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Abstract

The subject of this paper is the capacity of minor-street traffic movements across major divided

four-lane roadways (also other roads with two separate carriageways) at unsignalized

intersections.  The center of the intersection, corresponding to the width of the median, often

provides room for drivers who have crossed the first half of the major road to stop before

proceeding across the second major traffic stream.  This situation, which is common with

multilane major streets, is called two-stage priority.  Here the capacity for minor-street through

traffic is larger than at intersections without such a central storage space.  The additional

capacity being provided by these wider intersections cannot be evaluated by conventional

capacity calculation models.  An analytical theory is presented for the estimation of capacity

under two-stage priority conditions.  It is based on an approach by Harders although major

improvements were necessary to match the results with realistic conditions.  In addition to

analytical theory, simulations were performed that enable an analysis under more realistic

conditions.  The result is a set of equations that compute the capacity for a minor-street

through-traffic movement in the two-stage priority situation.
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Capacity at Unsignalized Two-Stage Priority
Intersections

Werner Brilon and Ning Wu

INTRODUCTION

At many unsignalized intersections, there is a room in the center of the major street where

several minor-street vehicles can be stored between the two directions of traffic flow on the

major street, especially in the case of multilane major-street traffic.  This storage space within

the intersection enables the minor-street driver to pass each of the major-street streams one at

a time, which can contribute to an increased capacity.
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Figure 1: Minor-street through traffic (Movement 8) crossing the major street in

2 phases (the theory discussed here is also available if major street

provides more or fewer than two lanes per direction).
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A model is needed that can describe this behavior and its implication for intersection capacity.

A model of this type has been developed by Harders (1).  His concept has been used here as

the basis; it is described in the following derivations.  However, some major amplifications as

well as a correction and an adjustment for reality were made to achieve better correspondence

with realistic conditions.

For these derivations an intersection consisting of two parts is used (Figure 1).  Between the

intersection Parts I and II there is a storage space for  k  vehicles.  This area has to be passed

vehicles turning left from the major street (Movement 1) and by minor-street through traffic

(Movement 8).  Also, a minor-street left-turning vehicle (Movement 7, not shown) has to pass

through this area.  It will be seen that Movement 7 can be treated like Movement 8.

Therefore, these derivations concentrate on the minor-street through traffic (Movement 8)

crossing both parts of the major street.  The enumeration of movements has been chosen in

accordance with Chapter 10 of the 1994 Highway Capacity Manual (2).  It is assumed that the

usual rules for unsignalized intersections from the highway code are applied by drivers at the

intersections.  Thus Movements 2 and 5 (major-street through traffic) have priority over all

other movements.  Movement 1 vehicles have to obey the priority of Movement 5, whereas

Movement 8 has to give the right-of-way to each of the movements shown in Figure 1 .  In

these derivations, Movement 5 stands for all major-street traffic streams in Part II  of the

intersection.  These, depending on the layout of the intersection, could include through traffic

(Movement 5), left turning traffic (Movement 4) and right turning traffic (Movement 6).

ANALYTICAL CAPACITY MODEL

To determine the capacity of the whole intersection, a constant queue on the minor-street

approach (Movement 8) to Part I is assumed.

Let  wi  be the probability for a queue of  i  vehicles in the central storage space.  Then the

probabilities  wi  for all of the possible queue lengths  i  must sum up to 1 with 0  ≤  i  ≤  k, that

is,
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k

=
=
∑ 1

0

 (1)

where k is the number of spaces in the central storage area.

The central storage area of the intersection is considered as a closed storage system limited by

the input line and output lines (Figure 1).  The capacity properties of the storage system are

restricted depending on the aspects of maximum input and maximum output.  Now different

states of the system may be distinguished.

State 1

Part  I  of the intersection determines the input to the storage area.  Under state 1 in situations

during which  i  vehicles in the storage area are less than the maximum possible queue length

k, that is,  i  <  k , a minor-street vehicle (Movement 8) can enter the storage space if the

major-street streams (Movements 1 and 2) provide sufficient gaps.  In this case the capacity of

Part I (possible input from Movement 8) characterizes the capacity; that is,

c1  =  cI = c(q1 + q2) (2)

where cI = c(q1 + q2) is the capacity of Part I  in case of no obstruction in Part II, which is the

capacity of an isolated unsignalized cross intersection for through minor-street traffic with

major-street traffic volume  q1 + q2 .  The probability for this State 1  is  p1  =  1 - wk .  Thus,

the contribution of State 1  to the capacity of Part I  for Movement 8  is

cI,1  =  (1 - wk) . cI (3)

Of course, during State 1 vehicles from Movement 1 can also enter the storage space.

