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ABSTRACT

 This paper introduces a universal procedure for calculating the capacity at unsignalized
intersections. The procedure is based on the idea that the time scale of the major stream can be
divided into four regimes according to the relative positions between the vehicles in the major
stream: 1) that of free space (no vehicle), 2) that of single vehicle, 3) that of bunching, and 4)
that of queuing. The probability of these regimes can be calculated according to the queuing
theory. Therefore, the capacity of the minor stream that depends predominantly on the
probability of the state that no vehicle blocks the major streams (state of free space) can also be
calculated.

 The present procedure is derived mathematically using queuing theory. It generalizes all of the
known procedures for calculation capacities at unsignalised intersection. The model is calibrated
and verified by measurements at roundabouts and by intensive simulations. The results of the
present procedure are already incorporated into the 2000 German Highway Capacity Manual.

1 INTRODUCTION

 Unsignalized intersections (priority-controlled intersections) are the mostly used type of road
junctions in highway transportation systems. The capacity at these intersections is thereby one
of the most researched topics in traffic science and engineering. The capacity of a traffic facility
describes the maximum possible throughput of the facility under predefined conditions. Starting
from the capacity, further traffic parameters which represent traffic quality can be calculated.

 At unsignalized intersections, there are traffic streams which have different ranks in the priority
hierarchy. Depending on which stream is considered different queuing systems result. For
calculating the capacity of these queuing systems different procedures should be used.

 The methods for calculating the capacity can basically be divided into two groups: 1)
Calculation of the capacity of a simple queuing system with two streams: one major stream and
one minor stream and 2) Calculation of the capacity of a comprehensive queuing system with
more than two streams of different rank in the priority regulation.

 In the group "queuing systems with one major stream and one minor stream", a large variety of
calculation methods which yield the corresponding accuracy depending on the assumed traffic
conditions exists. Here, one has firstly mathematical solutions that based on the theory of
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stochastic processes and gap-acceptance. In the group "queuing systems with more than two
streams", only one pragmatic procedure exits for practice uses. This procedure was developed
in Germany and has also found broad applications in other countries.

 In this paper, we concentrate only on the group "queuing systems with one major stream and
one minor stream". The group "queuing systems with more than two streams" is discussed
elsewhere by the author (Wu, 1998).

 In this paper, most of the known procedures in the category "queuing systems with one major
stream and one minor stream" are compiled. They are divided according to their properties into
groups. The relationships between these procedures are depicted. The available procedures are
then extended and generalized to include further parameters. A new procedure which represents
a generalization of the procedures for "queuing systems with one major stream and one minor
stream" is presented

 The new development completes the procedure for the calculation of capacities at unsignalized
intersections. It is derived conclusively and it can be applied simply in practice. This procedure
has a systematic structure which allows extension to more complicated systems.

 In this paper, the following notations and symbols are used:
 ))q(t(L = notation for Laplace transform of t at q
 )x(E = notation for expected value of x

 Pr() = notation for probability
  = notation for mean value
  |  = notation for "under condition"
 C = capacity of the minor stream [veh/s]
 Cs = capacity of the minor stream in the Free-space state [veh/s]
 f(t) = distribution intensity of gaps t in the major stream [-]
 F(t) = distribution function of gaps t in the major stream [-]
 g(t) = function for the number of vehicles which can depart during t [veh/s]
 p0,S = probability for the state of Queuing-free [-]
 p0,B = probability for the state of Bunching-free | Queuing-free [-]
 p0,F = probability for the state of Vehicle-free | (Bunching-free | Queuing-free) [-]

 qf =
τ⋅−

⋅ϕ

p

p

q1

q
 = traffic intensity within the portion of free traffic [veh/s]

 qp = traffic intensity in the major stream [veh/s]
 t = length of a time headway in major stream (gap) [s]

 t0 =
2

t
t f

g −  = zero-gap [s]

 tf = move-up time [s]
 tg = critical gap [s]
 x = saturation degree of the queuing system [-]
 α = parameter of the Erlang-distribution [-]
 ϕ = portion of free traffic in the major stream [-]
 τ = minimum gap between two vehicles going in succession [s]
 τtf = minimum for tf [s]
 τtg = minimum for tg [s]
 ττ = minimum for τ [s]
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2 QUEUING SYSTEM WITH ONE MAJOR STREAM AND ONE MINOR STREAM.

