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ABSTRACT

This paper introduces a universal procedure for calculating the capacity at unsignalized
intersections. The procedure is based on the idea that the time scale of the major stream can be
divided into four regimes according to the relative positions between the vehicles in the major
stream: 1) that of free space (no vehicle), 2) that of single vehicle, 3) that of bunching, and 4)
that of queuing. The probability of these regimes can be calculated according to the queuing
theory. Therefore, the capacity of the minor stream that depends predominantly on the
probability of the state that no vehicle blocks the major streams (state of free space) can aso be
calculated.

The present procedure is derived mathematically using queuing theory. It generalizes al of the
known procedures for calculation capacities at unsignalised intersection. The model is calibrated
and verified by measurements at roundabouts and by intensive smulations. The results of the
present procedure are aready incorporated into the 2000 German Highway Capacity Manual.

1 INTRODUCTION

Unsignalized intersections (priority-controlled intersections) are the mostly used type of road
junctions in highway transportation systems. The capacity at these intersections is thereby one
of the most researched topics in traffic science and engineering. The capacity of a traffic facility
describes the maximum possible throughput of the facility under predefined conditions. Starting
from the capacity, further traffic parameters which represent traffic quality can be calculated.

At unsignalized intersections, there are traffic streams which have different ranks in the priority
hierarchy. Depending on which stream is considered different queuing systems result. For
calculating the capacity of these queuing systems different procedures should be used.

The methods for calculating the capacity can basically be divided into two groups. 1)
Calculation of the capacity of a ssimple queuing system with two streams. one major stream and
one minor stream and 2) Calculation of the capacity of a comprehensive queuing system with
more than two streams of different rank in the priority regulation.

In the group "queuing systems with one magjor stream and one minor stream”, a large variety of
calculation methods which yield the corresponding accuracy depending on the assumed traffic
conditions exists. Here, one has firstly mathematical solutions that based on the theory of



stochastic processes and gap-acceptance. In the group "queuing systems with more than two
streams’, only one pragmatic procedure exits for practice uses. This procedure was developed
in Germany and has also found broad applications in other countries.

In this paper, we concentrate only on the group "queuing systems with one major stream and
one minor stream™”. The group "queuing systems with more than two streams" is discussed
elsewhere by the author (Wu, 1998).

In this paper, most of the known procedures in the category "queuing systems with one major
stream and one minor stream” are compiled. They are divided according to their properties into
groups. The relationships between these procedures are depicted. The available procedures are
then extended and generalized to include further parameters. A new procedure which represents
a generalization of the procedures for "queuing systems with one major stream and one minor
stream” is presented

The new development completes the procedure for the calculation of capacities at unsignalized
intersections. It is derived conclusively and it can be applied smply in practice. This procedure
has a systematic structure which allows extension to more complicated systems.

In this paper, the following notations and symbols are used:
L(t(g)) = notation for Laplace transform of t at q

E(x) = notation for expected value of x

Pr() = notation for probability

Ya = notation for mean value

| = notation for "under condition”
C = capacity of the minor stream [veh/s]
Cs = capacity of the minor stream in the Free-space state [veh/s]
f(t) = distribution intensity of gapst in the major stream [-]
F(t) = distribution function of gapst in the mgor stream [-]
o(t) = function for the number of vehicles which can depart during t [veh/s|
Po.s = probability for the state of Queuing-free [-]
Pos = probability for the state of Bunching-free | Queuing-free [-]
Por = probability for the state of Vehicle-free | (Bunching-free | Queuing-free) [-]
O = % = traffic intensity within the portion of free traffic [veh/s]
p

(o = traffic intengity in the mgjor stream [veh/s]
t = length of atime headway in major stream (gap) []
to = t,- % = zero-gap []
s = move-up time []
tq = critica gap []
X = saturation degree of the queuing system [-]
a = parameter of the Erlang-distribution [-]
] = portion of freetraffic in the magjor stream [-]
t = minimum gap between two vehicles going in succession []
t = minimum for t []
ty = minimum for ty [<]
t = minimum for t []
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2 QUEUING SYSTEM WITH ONE MAJOR STREAM AND ONE MINOR STREAM.