State 2

For State 2 the storage area is assumed to be occupied; that is,  k  vehicles are queuing in the

storage space.  In this case, normally no minor-street vehicle (Movement 8) or vehicles from

Movement 1 can enter the storage area.  If, however, a sufficient gap for the passage of one
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minor-street vehicle can be accommodated in both Parts I and II of the intersection

simultaneously, a vehicle can also enter the storage area.  The capacity for q8 (possible input

from Movement 8) during this stage is

c2 = cI+II  = c(q1 + q2  + q5) (4)

where cI+II = c(q1+q2+q5) is the capacity of the whole intersection (Part I+II) as an isolated

cross intersection for through traffic with major-street traffic volume  q1 + q2  + q5 .  Thus, the

contribution of State 2 to the capacity of Part I  is

cI,2 = wk . cI+II (5)

where wk  is the probability that  k  vehicles are in the storage space.

States 1 and 2 exclude each other.  The capacity of Part I  is the total maximum input to the

storage area.  Here the volume q1 of Movement 1  has to be included to the partial capacities

mentioned above.  Therefore, the total maximum input to the storage area is

Input = cI,1 + cI,2 +q1

= (1-wk) . cI + wk . cI+II + q1 (6)

State 3

The output of the storage area is now considered, concentrating on Part II  of the intersection.

For  i  >  0  each possibility for a departure from the storage area provided by the major-street

stream of volume q5 can be utilized.  The capacity (maximum output of the storage area) of

Part II in this case is

c3 =  cII = c(q5) (7)

where  cII = c(q5)  is the capacity of Part II  in case of no obstruction by the upstream Part I,

which is the capacity of an isolated unsignalized cross intersection for through minor-street

traffic with major traffic volume  q5 .
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The probability for this state is  p3  =  1 - w0 .  Thus the contribution of State 3  to the capacity

of Part II is

cII,3  =  (1 - w0) . cII (8)

where w0 is the probability that no vehicles are in the storage space.

No vehicles from Movement 1 (volume q1) can directly (i.e., without being impeded by

Movement 5)  pass through the storage area in this state.

State 4

For  i  = 0  (i.e., an empty storage area) no vehicle can leave the storage area even if the

major-street stream of volume q5 allows a departure.  If, however, a sufficient gap is provided

in the major-street streams of both parts of the intersection simultaneously, a minor-street

vehicle (Movement 8) can pass the whole intersection without being queued somewhere in the

storage area.  The possible output of the storage area from Movement 8 vehicles during this

state is

c4 = cI+II = c(q1 + q2  + q5) (9)

Thus, the contribution of State 4  to the capacity of Part II is

cII,4 = w0 . cI+II (10)

Vehicles from Movement 1 can also pass through the storage area during this state.  The

number of vehicles from Movement 1  that pass through the storage area during this state is

cII,4,q1 = w0 . q1 (11)

Here, cII,4,q1 does not mean the capacity for q1, but the demand on the capacity.  The traffic

intensity of q1 should be less than the capacity of the Part II cII; that is, q1 is subject to the

restriction  q1 < cII .  Otherwise, the intersection is overloaded and due to this nonstationarity

no solution can be derived.
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States 3 and 4 exclude each other.  Therefore, the total maximum output of the storage area is

output  = cII,3 + cII,4 + cII,4,q1

 = (1-w0) . cII + w0 . cI+II + w0 . q1

 = (1-w0) . cII + w0 . (cI+II + q1 ) (12)

One might argue that the derivations of cI,2 and cII,4 neglect the travel time of the vehicles from

Part I  to Part II .  This, however, is justified.  The probability that a minor-street vehicle will

meet a sufficient gap in Part I and II  at time  tI  and time tII  (with tII = tI + ∆t  and with

∆t = travel time between the stop lines of Part I  and  II ) is independent of the travel time  ∆t

if  ∆t = constant for all vehicles and if the two arrival processes in the major-street streams are

independent of each other.  Therefore, the result is the same if ∆t  has a realistic positive value

or if  ∆t  is assumed to be  0.