 The queuing system with only one major stream and one minor stream is a so-called M/G2/1
queuing system. For this system, many mathematical approaches have been developed. These
approaches have their validity under different predefined traffic conditions:
• free and bunched traffic
• discrete and continuous departure
• fixed and distributed time headways
• consistent and inconsistent driver behavior
 For these different conditions, deferent different formulae can be obtained.

 A queuing system with two streams which cross themselves (Fig.1) is now considered. The
major stream has the right of
priority and can drive through
without stopping at the
intersections. The minor stream has
to give way to the major stream and
stop appropriately. A vehicle from
the minor stream can only depart
crossing the major stream (or
merging into the major stream),
when a large time headway (gap) is
offered between two vehicles in the
major stream. The classic procedure
for the determination of capacity is
based on the calculation of the
distribution of gaps in the major stream and on the calculation of the number of vehicles which
can depart during a gap within the major stream. Accordingly, the capacity C of the minor
stream is given by

 C q f t g t dtp= ⋅ ⋅ ⋅
∞

∫ ( ) ( )
0

(1)

 (cf. Siegloch, 1973). Here, f(t) is the probability density of gaps t in the major stream, g(t) is the
function for the number of vehicles which can depart during a gap of the length t, and qp is the
traffic intensity per unit of time in the major stream. Eq.(1) indicates the sum of vehicles
departing during all gaps in the major stream: the capacity C in vehicle per unit of time.
Depending on which function for f(t) and g(t) is used, different formulae for the determination
of capacity C can result.

2.1 Free and bunched traffic flow in the major stream

 For choice of functions of the probability density of gaps f(t) two assumptions modeling the
traffic flow in the major stream are presupposed:
• free traffic flow in the major stream

 

major stream with priority

minor stream without priority

 Fig. 1 - System with a major stream and a minor
stream
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Under free traffic flow it is assumed that a vehicle does not influence the vehicles going
behind him. Mathematically means: the arrivals of vehicles which go in succession are by
chance and absolutely independent of each other; the gaps between two vehicles can also
take the value of zero.

• bunched traffic
Under bunched traffic flow it is assumed that between two vehicles which go in succession a
minimum gap has to be held. From this assumption a different distribution of gaps, compared
to that for the free traffic flow, can be obtained.

 Clearly, these assumptions are only true under predefined conditions.

 Under the assumption that the arrivals of vehicles in the major stream are completely
coincidental (free), the gaps t between two vehicles are negative-exponentially distributesd. The
probability density of gaps t between two vehicles reads

 
tq

p
peq)t(f
⋅−⋅= (2)

 If the arrivals of vehicles in the major stream are not completely stochastic but depend on the
vehicle in the front, then the traffic in the major stream is no more completely free. A vehicle
must keep a minimum gap τ to the vehicle in the front and drive in succession. One speaks in
this case of bunched traffic. The distribution of gaps in the bunched major stream can be
described with the shifted-negative-exponentially distribution. The probability density of the
shifted-negative-exponentially distributed gaps t reads:

 f t q ef
q tf( ) ( )= ⋅ − ⋅ −τ (3)

 with  streammajorthewithintrafficfreeofortionp=ϕ

 trafficfreeofportionthewithindensitytraffic
q1

q
q

p

p
f =

τ⋅−

⋅ϕ
=

 τ  = minimum gap between two vehicles going in succession

 The relationship between q and qf is given by

 ( ) ( ) ( )1
1

1− ⋅ ⋅ + ⋅ + ⋅ = + ⋅ =ϕ τ ϕ τ τ
ϕ

q
q

q
q

qp
f

p
f

p (4)

 This equation assumes
that the mean length of
gap t has within the
bunched portion of the
traffic the value τ  and
within the free portion of
the traffic the value
τ +1/ q f . The portion of
free traffic ϕ within the
major stream describes
the portion of the
vehicles which go in
succession with a gap t > 
τ. ϕ depends in general

 

distribution density f(t)

length of the gap tτ

distribution density without the minimum gap τ

distribution density with the minimum gap τ

q

qf

1-ϕ

 Fig.2 - Probability density of gaps in the major stream f(t)
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on the traffic intensity qp in the major stream. In the case of free input, i.e., the up-stream traffic
in the major stream is considered as absolutely coincidental, bunched traffic is only caused by
compliance with the minimum gap τ. Under the assumption that keeping of a minimum gap τ
affects the vehicles within the major stream like a M/D/1 queuing system, Tanner (1962)
specified the portion of the free traffic by

 ϕ τ= − ⋅1 q p  (5)

 Jacobs (1980) proposed the estimate of the portion of the free traffic as following

 ϕ = − ⋅e k q p (6)

 In this case, k is a parameter with a value between 4 and 9.

