AtomViewer
Short manual

Christoph Begau; ICAMS, Ruhr-Universitaect Bochum
2012

1 About AtomViewer

AtomViewer is a visualization and analysis tool for atomistic simulations, primarily
molecular dynamics simulations. By characterization of the atomic configuration
it can display or filter certain atoms, making crystal structures or other properties
visible. Plastic deformation in crystalline solids are mainly related to the creation
and movement of dislocations. These entities are not directly part of atomistic
simulations, but instead they need to be extracted from the atomistic configuration.
The detection and characterization of dislocations and their Burgers vector is one
of the main features of AtomViewer, since it includes reference implementations for
the dislocation network detection and classification methods as published by Begau
et al. [1, 2].

AtomViewer is open source software and is written in a way that it can be extended
towards different materials and crystal structures as well as custom post-processing
and rendering routines. Build-in features support functionality for crystals in FCC,
BCC and B2 structures. However, the algorithms to detect and characterize dislo-
cations are not limited to these structures and can be extended to other materials
and polycrystalline materials as well.

AtomViewer is not intended as an replacement for other MD visualization tools as
AtomEye!, Ovito?, VMD? or many more, but as an addition to be used in certain
applications.

*E-Mail: christoph.begau@icams.rub.de
http://1i.mit.edu/Archive/Graphics/A/
’http://www.ovito.org/
3http://www.ks.uiuc.edu/Research/vmd/

http://li.mit.edu/Archive/Graphics/A/
http://www.ovito.org/
http://www.ks.uiuc.edu/Research/vmd/

2 System requirements

AtomViewer requires
e an installed Java runtime enviroment version 6 or newer
e a graphic device supporting OpenGL version 2.0 or higher

e one of the supported operating systems: Microsoft Windows (XP-Win 7),
Linux, MacOS, Solaris (each supported in 32- and 64-bit versions, not all
platforms are tested)

Please start AtomViewer by starting the included scripts
e AtomViewer.sh — Linux, MacOS, Solaris
e AtomViewer.bat — Windows

Large atomistic data sets may require a large amount of memory. By default the
maximum memory usage of AtomViewer is limited to about 1000 MB. If more
memory is required, please modify the startup script. E.g. set the parameter“-
Xmx4096M” to increase the maximum memory to 4 GB. The possible maximum of
memory that can be acquired depends on operating system, physical memory in the
computer and the installed java virtual machine.

3 Data format for import

AtomViewer supports files in the IMD-format as decribed in
http://www.itap.physik.uni-stuttgart.de/~imd/userguide/config.html
For easier import, the files can even be more simple, a minimal file looks as followed:

#F A

#C x y z

#X 3.520000 0 O
#Y 0 3.520000 O
#Z 0 0 3.520000
#E

2.636128 0.888096 0.891264
2.636128 2.648096 2.651264
0.876128 0.888096 2.651264
0.876128 2.648096 0.891264

Line 1 defines the file format (A=ASCII in this case), line 2 the type of each column
(here x,y,z coordinate). Please note that only files with the order x y z are supported.
Line 3-5 define the simulation box size. Currently only orthogonal simulation boxes
are supported. The origin of the simulation box is always at (0.0, 0.0, 0.0). Atoms

http://www.itap.physik.uni-stuttgart.de/~imd/userguide/config.html

AtomViewer (Cul11-stress.00010.chkpt.gz)

File View Edit Settings Hel
fTotal number of atoms: 6825984
Boxsize X; 449,01
Boxsize Y; 446.3 @
Boxsize Z: 450.0
Atoms
Structure: Fcc
bec (6

WAtom 7] R6V
fec (6695271)
B pom [R6V

(i)
(] Atom RBV
L2peich, unassigned (s425)
[]atom RBV
10-11 neighbors (8395)
C——0atom #rav

13-14 neighbors (4299)
B aom () Rev

<10 neighbors (70901)
d\gA{nm ReV
>14 neighbors (0)

[Vl Atom (7] RBV.