During times when the whole intersection is operating at capacity because of continuity, the

maximum input and output of the storage area must be equal.  Therefore input = output (cf.

Equations 6 and 12); that is,

(1-wk) . cII + wk 
. cI+II + q1 = (1-w0) . cII + w0 . [cI+II + q1] (13)

The total capacity  cT  for minor-street through traffic (Movement 8) regarding the whole

intersection is identical to both sides of this equation minus  q1 .  In addition, since negative

traffic volumes are not possible  cT  must fulfill the restriction

c
output q c c c q

T

q

=
− = + + −





max

, , , ,1 3 4 4 1 1

0

II II II

(14)

For the easiest case of  k = 1,

w0  +  w1  =  1 (15)

Together with Equation 13  and the subsequent explanation,
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( )
c

c c q c

c c q cT =
⋅ − −
+ − − ⋅

+

+

I II I II

I II I II
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2

1 2
        for  k = 1 (16)

For  k  >  1  some more general derivations are necessary for which the following simplifying

conditions are assumed:

• Let q1, q2 and q5 be constant over time.  Then cI = c(q1 + q2), cII = c(q5) , and cI+II = c(q1 +

q2  + q5) are also constant over time.

• Divide the continuous time scale into intervals of duration tf = follow-up time = average

time interval between the departure of two subsequent minor-street vehicles that enter into

the same gap of the major-street flow.  It is also assumed that the minimum gap between

two vehicles of Movement 1 is of the same size as tf .

• Let a be the probability that a vehicle can enter the central storage area from intersection

Part I  during a time interval of duration tf .

• Let b be the probability that a vehicle can pass intersection Part II  during a time interval of

duration tf .

The a  and  b  variables are introduced only for the following derivations.  They need not to be

evaluated later for the application of the theory.  Both a and b are used for the fictitious case in

which Parts I  and  II  are independent intersections.  The follow-up time tf for Part I  and  II

should be of similar duration for this derivation.  Treating the process of the number of

vehicles in the storage space as a stochastical process with Markow properties yields

w t0 ( ) = w a w a b w b a0 0 11 1( ) ( )− + ⋅ ⋅ + ⋅ ⋅ − (17)

= probability that no vehicle is queuing

in the storage area at time t

This is valid because the case of an empty queue at time  t  can be achieved by the following

possibilities:

• No queue at time  t - tf (prob. = w0) and no  arrival (prob. = 1 - a) during tf ; or
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• No queue at time  t - tf (prob. = w0) and one arrival (prob. = a) and one departure (prob. =

b) during tf ; or

• One vehicle queued at time  t - tf (prob. = w1) and no arrival (prob. = 1 - a) and one

departure (prob. = b) during tf .

By similar considerations, the expression for the probability of  i  vehicles queuing in the

storage space at time  t is

wi(t) = wi-1 . a . (1 - b)

+ wi . a . b

+ wi . (1 - a) . (1 - b)

+ wi+1 . (1 - a) . b (18)

Since  k  is the maximum number of vehicles in the storage space,

wk(t)= wk . (1 - b)

+ wk . a . b

+ wk-1 .  a . (1 - b) (19)

Because of the assumed stationarity of the process, w0, wi, and  wk  do not depend on each

other at time  t .

Equations 17 through 19 form a system of  k + 1  equations that can be written as

( ) ( )− ⋅ − + −w a ab w b ab0 1 = 0 (20)

( ) ( ) ( )[ ] ( )w a ab w a ab b ab w b abi i i− +− − − + − + −1 1 = 0 (21)

( ) ( )w a ab w b abk k− − − −1 = 0 (22)

For abbreviation

A a a b= − ⋅ (23)

B b a b= − ⋅ (24)
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The system of Equations 20, 21, and 22 is then

 (0) -A⋅w0 +B⋅w1 = 0

(1) A⋅w0 -(A+B)⋅w1 +B⋅w2 = 0

(2) A⋅w1 -(A+B)⋅w2 +B⋅w3 = 0

...

(i) A⋅wi-1 -(A+B)⋅wi +B⋅wi+1 = 0 (25)

...