The queuing system with only one major stream and one minor stream is a so-called M/G2/1
gueuing system. For this system, many mathematical approaches have been developed. These
approaches have their validity under different predefined traffic conditions:

free and bunched traffic

discrete and continuous departure

fixed and distributed time headways

consistent and inconsistent driver behavior
For these different conditions, deferent different formulae can be obtained.

A queuing system with two streams which cross themselves (Fig.1) is now considered. The
major stream has the right of
priority and can drive through
without stopping a the
intersections. The minor stream has
to give way to the major stream and
stop appropriately. A vehicle from | major stream with priority
the minor stream can only depart
crossing the maor stream (or
merging into the major stream),
when a large time headway (gap) is

Y

offered between two vehicles in the minor stream without priority
major stream. The classic procedure  Fig. 1 - System with amajor stream and a minor
for the determination of capacity is stream

based on the calculation of the

distribution of gaps in the major stream and on the calculation of the number of vehicles which
can depart during a gap within the mgor stream. Accordingly, the capacity C of the minor
stream is given by

C=q, X (t)>g(t)>dt 1)

(cf. Siegloch, 1973). Here, f(t) is the probability density of gapst in the major stream, g(t) is the
function for the number of vehicles which can depart during a gap of the length t, and ¢, is the
traffic intensity per unit of time in the mgor stream. Eq.(1) indicates the sum of vehicles
departing during all gaps in the mgor stream: the capacity C in vehicle per unit of time.
Depending on which function for f(t) and g(t) is used, different formulae for the determination
of capacity C can result.

2.1 Freeand bunched traffic flow in the major stream

For choice of functions of the probability density of gaps f(t) two assumptions modeling the
traffic flow in the major stream are presupposed:
free traffic flow in the mgjor stream



Under free traffic flow it is assumed that a vehicle does not influence the vehicles going
behind him. Mathematically means. the arrivals of vehicles which go in succession are by
chance and absolutely independent of each other; the gaps between two vehicles can aso
take the value of zero.
bunched traffic
Under bunched traffic flow it is assumed that between two vehicles which go in succession a
minimum gap has to be held. From this assumption a different distribution of gaps, compared
to that for the free traffic flow, can be obtained.

Clearly, these assumptions are only true under predefined conditions.

Under the assumption that the arrivals of vehicles in the mgor stream are completely
coincidental (free), the gaps t between two vehicles are negative-exponentialy distributesd. The
probability density of gapst between two vehicles reads

f(t) =g, ¢ ™" 2

If the arrivals of vehicles in the major stream are not completely stochastic but depend on the
vehicle in the front, then the traffic in the mgor stream is no more completely free. A vehicle
must keep a minimum gap t to the vehicle in the front and drive in succession. One speaks in
this case of bunched traffic. The distribution of gaps in the bunched mgor stream can be
described with the shifted-negative-exponentialy distribution. The probability density of the
shifted-negative-exponentially distributed gapst reads:

f(t)=q, e " 3
with j =portionof freetraffic within themajor stream
j 9,

q; = =traffic density within theportionof freetraffic

1- g, %
t = minimum gap between two vehicles going in succession

The relationship between g and ¢ is given by

. . 1 ]
(1-j)xxq,+] >(t+q—)>qp:(t+q—)>qp:1 (4)
f f
This equation assumes
distribution density f(t) that the hmean _Ierr:gth ﬁf
gap t has within the
. A bunched portion of the
Y 1o distribution density with the minimum gap t traffic the value t and
a / within the free portion of
9 the traffic the value

distribution density without the minimum gap t _
t +1/q, . The portion of

free traffic j within the
major stream describes

- the portion of the

&> length of the gapt vehicles which go in
succession withagap t >

Fig.2 - Probability density of gapsin the major stream f(t) t. j depends in genera
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on the traffic intensity g, in the major stream. In the case of free input, i.e., the up-stream traffic
in the magjor stream is considered as absolutely coincidental, bunched traffic is only caused by
compliance with the minimum gap t. Under the assumption that keeping of a minimum gap t
affects the vehicles within the major stream like a M/D/1 queuing system, Tanner (1962)
specified the portion of the free traffic by

j =1-q,% ©)
Jacobs (1980) proposed the estimate of the portion of the free traffic as following
j=e’® (6)

In this case, k is a parameter with a value between 4 and 9.

Fig.2 shows a schematic representation of both kinds of the probability density f(t).