 Fig.2 shows a schematic representation of both kinds of the probability density f(t).

2.2 Departure from the
minor stream through
(or into) the major
stream

 During choice of functions for
the number of departures from
the minor stream crossing (or
merging into) the major stream
two usual models with two
different assumptions are
available for the function g(t):
• discrete departure from the

minor stream
• continuous departure from

the minor stream

 For the discrete departure, it is
assumed that within the major
stream the gap t with the length
tg ≤ t ≤ tg + tf enables the
departure of one vehicle, the
gap t with the length tg + tf ≤ t
≤ tg + 2⋅tf enables the departure
of two vehicles, the gap t with
the length tg + 2⋅tf ≤ t ≤ tg + 3⋅tf

enables the departure of three
vehicles and so on (cf. Fig.3
and Fig.4). The discrete
departure function g(t) reads
(cf. Harders, 1976)

 

major stream with priority

minor stream without priority

tf

tf

tf

tg

t=f(qp)

tf/2
tf tf

t0

     Fig. 3 - Departure mechanism with a free major stream

 

major stream with priority

minor stream without priority

tf

tf

tf

tg

t=f(qf)

tf tf tf

τ
ττ τ

tf/2t0

    Fig. 4 - Departure mechanism with a bunched major stream



 Universal Procedure for Capacity Determination at Unsignalized Intersections  6

 








<

≥






 −
=

g

g
f

g

ttfor0

ttfor
t

tt
int

)t(g (7)

 with t g = critical gap

 t f = move-up time

 The corresponding density function for the departure reads
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
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 For the continuous departure the function g(t) reads (cf. Siegloch, 1973)

 






<

≥
−

=

0

0
f

0

ttfor0

ttfor
t

tt
)t(g (9)

 and

 






<

≥
=

0

0
f

ttfor0

ttfor
t

1
)t('g (10)

 with t t
t

g
f

0 2
= −

 Fig.5 shows the shapes of the two functions g(t) mentioned above.

 In the following, separate formulae for the determination of capacity with discrete and
continuous departures from the
minor stream are derived. Under
specific conditions, formulae for
discrete departure and
continuous departure (cf.
section 2.5) can be converted
pair-wise into each other.

2.3 Capacity of systems with
one major stream and
one minor stream

 Setting eqs.(2), (7), and (9) into
eq.(1) or setting eqs.(3), (7),
and (9) into eq.(1) one obtains

different basic formulae for the determination of capacity of systems with one major stream and
one minor stream:
• for discrete departure under free traffic (formula of Harders, 1976)

 

number of possible departures g(t)

length of the gap tt0

tf tftg

continuous departure

discrete departure

   Fig. 5 – Shape of the function for the departure g(t)
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fp

gp

tq

tq

pfree
e1

e
qC ⋅−

⋅−

−
⋅= (11)

• for continuous departure under free traffic (formula of Siegloch, 1973)

 0p tq

f
free e

t

1
C ⋅−⋅= (12)

• for discrete departure under bunched traffic (formula of Plank et al., 1984)

 

ff

gf

ff

gf

tq

)t(q
p

tq

)t(q
f

pbunch

e1

eq

e1

eq
)q1(C

⋅−

τ−⋅−

⋅−

τ−⋅−

−

⋅
⋅ϕ=

−
⋅

⋅τ⋅−=
(13)

• and for continuous departure under bunched traffic (formula of Jacobs, 1980)

 )t(q

f

p
bunch

0fe
t

q1
C τ−⋅−⋅

τ⋅−
= (14)

 With ϕ τ= − ⋅1 q p   (cf. Tanner, 1962)

  q=
q1

q)q1(
=

q1

q
q p

p

pp

p

p
f τ⋅−

⋅τ⋅−

τ⋅−

⋅ϕ
=

 and correspondingly

 
fp

gp

tq

)t(q
p

pbunch
e1

eq
)q1(C ⋅−

τ−⋅−

−

⋅
⋅τ⋅−= (15)

 This it is exactly the capacity formula of Tanner ( 1962).