(k-2) A⋅wk-3 -(A+B)⋅wk-2 +B⋅wk-1 = 0

(k-1) A⋅wk-2 -(A+B)⋅wk-1 +B⋅wk = 0

(k) A⋅wk-1 -B⋅wk = 0

From the first Equation,

A w B w⋅ = ⋅0 1

w
A

B
w1 0= ⋅ (26)

From the last equation,

A w B wk k⋅ = ⋅−1

w
A

B
wk k= ⋅ −1 (27)

Summing all equations (0) through (i),

− ⋅ + ⋅ =+A w B wi i 1 0

w
A

B
wi i+ = ⋅1 (28)

The sequence of the probabilities, therefore, is forming a geometric series in which each

subsequent term is resulting from the prior term by a multiplication with the factor  y = A/B.

y
A

B

a ab

b ab
= =

−
−

(29)
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That is,

w y wi i+ = ⋅1 (30)

or

w y wi
i= ⋅ 0 (31)

According to Equation 1, wi (i = 0,...,k) are subject to the restriction

w

y w

w y

i
i

k

i

i

k

i

i

k

=

=

=

∑

∑

∑

=

⋅ =

=

0

0
0

0
0

1

1

1

Therefore,

w
y y y k0 1 2

1

1
=

+ + + +...
(32)

The denominator is the sum of a finite geometric series,

y
y

y
i

k

i

k

=
−

−

+

=
∑

1

0

1

1
(33)

Thus, and with Equations 30 and 29,

w
y

y k0 1

1

1
=

−
−+ (34)

w
y y

yk

k k

k
=

−
−

+

+

1

1 1
(35)
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Let us now recall Equations 13 and 14 and combine those with Equations 34 and 35:

( )

1
1 1

1
1

1

1

1

1

1

1

1 1

1 1 1

−
−
−







 ⋅ +

−
−

⋅ +

= −
−

−






 ⋅ +

−
−

⋅ +

+

+

+

+ +

+ + +

y y

y
c

y y

y
c q

y

y
c

y

y
c q

k k

k

k k

k

k k

 I I II

II I II

(36)

Note that in this equation the capacities cI, cII and cI+II  as well as  k  are treated to be known,

whereas the variable  y  has to be obtained from the equation.  As a result,

y
c c

c q c
=

−
− −

+

+

I I II

II I II1

(37)

Using this result for  y , the total capacity  cT  for the minor-street Movement 8 is calculated

using Equation 14 yields

( ) 11III1II1 1

1

1

1
1 qqc

y

y
c

y

y
c

kkT −+⋅
−

−
+⋅








−

−
−= +++ (38a)

or

( )

( )[ ]III1II1

III11II1

)1()(1
1

1

1

1

1

1
1

++

+++

⋅−+−⋅−⋅
−

=

⋅
−

−
+−⋅








−

−
−=

cyqcyy
y

c
y

y
qc

y

y
c

k

k

kkT

(38b)

It should be noted that for the special case of  k = 1,  the algebraic solution of Equation 16

might give some confirmation for the above derivations.

For  y = 1  ( i.e., cI = cII - q1 )  this expression is not defined.  By developing the limiting case

for  y → 1,

( )[ ]III1II1

1
++−⋅⋅

+
= cqck

k
cT (39)

At this point it should be noted that the capacities  cI+II = c(q1 + q2 +q5)  and  cII = c(q5)  can be

calculated by any useful procedure, for example, by formulas from gap acceptance theory.  But
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solutions from the linear regression method or Kyte’s method, described otherwise (3), could

also be used.

CAPACITY ACCORDING TO GAP ACCEPTANCE THEORY

The simplest formula for the capacity of an unsignalized intersection with one minor-street and

one major-street traffic stream is Siegloch’s (4) formula.  Several authors (3) have shown that

this formula produces also realistic results if the basic assumptions for the formula are not

fulfilled.  Siegloch’s formula is as follows:

c q
t

e
f

q t( ) = ⋅ − ⋅1
0 (40)

where

c(q) =capacity for minor-street movement (veh/s),

tf =follow-up time (s),

=average gap between two successive minor-flow vehicle entering into

the same major-stream gap,

t0 =tc - tf / 2  (s),

tc =critical gap (s),

=average gap between two successive major-flow vehicle that, as a

minimum, is accepted by the minor-stream vehicles to cross the

intersection.