2.2 Departurefrom the
t=F(qpp) | minor stream through

o 0|42 (or into) the major
tg I b stream

-t

> o l ° e o | During choice of functions for
the number of departures from
. o t ) :

meajor stream with priority t ° the minor stream crossing (or
° merging into) the major stream

N two usua models with two

4 different  assumptions are

minor stream without priority available for the function g(t):

discrete departure from the

Fig. 3 - Departure mechanism with a free mgjor stream minor stream

continuous departure from

the minor stream

R S (4)) .
o | |42 L For the discrete departure, it is
tg Lttt tt assumed that within the major

L T | sreamthe gap t with the length

—»-] O [T1 [LI1| tEtEty+t; enables the

departure of one vehicle, the

;T’ Y gap t with the length t; + t; £ t

- £ ty + 2% enables the departure

of two vehicles, the gap t with

+ the length tg+ 2% £t £ ty + 3%

minor stream without priority enables the departure of three

vehicles and so on (cf. Fig.3

Fig. 4 - Departure mechanism with abunched major stream  and  Fig4). The discrete

departure function g(t) reads

(cf. Harders, 1976)

A

major stream with priority




'}'intaé—gg fort3 t
av={"§ 1 § : (7)
1 0 fort<t,
with  t = critica gap
t. = move-up time

The corresponding density function for the departure reads

i -1, 0
11 fort3tgandmodaé 12-0
g(t) = €1, 5 (8
10 fort<t,
For the continuous departure the function g(t) reads (cf. Siegloch, 1973)
1t-t,
| fort3 t
g =i t, ° ©)
1 O fort<t,
and
i1
, 1— forts t
gMm=it, ’ (10)

|
|
.I.
10 fort<t,
. _ t;

with  t, =t - >
Fig.5 shows the shapes of the two functions g(t) mentioned above.
In the following, separate formulae for the determination of capacity with discrete and
continuous departures from the

minor stream are derived. Under
specific conditions, formulae for

number of possible departures g(t)

A discrete departure and
. continuous  departure  (cf.
discrete departure .

> = section 2.5) can be converted
\ ;\ pair-wise into each other.

continuous departure

2.3 Capacity of systemswith
one major stream and

| .
to length of the gap t one minor stream
tq t t;

- el o

Setting egs.(2), (7), and (9) into
Fig. 5 — Shape of the function for the departure g(t) eq.(1) or setting egs.(3), (7),
and (9) into eq.(1) one obtains
different basic formulae for the determination of capacity of systems with one major stream and
one minor stream:
for discrete departure under free traffic (formula of Harders, 1976)
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(11)

Cro = —2e " (12)

for discrete departure under bunched traffic (formula of Plank et al., 1984)

'Qf*tg't)

Cbunch :(1_ qp >¢)xqf1>e—

- gt
_lef

q @ gs Xtg-t) (13)
— p

=) 1- e Qs A¢
and for continuous departure under bunched traffic (formula of Jacobs, 1980)

_1-q,%

bunch —
tf

C Q@ gs Xto-t) (14)

With j =1- q, % (cf. Tanner, 1962)
i g, _ (-9,

1- q,% 1- q, % P

q; =

and correspondingly

- gpXtg-t)

g, €

Cbunch :(1' qp >¢) 1- e oty (15)

Thisit is exactly the capacity formula of Tanner ( 1962).

2.4 Consderation of thedistributions of tg, t;, and t

In section 2.3, formulae were derived for fixed parameters t,, t;, and t . In this section, new
formulae which consider the distribution of t, t,, t are presented.

As a assumption, the probability density f(ty), f(t;), and f(t) for t,, t;, and t can in genera be
described by an Erlang-function. An Erlang distribution has the density function:

erl(t,) :hﬂ )Tt e (16)

t, =meanvalueof t,
a, =parameter of the Erlang-distribution for t

For the derivation of the formulae for the determination of capacity with discrete departure
under bunched traffic regarding the distribution of t, t;, and t the result from Heidemann and
Wegmann (1997) isused as ainitial approach.



One distinguishes another two cases according to the departure behavior during the derivation
by choice of a gap: @) inconsistent and b) consistent. In the case of the consistent departure
behavior, one assumes that a driver by choice of a gap makes his decision every time,
independently of the length of the gaps that he refused before. That is, a driver can accept a gap
that is shorter than some gaps he refused before. On the other hand, in the case of the consistent
departure behavior one assumes that a driver may accept only a gap that is larger than al gaps
he refused before.