2.4 Consideration of the distributions of tg, tf, and ττ

 In section 2.3, formulae were derived for fixed parameters t g , t f , and τ . In this section, new
formulae which consider the distribution of t g , t f , τ  are presented.

 As a assumption, the probability density f(tg), f(tf), and f( τ ) for t g , t f , and τ can in general be
described by an Erlang-function. An Erlang distribution has the density function:

 erl(t t ex
t

x
t

x

t x x)
( )!

( )=
−

⋅ ⋅ ⋅− − ⋅λ
α

λ α λ

1
1 (16)

 with λ
α

=
t

x

x

t

 xx tofvaluemeant =
 

xtα =parameter of the Erlang-distribution for tx

 For the derivation of the formulae for the determination of capacity with discrete departure
under bunched traffic regarding the distribution of t g , t f , and τ  the result from Heidemann and
Wegmann (1997) is used as a initial approach.
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 One distinguishes another two cases according to the departure behavior during the derivation
by choice of a gap: a) inconsistent and b) consistent. In the case of the consistent departure
behavior, one assumes that a driver by choice of a gap makes his decision every time,
independently of the length of the gaps that he refused before. That is, a driver can accept a gap
that is shorter than some gaps he refused before. On the other hand, in the case of the consistent
departure behavior one assumes that a driver may accept only a gap that is larger than all gaps
he refused before.

 In the inconsistent case it is valid according to Heidemann and Wegmann (1997) for
• bunched traffic with a  minimum gap τ and a portion of bunched traffic 1- ϕ,
• discrete departure and
• exponentially distributed gaps t within the portion of free traffic ϕ:

 

))q(t(1

))q(())q(t(

Bq1

q

))q(t(1

))q('t(

Bq1

q
C

ff

ffg

f

f

ff

fg

f

f

L

LL
L

L

−

−τ⋅
⋅

⋅+
=

−
⋅

⋅+
=

(17)

 with B =
τ
ϕ

(18)

 t tg g'= − τ (19)

 and ))q('t( fgL = Laplace transform of tg' at qf

 = ))q(())q(t( ffg −τ⋅ LL

 ))q(t( fgL = Laplace transform of tg at qf

 ))q(t( ffL = Laplace transform of tf at qf

 ))q(( f−τL = Laplace transform of τ at -qf

 The eq. (17) can be rewritten as

 

))q(t(1

))q(())q(t(
q)q1(

))q(t(1

))q('t(
q)q1(C

ff

ffg
fp

ff

fg
fp

L

LL
L

L

−

−τ⋅
⋅⋅τ⋅−=

−
⋅⋅τ⋅−=

(20)

 Because the Laplace transform L(t(q)) has always a larger value with distributed t(q) than with
fixed t(q), it is apparent according to eq.(17) that in the inconsistent case either the distribution
of critical gaps tg or the distribution of move-up times tf or the distribution of minimum gaps τ
increase the capacity C.

 Heidemann and Wegmann (1997) recommended in the consistent case for the conditions above

 
( )

( ) ))q(())q(t())q(t(1

1
q)q1(

))q('t())q(t(1

1

Bq1

q
C

ffgff
fp

fgfff

f

τ⋅−⋅−
⋅⋅τ⋅−=

−⋅−
⋅

⋅+
=

LLL

LL
(21)

 Therefore, the capacity C is reduced by distributed critical gaps tg and minimum gaps τ .
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 According to eq.(16), the Laplace transform of the Erlang-distributed gaps t at q with the
probability density f(tx) is given by

 

xt

x

1
tq

))q(t(
t

x
x

α−











+

α
⋅

=L (22)

 Substituting eq.(22) with the corresponding parameters tg , α tg
, t f , α t f

, τ , and α τ  into the
eq.(20), one obtains
• for the inconsistent case
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


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
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





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
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+

α

⋅
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τ

(23)

• and for the consistent case
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(24)

 One obtains analogously for continuous departure with inconsistent behavior
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⋅
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 and with consistent behavior
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 with t t0 0'= − τ

 Here, the distribution of the move-up times tf has no influence on the capacity. One obtains
subsequently for
• continuous departure from the minor stream,
• Erlang-distributed gaps t within the major stream,
• Erlang-distributed zero-gaps t0,
• arbitrarily distributed move-up times tf, and
• Erlang-distributed minimum gaps τ in the major stream
 in the inconsistent case
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 and in the consistent case
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 In the real world the departure behavior cannot be found exactly. It is in general assumed that
most drivers behave
rather inconsistently. The
effect of the distribution
of critical gaps and
move-up times mutually
neutralize themselves. If
the drivers behave with
50% consistently and
50% inconsistently, the
effect is almost missing
(cf. Wu, 1997a).
Therefore, one can
neglect the deference
between the consistent
and inconsistent behavior
for practical uses.