® Atoms
© Elements

O Lattice rotation
Dislocations

[Dislocation
Cburgersvectors (@)
[l Stacking Faults

[Planar defect (5) Normal=(0.000,0.943,-0.333) in crystal axis=(0.577.-0,577.-0.577) #Atoms=591 Area=21666.789063
IDislocation(55) Length 89.84232 Avg. RBV (0.140 | -0.144 | 0.273) (Magnitude=1.2350662) Burgers Vector: (PARTIAL) 1/6 [1 -1 2]

[4] Top

clear | (@) Front
Log 2 side

= Reset zoom

Figure 1: Atom Viewer main window
1. Information about the simulation volume and the number of imported atoms
. Show/Hide the atoms assigned to certain classes and the resultant Burgers vector per atom (if available)
3. Different displaying styles for atomic information
4. Display the dislocation networks and (if available) stacking faults
5. Information for elements that are selected by clicking on them are printed to this log.

6. Select axis aligned perspectives. Holding down the Shift-key will clicking, results in selecting the opposite
perspective.

7. Atoms and elements of microstructure are rendered here.

outside the box are either placed inside the box in case of periodic boundary condi-
tions or are imported and displayed but are ignored during most analysis operations
in case of free boundaries. The header must be closed with the sequence #E.

Each following line defines the coordinate of an atom. Besides the mandatory xyz-

coordinates, additional predefined parameters are possible as given in the following
table:

Name ‘ Format ‘ Description

Xy 7z 3x float | atomic coordinate
number | integer | unique number of the atom
type integer | identifier for the (virtual) element of the atom

An example file including all these features looks like this.

10

#F A

#C number type x y z
#X 3.520000 0 O

#Y 0 3.520000 O

#Z 0 0 3.520000

#E

1 0 2.636128 0.888096 0.891264
2 0 2.636128 2.648096 2.651264
3 0 0.876128 0.888096 2.651264
4 0 0.876128 2.648096 0.891264

Additional custom columns can be imported using the editor under “Edit-;Edit
configuration” and providing the custom column keywords, a name and an optional
unit. The checkbox “Raw values” must be ticked when files to be opened are selected.
Files should either have the ending “.chkpt” or “.ada” to be imported directly. If a
sequence of multiple files is to be opened they should be ending with “.xxxxx.chkpt”
or “.xxxxx.ada” where xxxxx is a continuous sequence of numbers. Files compressed
with gzip can be opened directly. In this case the files need the additional suffix
“.gz” at the end of the name.

Limited support for file from the Lammps MD code is implemented as well.

@ Open X

MEEIEES S

Look In: |Ij FullDetails

[Cu111-120.00672.ada.gz [} Cul11-120.00686.ada.gz [Cu111-120.0070|
[Cu111-120.00673.ada.gz [} Cul11-120.00687.ada.gz [} Cu111-120.0070

[Cu111-120.00674.ada.gz [} Cull1-120.00688.ada.gz [Cull1-120.0070|
[Cu111-120.00675.ada.gz [} Cu111-120.00689.ada.gz [} Cu111-120.0070
[Cu111-120.00676.ada.gz [} Cull1-120.00690.ada.gz [Culll-120.0070|
[Cu111-120.00677.ada.gz [} Cu111-120.00691.ada.gz [} Cu111-120.0070
[Cu111-120.00678.ada.gz [| Culll-120.00692.ada.gz [Culll-120.0070|

Edit crystal.conf (T)

[]import sequence

Periodic boundaries ®

Mx MEMy [z

[Cu111-120.00679.ada.gz [} Cu111-120.00693.ada.gz [} Cu111-120.0070
[Cul11-120.00680.ada.gz [} Culll-120.00694.ada.gz [} Culll-120.0070
[Cu111-120.00681.ada.gz [} Cu111-120.00695.ada.gz [} Cu111-120.0070
[} Cu111-120.00682.ada.gz [} Culll-120.00696.ada.gz [} Culll-120.0071;
[Cu111-120.00683.ada.gz [} Cu111-120.00697.ada.gz [Cu111-120.0071;
[} Cu111-120.00684.ada.gz [} Cull1-120.00698.ada.gz [} Cull1-120.0071;