In the inconsistent case it is valid according to Heidemann and Wegmann (1997) for
bunched traffic with a minimum gap t and a portion of bunched traffic 1- j ,
discrete departure and
exponentialy distributed gaps t within the portion of free traffic :

e G, Lt'@)
1+qf B 1- L(tf (qf ))

17)
_ 9 L@ ) (t(-ar))
1+qf XE 1- L(tf (qf ))
with B :jE (18)
ty =ty -t (19)
and  L(t,'(q;)) = Laplacetransform of ty at o
= L(ty(a)) xL(t(-a))
L(t,(q)) = Laplace transform of tgy at o
L(t, (q,)) = Laplace transform of t; at g
L(t(-g;)) = Laplacetransformof t at -0
The eg. (17) can be rewritten as
L(t,'(a))
C=(1- X ] x9NI
U S CS) 20
—(1- q. ) L(tg(9)) xL(t(-q;))
P 1 L(t(a)

Because the Laplace transform L(t(q)) has always a larger value with distributed t(q) than with
fixed t(q), it is apparent according to eg.(17) that in the inconsistent case either the distribution
of critical gaps tq or the distribution of move-up times t; or the distribution of minimum gaps t
increase the capacity C.

Heidemann and Wegmann (1997) recommended in the consistent case for the conditions above
C = qf % 1
140, %8 (- Lt (9))xL(t,'(- g,))

1
=(1- X)X, *
98 L @)L G a )L @)

Therefore, the capacity C is reduced by distributed critical gaps ty and minimum gapst .

(21)
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According to eq.(16), the Laplace transform of the Erlang-distributed gaps t at q with the
probability density f(t) is given by

%, | 0

L(t, () = é (22)

tX g
Substituting eq.(22) with the corresponding parameters t,, a , t;,a,, T,and a, intothe
€g.(20), one obtains

for the inconsistent case

-ay

?f >¢ @ g, X 412
ty & a, 2
Couen = (L- 0, X)) X 2 (23)
? f +1_
and for the consistent case
x T ba‘g .8t
(; qf >¢g +1— ?f >¢_+1g
atg & a, 2
Conan = (- 9, X)>q; % ﬂ_ -y (24)
0
1- éf al +17
atf ﬂ
One obtains analogoudly for continuous departure with inconsistent behavior
co 1 Lit'(@)
1+q, xB t
N LEta) 29
:(1_ qp >¢—)y 0 qf _ qf
f
and with consistent behavior
_ 1 1
140,08 T xL(t,'(q )j)L (26)
=(1- g, X)x

t, xL(to(-a)) xL(t(a))
with  t'=t, -t

Here, the distribution of the move-up times t; has no influence on the capacity. One obtains
sub%quently for
continuous departure from the minor stream,
Erlang-distributed gaps t within the major stream,
Erlang-distributed zero-gaps to,
arbitrarily distributed move-up times t;, and
- Erlang-distributed minimum gapst in the mgjor stream
in the inconsistent case



At f,-t 6"
e ;:Elf >( 0 to) +1% (27)

C =(1-q, X)) *x—
bunch ( qp ) tf g ato a

and in the consistent case

At g -t 0"
Cbunch :(1_ qp >¢_) yef %é % >( : tO) +1: (28)

f a’t0 7]

In the real world the departure behavior cannot be found exactly. It isin general assumed that
most drivers  behave
fw rather inconsistently. The
effect of the distribution

A of criticd gaps and
move-up times mutually
neutralize themselves. If
the drivers behave with
50% consistently and
50% inconsistently, the
length of the critical gapst, effect is dmost missing
> (cf. Wu, 1997a).
< Ol w2 2 Therefore, one can
(# neglect the deference
between the consistent
Fig. 6 - Distribution of the critical gapst, for the continuous and inconsistent behavior

departure for practical uses.

ts

A

Ut -

2.5 Relationship between the discrete and the continuous departure

Using a uniform distribution for the critical gaps ty over therange { t, - t; /2, t, +t; / 2}, the
capacity formula for the continuous departure can be transformed into the capacity formula for
the discrete departure. That is, the function of probability density for the critical gapst,

10 fort, <t,-t /2
| 1 B B
f(t,) :-i-t_ fort,- t,/2£t 3 t +t, /2
i _
0 fort, >t, +t, /2
10 fort, <t,
:!ti fort, £, £1, +1, (29)
it
{0 fort, >t, +t,
with  t,= mean value of the critical gap t,
is assumed (cf.Fig.6).