2.5 Relationship between the discrete and the continuous departure

 Using a uniform distribution for the critical gaps tg over the range { t t t tg f g f− +/ /2, 2}, the
capacity formula for the continuous departure can be transformed into the capacity formula for
the discrete departure. That is, the function of probability density for the critical gaps tg
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 with tg = mean value of the critical gap tg

 is assumed (cf.Fig.6).

 Integrating the eq.(8) piecewise over the eq.(29), one receives

 

f(tg)

length of the critical gaps tg

t0 tf/2

t g

tf/2

tf

1/tf

2

 Fig. 6 - Distribution of the critical gaps tg for the continuous
departure
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 Which is exactly the eq.(9).

 Using in the eq.(11) the distributes critical gaps tg according to the eq.(29), one obtains then
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 Which is exactly the eq.(12).

 Also the eq.(17) can be transformed into the eq. (25). Rewriting eq.(17) into
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 one obtains
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 Which is exactly the capacity formula for continuous departure (eq.(25)) under the same
condition.

 The eq.(32) leads to the following distribution function for the gaps ∆t 0
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 That is, the eq.(17) turns into the eq.(25) (note, this is only valid for exponentially distributed
gaps within the portion of free traffic), if between the distribution of critical gaps tg and the
distribution of zero-gaps t0 the relationships

 t t tg = +0 0∆

 and

 ( ) ( ) ( )00g tftftf ∆⊗= (35)

 or

 ( ) ( ) ( ))q(t)q(t)q(t f0f0fg ∆⋅= LLL (36)

 state. The probability density f(∆t0) is described by eq.(33). It is in turn a function of the
distribution of the move-up times tf. The mean value of ∆t0 reads according to eq.(32)
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 Using the rule of L'hospital, one obtains
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 The eq.(29) is a special case of eq.(33). Setting in the eq.(33) tf = const., i.e., σ tf
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 Which is exactly the eq.(29).
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3 DETERMINATION OF CAPACITY ACCORDING TO STATES IN THE MAJOR

STREAM

 In order to be able to extend the capacity formulae to systems with more than one major
streams, in this section the capacity in systems with a major stream and a minor stream is
considered in another view of point. The resulting formulae correspond to the formulae in the
last section. From this point of view, a transfer of the results from systems with one major
stream onto systems with more than one major streams is entirely possible.

3.1 Systems with continuous departure

 First, one concentrates only on a system with continuous departure with arbitrarily distributed
tg, tf (therefor also arbitrarily distributed t0) and τ.

 On a time axis one can distinguish periods with: queuing, bunching single vehicle and no
vehicle. One can  simply sum all small periods with queuing into one large queuing period
without the total length of queuing on the time axis is affected. Similarly, one can also sum the
small periods of bunching and single vehicle into large periods. Accordingly, the traffic flow in
the major streams can be divided into different states using 3 stages of work steps (cf. Fig. 7):

 Stage I:
In this stage, the traffic flow in the major stream  is divided into 2 states which excludes each
other:
• Queuing and Queuing-free

In the state of Queuing, the vehicles in the major stream stay at the stop line or are within
discharging operation. Departure from the minor stream is not possible in the state of
Queuing (including discharge queuing). In the state of Queuing-free all vehicles in the
major stream are in motion. Departure from the minor stream is in the state of Queuing-
free possible but dependent on the traffic intensity and bunching situation within the major
stream. Denoting the probability for the state of Queuing by

pS = Pr(Queuing),
the probability for the state of Queuing-free is then

p0,S==Pr(Queuing-free) = 1 - pS.

 Stage II:
In the stage II, the traffic flow in the Queuing-free state is in turn divided into 2 sub-states
which excludes each other:
• Bunching and Bunching-free under the condition of Queuing-free

In the state of Bunching, the vehicles in the major stream is in motion with the minimum
gaps τ. Departure from the minor stream is not possible in the state of Bunching. In the
state of Bunching-free the gaps between the vehicles are large than τ and distributed by
chance. Departure from the minor stream is in the state of Bunching-free possible but
dependent on the traffic intensity within the major stream in this state. Denoting the
probability for the state of Bunching under the condition of Queuing-free by

pB = Pr(Bunching | Queuing-free),
the probability for the state of Bunching-free the condition of Queuing-free is then

p0,B = Pr(Bunching-free | Queuing-free) = 1 - pB.
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 Fig. 7 -
States within the
major stream.

