - Recommendations for the application of the formula

Here, the "peak period" means that the traffic flow before and after the considered time
interval is significantly, i.e, a least 15%, smaler than the traffic flow within the
considered time interval. For multi-lane streets, it is assumed that the traffic is distributed
at the stop line evenly over al lanes. The "normal period’ means that before, within, and
after the considered time interval the traffic conditions remain constant.

Other j -th percentiles (85%, 90%, 98% etc.) of queue lengths of al types can be
approximately estimated by the interpolation and/or extrapolation function:

In(1- 3
Ng - (1.86+T%LOO)>(N99- Ngs) for N, >0

N, (41)

i
.
_i
=
I
+O for N, £0
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