Integrating the eq.(8) piecewise over the eq.(29), one receives
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i0 fort<t,
-
i qp ()4 (ty)>dt, +0 fort, Et<t, +t,
:
g(t) = l tot totts
: o (D) (1)t + (1) (t,)>dt, +0 fort, +t, £t<t,+2t,
T to*ts to
-
i
| .
10 fort<t,
|
=it-1,
. forts t,
(Y

Which is exactly the eq.(9).
Using in the eq.(11) the distributes critical gaps ty according to the eq.(29), one obtains then
¥ - Optg
C= oy, A (t,) dt,
0

- Optt
1l-e (30)

= i x Ipto
tf

Which is exactly the eq.(12).
Also the eq.(17) can be transformed into the eg. (25). Rewriting eq.(17) into

= xq—fx X X -
C= (1 0,0 i gy @)L Po(@)) <Lt a) (31)

with  t,+Dt, =t
and setting

(32)

one obtains

C - (3-8, %) % ) ><><L(

t to(a)) <L (t(- a)

Which is exactly the capacity formula for continuous departure (eg.(25)) under the same
condition.

The eq.(32) leads to the following distribution function for the gaps Dt

1- F, (o,
f(Dt,) =# (33)

or



17
F(Dto) = = x@1- F, (1) ot (34)
f o
That is, the eg.(17) turns into the eq.(25) (note, this is only vaid for exponentially distributed
gaps within the portion of free traffic), if between the distribution of critical gaps ty and the
distribution of zero-gaps t, the relationships

t, =t, +Dt,
and

f(t,)=f(to) AT (Dt,) (35)
or

L(ty(ar))= Llto(a)*L (Dto(ay) (36)

state. The probability density f(Dto) is described by eq.(33). It is in turn a function of the
distribution of the move-up times t;. The mean value of Dt, reads according to eg.(32)

D, = E(Dty) = (- 1) XL (Dty (q)) Fa -0

F- Lt @), Lt @)
¢ a’ o

-1
t;

quf =0
- Lt (@) + g, <L(t (a)
g g oo

Using the rule of L'hospital, one obtains
2 .
o =et(ti@)) ¢

oo (37)

-1
t;

i0 fort<t
F,(t)= f

7l forts t,

one obtains then

11

T— for Dt, <t
f(DtO) :.i. tf 0 f

10 for Dt, 3 t;

with  Dt,=t, /2
Which is exactly the eq.(29).
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3 DETERMINATION OF CAPACITY ACCORDING TO STATESIN THE MAJOR
STREAM

In order to be able to extend the capacity formulae to systems with more than one major
streams, in this section the capacity in systems with a major stream and a minor stream is
considered in another view of point. The resulting formulae correspond to the formulae in the
last section. From this point of view, a transfer of the results from systems with one major
stream onto systems with more than one major streamsiis entirely possible.

3.1 Systemswith continuous departure

First, one concentrates only on a system with continuous departure with arbitrarily distributed
ty, t; (therefor also arbitrarily distributed to) and t.

On a time axis one can distinguish periods with: queuing, bunching single vehicle and no
vehicle. One can simply sum all small periods with queuing into one large queuing period
without the total length of queuing on the time axis is affected. Similarly, one can also sum the
small periods of bunching and single vehicle into large periods. Accordingly, the traffic flow in
the major streams can be divided into different states using 3 stages of work steps (cf. Fig. 7):

Stage I:
In this stage, the traffic flow in the major stream is divided into 2 states which excludes each
other:
Queuing and Queuing-free
In the state of Queuing, the vehiclesin the major stream stay at the stop line or are within
discharging operation. Departure from the minor stream is not possible in the state of
Queuing (including discharge queuing). In the state of Queuing-free al vehiclesin the
major stream are in motion. Departure from the minor stream isin the state of Queuing-
free possible but dependent on the traffic intensity and bunching situation within the major
stream. Denoting the probability for the state of Queuing by
ps= Pr(Queuing),
the probability for the state of Queuing-freeisthen
Po,s==Pr(Queuing-free) = 1 - ps.