 For further
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the probabilities
of the single
states, the
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and the regime
of Free-space
are pulled
together.
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 Fig. 8
States in the
major stream
and their
probabilities

 

 Stage III:
In the stage III, the traffic flow in the Bunching-free state under the condition of Queuing-
free is divided again into 2 sub-sub-states which excludes each other:
• Single-vehicle and Vehicle-free (Free-space) under the condition of

(Bunching-free | Queuing-free)
In the state of Single-vehicle, vehicles in the major stream are moving independently from
each other. In the front of a vehicle, a time period of the length t0 is closed for the minor
stream. The total closing time by the vehicles in the major stream is the sum of the set
{t0}. Departure from the minor stream is not possible for the state of Single-vehicle. In the
state of Free-space there is no vehicle in the major stream. Departure from the minor
stream in the state of Free-space is carried out with the saturation capacity Cs=1/tf.
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Denoting the probability for the state of Single-vehicle under the condition of (Bunching-
free | Queuing-free) by

pF = Pr[Single-vehicle | (Bunching-free | Queuing-free)],
the probability for the state of Vehicle-free (Free-space) under the condition of
(Bunching-free | Queuing-free) is then

p0,F = Pr[Vehicle-free | (Bunching-free | Queuing-free)] = 1 - pF.

 Thus, the major stream can be divided into four regimes 1) that of state of Free-space (Vehicle-
free), 2) that of state of Single-vehicle, 3) that of state of Bunching, and 4) that of state of
Queuing. According to the definition of the conditioned probabilities, the probabilities p0,S, p0,B

and p0,F are completely independent of each other (cf. Figs. 7 and 8). They are to be determined
according to the queuing theory.

 Accordingly, the formula for the determination of capacity of the minor stream reads

 C = (saturation capacity | no hindrance)
 × Pr(no hindrance by Queuing)
 × Pr(no hindrance by Bunching | no hindrance by Queuing)
 × Pr[no hindrance by Single -vehicle | (no hindrance by Bunching | no hindrance by Queuing)]
 = Pr[Vehicle-free | (Bunching-free | Queuing-free)]
 = F,0B,0S,0s pppC ⋅⋅⋅ (38)

 with Cs = saturation capacity | no hindrance = capacity in the Free-space state

3.1.1 Probability of the Queuing-free state, p0,S. The probability for the state of Queuing-free
in the major stream pS can in general (approximately according to the M/G/1 queuing system) be
estimated with the saturation degree xp. The probability for the Queuing-free state in the major
stream p0,S then reads

 p p xS S p0 1 1, = − = − (39)

3.1.2 Probability of the Bunching-free state under the condition of Queuing-free, p0,B. One can
assume that bunching formation in the traffic in motion within the major stream is independent
of the queuing saturation. Accordingly, it is true

 Pr(Bunching-free | Queuing-free) = Pr(Bunching-free)

 The probability of Bunching pB in the major stream is simple the portion of the sum of the
minimum gap τ for all vehicles. Thus

 τ⋅=τ= ∑
=

p

q

1i
iB qp

p

 The probability for Bunching-free state within the major stream p0,B reads then

 )q1(p pB,0 τ⋅−= (40)

3.1.3 Probability of the Vehicle-free (Free-space) state under the condition of (Bunching-free |
Queuing-free), p0,F. The probability for the state of Free-space under the condition of
(Bunching-free | Queuing-free), p0,F (the probability that no hindrance by single vehicles occurs),
is only dependent on the traffic intensity qf. It is identical to the probability that the gap in the
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major stream t is larger than zero-gap t0 under the condition that the gap t is larger than the
minimum gap τ (cf., Fig.4). That is:
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(41)

3.1.4 Capacity in the Vehicle-free (Free-space) state Cs. The capacity for the minor stream is
in the Vehicle-free state the reciprocal of the mean service time of the queuing system. The
mean service time in the vehicle free state is equal to the mean move-up time tf. That is:
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=
1

 (42)