The different cases of tc -  and tf - values that must be distinguished are:

• tc -  and tf - values for Part  I  of the intersection (State 1 and 2),

• tc-  and tf - values for Part II  of the intersection (State 3 and 4), and

• tc -  and tf - values for crossing Part I  and  II  of the intersection simultaneously in the case

of  k = 0 .  It is realistic to assume that a driver who has to cross the whole major street at

one time without having a central storage area needs longer tc -  and tf - values than in the

first and second cases.
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It is justified to assume that the  tc -  and tf - values in the firs and second cases are of the same

magnitude and that especially the  tf - values between both cases are nearly identical.  This

assumption is important for the following derivations.

Realistic values for the tc -  and tf - values can be obtained from Table 1.  The given critical

gaps  tc  and follow-up times  tf  are of realistic magnitude compared with the measurement

results worked out by the NCHRP-project 3-46 (5, 6).  Here the critical gap and the follow-up

time for the case without central reserve (k = 0) are larger then for the two-stage priority case,

which seems to be more realistic.

k = 0

i.e. no central reserve

k ≥ 1

i.e. a central reserve

of variable (with k) width

case c)

part I

case a)

part II

case b)

tc 7.0 s 6.0 s 6.0 s

tf 3.8 s 3.8 s 3.8 s

Table 1: Typical  tc -  and  tf - Values for Two-Stage Priority Situations Within

Multilane Major Streets under US-Conditions

Based on Equation 40  with the assumption that all of the  tf - values are nearly identical,

0

II

0

I

0

III

c

c

c

c

c

c
⋅=+ (41)

where c0  = 1/tf  is the maximal capacity for the case of no cross traffic in the major-street

streams in vehicle per second.

This relation makes it possible to standardize all of the capacity terms by  c0 .  If  c0  is used in

units of vehicle per second, the other capacity terms must use this unit.  Of course, the unit

vehicle per hour could be used for all of the capacity terms.  Then it is useful to standardize  cT

in Equations 38 and 39:
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0

ˆ
c

c
c T

T = (veh/s) (42)

Then Tĉ  (which has to be obtained from Equations 38 and 39) can be expressed as a function

of cI / c0 =c(q1+q2) / c0 and (cII - q1 ) / c0 = (c(q5) - q1 ) / c0 .  Thus it is possible to indicate the

results of these derivations using graphs (Figure 2).
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Figure 2: Total capacity 0ˆ ccc TT =  as a result of Equation 42 (in combination

with Equation 38) in dependence of cI / c0 = c(q1 + q2) / c0  and

 (cII - q1 ) / c0 = [c(q5) - q1 ] / c0   for  k = 1   .

Use of graphs of this type with sufficient approximation is also justified in circumstances that

differ from the conditions of gap acceptance theory, for example,

• If capacities cI  and  cII  are calculated from theories other than gap acceptance or even if

they should be measured, or

• If within gap acceptance theory the critical gaps  tc  are different for each part of the

intersection.
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The only necessary condition for the application of these graphs is that the follow-up times tf

be of nearly identical magnitude.

SIMULATION STUDIES

To test the theory leading to Equation 38, the solution has been further investigated using

simulations.  For this purpose a simulation model was especially developed (7).  The basic

structure of the model is closely related to the ideas of KNOSIMO (8).  The important features

can be characterized as follows:

• The headways in the major-street streams are distributed according to a hyperlang

distribution (8, 9).

• The critical gaps and the follow-up times are distributed according to an Erlang distribution

with the parameters given by Grossmann (8) which are also used in KNOSIMO.

Both these assumptions together relate the model closer to reality than the theoretical

derivations mentioned earlier.  On the other hand, the following assumptions are a

simplification compared with reality.

• No delays due to limited acceleration or deceleration of the vehicles are taken into account.

• The travel time  ∆t  between the two parts of the intersection are not considered, that is,

∆t = 0. (see discussion following Equation 12).

• Each minor-street driver has a minimum delay of  tf  at the first part of the intersection if no

major-street stream vehicle is nearby.  This simulates the time which a driver needs to

realize the traffic situation on the major-street when he first approaches the intersection.

This time margin is also necessary for the driver to decide if he can enter the intersection.

Such an orientation time is not applied for vehicles entering the second part of the

intersection, where a better visibility is assumed.