Stage II:
In the stage 11, the traffic flow in the Queuing-free state is in turn divided into 2 sub-states
which excludes each other:
Bunching and Bunching-free under the condition of Queuing-free
In the state of Bunching, the vehicles in the mgor stream is in motion with the minimum
gapst. Departure from the minor stream is not possible in the state of Bunching. In the
state of Bunching-free the gaps between the vehicles are large than t and distributed by
chance. Departure from the minor stream isin the state of Bunching-free possible but
dependent on the traffic intensity within the major stream in this state. Denoting the
probability for the state of Bunching under the condition of Queuing-free by
pe = Pr(Bunching | Queuing-free),
the probability for the state of Bunching-free the condition of Queuing-free is then
Pos = Pr(Bunching-free | Queuing-free) = 1 - pe.



Fig. 7 -
States within the
major stream.

For further
consideration of
the probabilities
of thesingle
states, the
blocking regimes
by Queuing,
Bunching,
Single-vehicle,
and the regime
of Free-space
are pulled
together.

Queuing| |Bunching| Single-veh. Free-space

Queuing Fig. 8

! \ States in the

- major stream
Bunching and their

probabilities

Single-veh.

- (1-Por)PoeXPos w1 PorPosPos »|
- (1-Pos)’Pos PogPos—— |

= 1-pgs »- Pos ——— =

Free-space

D — -

Stage I11:

In the stage I11, the traffic flow in the Bunching-free state under the condition of Queuing-

freeis divided again into 2 sub-sub-states which excludes each other:

- Single-vehicle and Vehicle-free (Free-space) under the condition of
(Bunching-free | Queuing-free)
In the state of Single-vehicle, vehiclesin the major stream are moving independently from
each other. In the front of avehicle, atime period of the length t is closed for the minor
stream. The total closing time by the vehiclesin the mgor stream is the sum of the set
{to}. Departure from the minor stream is not possible for the state of Single-vehicle. In the
state of Free-space there is no vehicle in the mgjor stream. Departure from the minor
stream in the state of Free-space is carried out with the saturation capacity C=1/t;.
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Denoting the probability for the state of Single-vehicle under the condition of (Bunching-
free | Queuing-free) by

pr = Pr[Single-vehicle | (Bunching-free | Queuing-free)],
the probability for the state of Vehicle-free (Free-space) under the condition of
(Bunching-free | Queuing-free) is then

por = Pr[Vehicle-free | (Bunching-free | Queuing-free)] = 1 - pe.

Thus, the magjor stream can be divided into four regimes 1) that of state of Free-space (Vehicle-
free), 2) that of state of Single-vehicle, 3) that of state of Bunching, and 4) that of state of
Queuing. According to the definition of the conditioned probabilities, the probabilities pos, Pos
and por are completely independent of each other (cf. Figs. 7 and 8). They are to be determined
according to the queuing theory.

Accordingly, the formulafor the determination of capacity of the minor stream reads

C = (saturation capacity | no hindrance)
" Pr(no hindrance by Queuing)
" Pr(no hindrance by Bunching | no hindrance by Queuing)
" Pr[no hindrance by Single -vehicle | (no hindrance by Bunching | no hindrance by Queuing)]
= Pr[Vehicle-free | (Bunching-free | Queuing-free)]
= G o5 Pos o (38)
with Cs = saturation capacity | no hindrance = capacity in the Free-space state

3.1.1 Probability of the Queuing-free state, pys. The probability for the state of Queuing-free
in the magjor stream ps can in general (approximately according to the M/G/1 queuing system) be
estimated with the saturation degree x,. The probability for the Queuing-free state in the major
stream po s then reads

Pos =1- Ps =1- X, (39)

3.1.2 Probability of the Bunching-free state under the condition of Queuing-free, pos. One can
assume that bunching formation in the traffic in motion within the major stream is independent
of the queuing saturation. Accordingly, it istrue

Pr(Bunching-free | Queuing-free) = Pr(Bunching-free)

The probability of Bunching pg in the major stream is simple the portion of the sum of the
minimum gap t for al vehicles. Thus

9p —
Pe=at, =q,%
i=1
The probability for Bunching-free state within the major stream pog reads then
Pos = - dp X) (40)