[Dispose perfect
lattice atoms

Burgers Vectors
[Filter Surface @
Raw values

Lattice rotation

[} cu111-120.00685.ada.gz [} Cu111-120.00699.ada.gz [} Cu111-120.0071;

< || I

File Name: [Cull1-120.00692.ada.gz

|
Files of Type: [IMD files (*.chkpt, *.ada, *.ss) [~]

Figure 2: Open dialog: Different options can be enable and disabled before opening
files

1. Edit the crystal configuration (see Figure 3).

2. If the files are properly number it is possible to open a sequence of files by selecting the first file and the
number of files. Otherwise multiple files can be selected. This feature is not available for LAMMPS files.

3. Enable periodic boundaries conditions in selected directions. For LAMMPS files, this setting is ignored if
the boundary conditions are given in the file header.

4. Enable and disable different features of analysis

Crystal parameters Besides the atomic configuration, additional information con-
cerning the crystal is needed to analyze the crystal properly.
The following information must be provided:

e the crystal structure (e.g. BCC or FCC)
e the lattice constant

e the crystal orientation

Lattice constant and the crystal structure are required to identify defects correctly,
where the crystal orientation is required to calculate Burgers vectors and lattice
rotations correctly. If the configuration file “crystal.conf” is not found in the same
folder as the data, AtomViewer will ask for these information.

Warning: Do not place simulations of different materials or orientations in the
same folder. Each of these simulations has to be in its own subfolder together with
a proper configuration file.

Crystal configuration

Crystal orientation
H-Axis 0 -1 1
f-AKiS 2 -1 -1
£ -Axis 1 1 1
Crystal structure ® FCC |V|
Lattice constant 3.64 |
Import Raw Values
Name ID in file Unit Active ®
Pot, Energy |EPot [lev |
add |
| oK | cancel |

Figure 3: Crystal.conf dialog: Define the crystal properties and imported fields here

1. Define the crystal orientation in the Cartesian system. Axis x and y must be orthogonal, z is automatically
computed.

2. Set crystal structure and lattice constant
3. Define additional values that are imported directly from the input file. “Name” defines the label that will
be used for displaying the value. “ID in file” must match the values ID used in the files to be imported.

The unit is optional, if provided it will be added to values in the color bars. Remove a value by unticking
the “Active” checkbox. Add another value by clicking “add”.

4 Analysis features

Defect state Defects are automatically detected with a modified bond angle anal-
ysis method (see [3] and [1] for the modified version) if the column “defectType” is

FCC characterization

ID | Description Burgers vectors calculated
0 | BCC no
1 | FCC yes
2 | HCP yes
3 | 14 neighbors atoms, distorted order | yes
4 | 12-13 neighbors yes
5 | 15 neighbors yes
6 | Free surface, <11 neighbors no
7 | Unknown yes
BCC characterization
ID | Description Burgers vectors calculated
0 | BCC yes
1 | FCC no
2 | HCP no
3 | 12 neighbor atoms, distorted order | yes
4 | <12 neighbors yes
5 | >12 neighbors yes
6 | Free surface, <10 neighbors no
7 | Unknown yes

not found in the input files. Depending on the configuration of the nearest neighbor
atoms are assigned.

Resultant burgers vectors & dislocation network Dislocation networks including
Burgers vectors are computed if the option “Burgers vectors” is enabled during im-
port. Burgers vectors are computed via a modified version of the Nye-tensor analysis
by Hartley&Mishin ([4, 5]). The derived resultant burgers vectors are combined into
dislocation networks ([1]). Resultant burgers vectors are computed for each atom
identified as certain defect types. If the crystal orientation is given correctly, the
results of the dislocation network analysis are in most cases fairly accurate, but are
prone to wrong classifications in the vicinity of free surfaces or defects like cracks.