3.1.5 Capacity C. The general formula for the determination of capacity now reads
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 With shifted-exponentially distributed gaps t in the major stream it is valid for systems with
continuous departure and fixed tg, tf (and consequently t0 is also fixed) and τ
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 The resulted formula for the determination of capacity reads
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3.1.6 Generalization. In general it is true

 C C p p ps S B F= ⋅ ⋅ ⋅0 0 0, , , (47)

 For systems with continuous departure, one has

 C
ts

f

=
1

(48)

 p xS p0 1, = − (49)

 )q1(p pB,0 τ⋅−= (50)

 and
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 That is:
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 with F(t) = Distribution function of the gaps t within major stream

 For instance, for the shifted-hyper-Erlang-distributed gaps t within the major stream with fixed
tf, t0 and τ, the capacity reads
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 (53)

 with A = Portion of the negative-exponentially distributed gaps
 qf,1 = Traffic intensity in the portion of traffic with negative-exponentially

distributed gaps
 qf,2 = Traffic intensity in the portion of traffic with Erlang-distributed gaps

 Here, the relationship
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 is true.

 If the gaps t in Bunching-free state are exponentially distributed, then the following is true

 ( ) ( ))q()q(tp ff0F,0 −τ⋅= LL (54)

 for inconsistent departure behavior and
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 for consistent departure behavior.
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3.2 System with discrete departure

 Analogously for systems with discrete departure (cf. eq.(52))
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(56)

 is valid.

 Normally, the capacity in Free-space state Cs for systems with discrete departure cannot be
expressed explicitly. With the assumption that the gaps t in the Bunching-free state are
exponentially distributed one receives
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 for inconsistent departure behavior and
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 for consistent departure behavior.

 For fixed tg, tf and τ it is valid for discrete departure
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 The resulted formula for the determination of capacity reads
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4 MAJOR STREAMS CONTAINING MORE THAN ONE TRAFFIC LANES

 According to the derivation in the section 3, the traffic flow within the major stream can be
divided into four states for which
the probabilities can be calculated
separately. From these
probabilities, the portion of the
states in which no hindrance in the
major stream occurs to the minor
stream can be obtained. The
capacity for the minor stream can
be calculated from the
multiplication of the saturation
capacity Cs and the portion of the
state without hindrance.

 According to the same principle, the capacity for systems with a major stream containing more
than one traffic lanes  can also be determined.

 The traffic states in major traffic lanes with parallel configuration are completely independent of
each other. Therefore, it is valid for systems with n major traffic lanes (cf. Fig.9):
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 and accordingly,
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 with
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 for continuous departure and
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 for discrete departure.

 In the equations, p0,X,i is the probability that the state X in stream i does not occur.

 For fixed tf, eq.(68) turns to

 

major streams with priority

minor stream without priority

 Fig. 9 - System with two major streams with parallel
configuration
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5 APPLICATION OF THE PROCEDURE

5.1 Example for of multi-lane major roads

 The traffic lanes on a major road can be considered as a parallel configuration. According to
eqs. (66) to (69) one obtains C for a major road containing n traffic lanes with fixed tg, tf and τ
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 for discrete continuous departure.

5.2 Example for roundabouts

 A approach with ne traffic lanes to a roundabout with nc circulation lanes is considered.

 Setting qp,i=qc/nc, tg,i=tg, τi=τ, and i,pii q1 ⋅τ−=ϕ for all major streams, one obtains for the
approach at roundabouts the universal capacity formula (cf. Wu, 1997b)
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 with C = total capacity of the approach
qc = total traffic intensity in the circulation lanes
t0 = tg - tf/2

 The values tg=4.12s, tf=2.88s,and τ=2.10s are obtained at roundabouts in Germany
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6 SUMMARIES

 A new procedure for the determination of capacity is presented here. This new procedure can be
applied for the conditions
• arbitrary many major streams with different critical gaps tg and minimum gaps τ
• arbitrary distribution of the gaps t in the major streams
• arbitrary distribution of critical gaps tg, move-up times tf and minimum gaps τ if the

corresponding Laplace transform of the distribution are given
• arbitrary queuing and bunching saturations in the major streams

 The new procedure provides a generalized form of all the usual formulae for calculating the
capacity at unsignalized intersections. The usual formula are reproduced by the new procedure
if the corresponding parameters are set. For practical uses, the procedure should be calibrated
and validated with measurements or simulations. The initial calibrations and validation for
roundabouts (Wu, 1997b) already shows potential of the new procedure.
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