3.1.3 Probability of the Vehicle-free (Free-space) state under the condition of (Bunching-free |
Queuing-free), por. The probability for the state of Free-space under the condition of
(Bunching-free | Queuing-free), por (the probability that no hindrance by single vehicles occurs),
is only dependent on the traffic intensity ¢. It is identical to the probability that the gap in the




major stream t is larger than zero-gap t, under the condition that the gap t is larger than the
minimumgap t (cf., Fig.4). That is:
Poe = Prt>t,[t>1)
_Pr(t>t,) (41)
Pr(t>t)

3.1.4 Capacity in the Vehicle-free (Free-space) state C.. The capacity for the minor stream is
in the Vehicle-free state the reciprocal of the mean service time of the queuing system. The
mean service time in the vehicle free state is equal to the mean move-up timet;. That is:

1
Cs = — (42)
t;

3.1.5 Capacity C. The general formulafor the determination of capacity now reads
C=C s Pos Por
Pr(t > (43)
= C, XL X)L , D)X o)

Pr(t>t)

With shifted-exponentialy distributed gaps t in the maor stream it is valid for systems with
continuous departure and fixed tg, t; (and consequently t, is also fixed) and t

c.=1 (44)
tf
and
Pr(t > tO) - e‘ O¢ ><t0't) (45)
Pr(t>t)

The resulted formula for the determination of capacity reads

C=C s Pos Por

o Gt~ 1) (46)
=(1-x,)41-q, >er)><f—
f

3.1.6 Generaization. In general it istrue

C = C, M5 Pos Por (47)
For systems with continuous departure, one has

c. :% (48)

Pos =1- X, (49

Pos =(1- d, X) (50)

and

Universal Procedure for Capacity Determination at Unsignalized Intersections 16
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:Pr(t>to) (51)
T Pr(t>t)
. . &/ s 0 _
with  to»t, - g~ +—->—= (cf. asoHedemann and Wegmann, 1997)
2 2%,y
That is:
C=C, o5 Pos Por
1 Pr(t>t,)
=—X1- X 1- g, X)) *x—— 52
=L X0 0, )= (52)

1- F(t=t,)

EETNY
= X ) 6 0

with  F(t) = Distribution function of the gapst within magjor stream

For instance, for the shifted-hyper-Erlang-distributed gaps t within the major stream with fixed
t;, to and t, the capacity reads
1- F(t=t,)

_1 . )
c_?(l X)L G, )% e

A >e-qf,1>(t0-t) +(1_ A)>€‘- kg 2Xto- 1) xké-.l (k s 2 >(t0 - t))i

1 i il
= X (3= 0,0 0

1-0
S st (k t,-t)) 0
:i>(1_ Xp)>(1' q, ) GA >e-qf,1>{to-t) +(1_ A)>e' kogg ,%to- t) >é, ( ot I ’( 0 )) 3
t; & iz0 ! p
(53)
with A = Portion of the negative-exponentially distributed gaps
g1 = Trafficintensity in the portion of traffic with negative-exponentially
distributed gaps
. = Trafficintensity in the portion of traffic with Erlang-distributed gaps
Here, the relationship
1 1 1
— = Ax—+(1- A)x—
qf qf,l qf,z

istrue.
If the gapst in Bunching-free state are exponentially distributed, then the following istrue

Por = L(to(a))xL(t(- ay)) (54)
for inconsistent departure behavior and

1
p =
Lt (-a)xL(t (@)
for consistent departure behavior.

(55)




3.2 System with discrete departure

Anaogoudly for systems with discrete departure (cf. eq.(52))

C=C, Mos Pos Por
Pr(t>t,)
=C,x1- x,)¥1- q, Xf)xm
1- Ft=t,)
% - 97

1- Ft=t)

(56)

=C(L- X,)(1- , %)

isvalid.