• All traffic volumes are kept constant over time.
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• The program is organized so that a constant queue in front of the first stop line of

Movement 8  is always maintained.  Thus, the maximum number of vehicles that can enter

the intersection can be evaluated.

This number is the representation of the capacity for Movement 8 .  A comprehensive set of

simulation runs has been performed for different parameters q1 , q2 , and q5 .

Different attempts were made to find an easy-to-use approximate description of the results,

several of these attempts are given elsewhere (5, 7) together with a statistical assessment of

their precision.  A good compromise between easy application and highest precision seemed to

be the following solution.  Instead of  cT  a more realistic  solution  cTr  is used, which is

obtained as a good approximation to the simulation results.

c cTr T= ⋅α (veh/s) (43)

where

cTr = realistic total capacity for Movement  8 (minor-street through traffic),

cT = result from the theoretical approach obtained from Equation 38 or from

Figure 2, and

α =  adjustment factor

=
1 0

1 0 32 13 0

for k

k for k

=
− ⋅ − ⋅ >



 . exp( . )

(44)

These solutions for the total capacity  cTr  of Movement 8 approximate the simulated results

with a standard deviation  s  (between results for  cT  being simulated and those estimated from

Equation 42) according to Table 2.  Other solutions with smaller deviations but more

complicated formulas for the calculation of realistic cTr  can be obtained from work by Brilon et

al.(5).
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s

q1 = 50 q1 = 100 q1 = 200

α = 1 29 30 32

eq. 44 18 18 19

veh/h veh/h veh/h

Table 2: Standard Deviation  s  for Computed  cT - Values Compared with

Simulated Results

To conclude the steps necessary to estimate the realistic capacity of an unsignalized

intersection where the minor-street movements have to cross the major street in two stages (cf.

Equations 43, 38b, 39, and 44):

c cTr T= ⋅α

with

( )[ ]

[ ]


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



=+−⋅
+

≠⋅−+−⋅−⋅
−=

+

++
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1

1

1)1()(1
1

1

III1II

III1II1

yforcqck
k

yforcyqcyy
yc

k
k

T

α =
=

− ⋅ − ⋅ >




1 0

1 0 32 13 0

for k

k for k. exp( . )

III1II

IIII

+

+

−−
−

=
cqc

cc
y

where

cI = c(q1 + q2)

= capacity in Part I ,

cII = c(q5)

= capacity in Part II ,

cI+II = c(q1+q2+q5)
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= capacity in a cross intersection for minor-street through traffic with a

major-street traffic volume of q1+q2+q5 (all capacity terms apply for

Movement 8; they are to be calculated by any useful capacity formula, e.g.,

the Siegloch-formula, Equation 40) ,

q1 = volume of priority street left turning traffic in Part I ,

q2 = volume of major-street through traffic coming from the left in Part I , and

q5 = volume of sum of all major-street flows coming from the right in Part II.

[Of course, here the volumes of all priority movements in Part II have to be

included.  major-street right (6, except if this movement is guided along a

triangular island separated from the through traffic), major-street through

(5), major-street left (4); numbers of movements according to HCM 1994

(2), Chapter 10] .

These equations are only valid for 1II qc −  > 0.

cTr is the modified total capacity of the intersection for minor-street through traffic.  To

simplify the calculation procedure, graphs for calculating the capacity cTr were produced by

Brilon et al. (5).  These graphs enable easy applications of the theory in practice.

CONCLUSION

The two-stage priority situation as it exists at many unsignalized intersections within multilane

major streets provides larger capacities compared to intersections without central storage

areas.  Capacity estimation procedures for this situation have not been available up to now.  In

this paper, an analytical solution for this problem is provided.  In addition, simulation studies

lead to a correction of the theoretical results.  These procedures are already incorporated in the

proposed Highway Capacity Manual due 1998.
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Nevertheless, an empirical confirmation of this model approaches would be desirable.  Also the

question of the validity of the model for larger k-values should be discussed.  It is questionable

whether the theory also applies for a grid of one-way street networks.  Also if these questions

are addressed in the future, the theory presented here is recommended for use at unsignalized

intersection in practice.

Delay estimations for the two-stage priority situation can be performed using the concept of

reserve capacities (10) or the general delay formula by Kimber and Hollis (11).
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