Lattice rotations Per atom lattice rotations can be calculated in full atomic sim-
ulations. The rotations can be displayed either in degrees of rotation around the
x-axis, y-axis or z-axis or as an absolute deviation angle. For very severely distorted
atoms the calculation can fail. In this case a rotation of zero is assigned.

10

11

12

13

14

15

16

17

18

19

5 Output Formats

Dislocation networks can be saved to be processed in other applications. The out-
put file consists of two sections. The first defines the number of nodes and their
position. The second sections defines a dislocation per line as a sequence of nodes
and the Burgers vector. The three components of the Burgers vector are in crystal
coordinates. If the Burgers vector has been identified, the line terminates with “y”.
If no Burgers vector has been identified the line terminates with “n”. In this case
either no Burgers vector has been identified at all or the numerical averaged resul-
tant Burgers vector could not be mapped to a crystallographic possible one. The
numerical value is then printed instead of the true burgers vector.

#total number of nodes

209

#number x y z

155.61615 185.73717 219.36273
124.12319 162.65952 380.88416
126.55689 162.48555 380.7972

128.97746 162.46237 380.71375
135.29456 201.71378 382.6585

135.15097 207.23106 384.94006

g d NN+ O

#total number of dislocations

406

#number numberOfNodes n_1 n_2 ... n_n BV_x BV_y BV_z BV_identified
#BV_identified: (y) if Burgers vector is identified,

#(n) if just a numerical average is known

0 6 17528 17601 17695 17685 15752 17539 0.1667 -0.6667 0.1667 y

1 2 17840 17842 0.0000 0.0000 0.0000 n

3 2 17824 17833 0.0000 0.0000 0.0000 n

6 Known limitations

Dislocations in pseudo 3D simulation and infinitely long dislocations Dislo-
cations are not properly identified in case the simulation box is very small and
dislocations are infinite due to periodic boundaries. However, resultant Burgers
vectors are correctly identified.

Rendering performance Default settings are fairly stable but slow. Improvements
can be made by enabling “instanced rendering” in the settings menu. However, some
AMD graphic cards produce a rather strange behavior with this option.

Enabling more features in AtomViewer AtomViewer contains several features
that are either not well tested, are not usable in all crystal structures or rely on

special data structures as for example grain- and phaseboundary approximations in
its current state. These features are included in AtomViewer, but are not available
by default. Additional functionality becomes available by unchecking “Basic features
only” in the settings menu. Beware, additional features are likely not working in
the way it is expected.

7 License

AtomViewer is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation, either version 3 of the License, or (at your option) any later version.
AtomViewer is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE.See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
AtomViewer. If not, see http://www.gnu.org/licenses/ AtomViewer’s source code
can be found embedded into the jar-file “AtomViewer.jar”.

References

[1] C. Begau, A. Hartmaier, E.P. George, and G.M. Pharr. Atomistic processes
of dislocation generation and plastic deformation during nanoindentation. Acta
Materialia, 59(3):934 — 942, 2011.

[2] C. Begau, J. Hua, and A. Hartmaier. A novel approach to study dislocation
density tensors and lattice rotation patterns in atomistic simulations. J. Mech.
Phys. Solids, 60(4):711-722, 2012.

[3] G.J. Ackland and A. P. Jones. Applications of local crystal structure measures in
experiment and simulation. Physical Review B (Condensed Matter and Materials
Physics), 73(5):054104, 2006.

[4] C. S. Hartley and Y. Mishin. Characterization and visualization of the lattice
misfit associated with dislocation cores. Acta Metall., 53:1313—-1321, 2005.

[5] C. S. Hartley and Y. Mishin. Representation of dislocation cores using nye
tensor distributions. Materials Science and FEngineering A, 400-401:18 — 21,
2005. Dislocations 2004.

	About AtomViewer
	System requirements
	Data format for import
	Analysis features
	Output Formats
	Known limitations
	License