Normally, the capacity in Free-space state C, for systems with discrete departure cannot be
expressed explicitly. With the assumption that the gaps t in the Bunching-free state are
exponentially distributed one receives

_ ok
Co=— (57)
1- L(t ()

Pos =1- X, (58)

Pos =(1- g, XT) (59)

Por = L{ty (@)1 (t(- ) (60)
for inconsistent departure behavior and

1
Por = (62)
Lt a))L(t @)
for consistent departure behavior.
For fixed tg, tr and t it isvalid for discrete departure
q

Co=gan (62)
and

pop =€ "t (63)
The resulted formula for the determination of capacity reads

C=C X5 Pos Por

B q >e'Qf>(tg't) (64)
=(1-x,)x1-q, >€r)xf1_e—_qm
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4 MAJOR STREAMS CONTAINING MORE THAN ONE TRAFFIC LANES

According to the derivation in the section 3, the traffic flow within the major stream can be

major streams with priority A

Y

minor stream without priority

B

Fig. 9- System with two major streams with parallel

configuration

divided into four states for which
the probabilities can be calculated
separately. From these
probabilities, the portion of the
states in which no hindrance in the
major stream occurs to the minor
stream can be obtained. The
capacity for the minor stream can
be  caculated from the
multiplication of the saturation
capacity Cs and the portion of the
state without hindrance.

According to the same principle, the capacity for systems with a major stream containing more

than one traffic lanes can also be determined.

The traffic states in major traffic lanes with parallel configuration are completely independent of
each other. Therefore, it isvalid for systems with n major traffic lanes (cf. Fig.9):

* oy * Py % A
Pos = O Posi + Pog = O Pos; and por = O Poki (65)
i=1 i=1 i=1

and accordingly,

C=C, >‘po,s* Xpo,B* mO,F*
pu A A
=C. 0 pos; MO Posi XO Por;
i=1 i=1 i=1

with

for continuous departure and

_ g _ .
Cs - * _Cs(q )
1- L{t, (a,)) *

qf* = é. s

i=1

for discrete departure.

(66)

(67)

(68)

In the equations, pox, isthe probability that the state X in stream i does not occur.

For fixed t;, eq.(68) turnsto



Cs :q;* (69)
1- e‘Qf A
5 APPLICATION OF THE PROCEDURE

5.1 Examplefor of multi-lane major roads

The traffic lanes on a major road can be considered as a paralel configuration. According to
€egs. (66) to (69) one obtains C for amajor road containing n traffic lanes with fixed tg, t; and t

C= A (1' t>qp,i)xtl>6e)(p(' Qs >(t0,i - ti))
i=1 f o=l (70)
= C”) (1' t >qp,i)xtl>eXp§ é. (qf,i Xto; - t.))g
i=1 f e i=1 1]
with  ty; =t ;- t—zf
for continuous departure or
s s a(a,)
C= O (1' t >Qp,i)>o eXp(' O, >(tg,i - ti))y F;l I 5
= = 1- expc- a (qf,i)>¢f -
e =1 1] (71)
o é. (qf ,i)>exp§ é. (qf,i >(tg,i - ti )9
=0 [t- tog, )< ° = —
= 1- expl 8 (o, )%, 2
e i=1 1]

for discrete continuous departure.

5.2 Examplefor roundabouts

A approach with n. traffic lanes to a roundabout with n. circulation lanes is considered.

Setting dpi=qd/Ne, tgi=ty, ti=t, and j, =1- t; >, for al mgor streams, one obtains for the
approach at roundabouts the universal capacity formula (cf. Wu, 1997b)

C=n, - ta.g <L sexp(- g, Xty - 1)) (72)

n. g tf

with C  =total capacity of the approach
. =total traffic intensity in the circulation lanes
to =ty-t/2

The values t;=4.12s, 1;=2.88s,and t =2.10s are obtained at roundabouts in Germany

Universal Procedure for Capacity Determination at Unsignalized Intersections 20



Universal Procedure for Capacity Determination at Unsignalized Intersections 21

6 SUMMARIES

A new procedure for the determination of capacity is presented here. This new procedure can be
applied for the conditions
- arbitrary many major streams with different critical gaps ty and minimum gapst
arbitrary distribution of the gapst in the mgjor streams
arbitrary distribution of critical gaps t;, move-up times t; and minimum gaps t if the
corresponding Laplace transform of the distribution are given
arbitrary queuing and bunching saturations in the major streams

The new procedure provides a generalized form of al the usual formulae for calculating the
capacity at unsignalized intersections. The usual formula are reproduced by the new procedure
if the corresponding parameters are set. For practical uses, the procedure should be calibrated
and validated with measurements or simulations. The initia calibrations and vaidation for
roundabouts (Wu, 1997b) already shows potential of the new procedure.
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