Nicomachus' Theorem

H. Sebert*

November 8, 2022

Abstract

We prove the identity $1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$, which is attributed to the antique philosopher and mathematician Nicomachus of Gerasa (c. 60 - c . 120 BCE).

1 Preliminaries

It is assumed that the reader is familiar with the concept of proof by induction. See for example [Knu]. Furthermore, we will need the following formulæ, each of which can be easily shown by induction. They hold for all $n \in \mathbb{N}$, respectively all $M, N \in \mathbb{N}$ with $M<N$.

$$
\begin{gather*}
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} . \tag{1}\\
\sum_{k=1}^{n} 2 k-1=n^{2} . \tag{2}\\
\sum_{k=M+1}^{N} f(k)=\sum_{k=1}^{N} f(k)-\sum_{k=1}^{M} f(k) . \tag{3}\\
\sum_{k=M+1}^{N} f(k)=\sum_{k=1}^{N-M} f(k+M) . \tag{4}
\end{gather*}
$$

[^0]
2 Main result

Lemma 1. For each $n \in \mathbb{N}$ we have

$$
S(n):=\sum_{n(n-1) / 2+1}^{n(n+1) / 2} 2 k-1=n^{3} .
$$

Proof. We apply equation (4) to $S(n)$ with

$$
\begin{equation*}
N=\frac{n(n+1)}{2} \quad \text { and } \quad M=\frac{n(n-1)}{2} . \tag{5}
\end{equation*}
$$

We then have $N-M=n$, and therefore

$$
\begin{aligned}
S(n) & =\sum_{k=1}^{n} 2(k+M)=\sum_{k=1}^{n}(2 k-1+n(n-1)) \\
& =\left(\sum_{k=1}^{n} 2 k-1\right)+\left(\sum_{k=1}^{n} n(n-1)\right) \\
& =\left(\sum_{k=1}^{n} 2 k-1\right)+n \cdot n(n-1) .
\end{aligned}
$$

Now, by (2), the first summand equals n^{2}, and the second $n^{3}-n^{2}$. Therefore, we obtain

$$
S(n)=n^{2}+n^{3}-n^{2}=n^{3} .
$$

By using (3) and the (5) we can write $S(n)$ as a telescope sum:

$$
\begin{equation*}
S(n)=\left(\sum_{k=1}^{n(n+1) / 2} 2 k-1\right)-\left(\sum_{k=1}^{n(n-1)} 2 k-1\right) . \tag{6}
\end{equation*}
$$

Now we can easily prove:
Lemma 2. We have

$$
\sum_{j=1}^{n} S(j)=\sum_{k=1}^{n(n+1) / 2} 2 k-1
$$

Proof. We prove the statement by induction over n. For $n=1$ the assertion is trivially true. For $n+1$ we can apply the induction hypothesis as follows:

$$
\sum_{j=1}^{n+1} S(j)=S(n+1)+\sum_{j=1}^{n} S(j)=S(n+1)+\sum_{k=1}^{n(n+1) / 2} 2 k-1 .
$$

Using (6) on $S(n+1)$ we obtain

$$
\begin{aligned}
\sum_{j=1}^{n+1} S(j) & =\left(\sum_{k=1}^{(n+1)(n+2) / 2} 2 k-1\right)-\left(\sum_{k=1}^{n(n+1) / 2} 2 k-1\right)+\left(\sum_{k=1}^{n(n+1) / 2} 2 k-1\right) \\
& =\sum_{k=1}^{(n+1)(n+2) / 2)} 2 k-1
\end{aligned}
$$

We can now prove the main result:
Theorem (Nicomachus). For all $n \in \mathbb{N}$ we have

$$
\sum_{j=1}^{n} j^{3}=\left(\sum_{j=1}^{n} j\right)^{2}
$$

Proof. We only need to gather up everything we have got so far:

$$
\begin{align*}
\sum_{j=1}^{n} j^{3} & =\sum_{j=1}^{n} S(j) \tag{Lemma1}\\
& =\sum_{k=1}^{n(n+1) / 2} 2 k-1 \tag{2}\\
& =\left(\frac{n(n+1}{2}\right)^{2} \\
& =\left(\sum_{j=1}^{n} j\right)^{2}
\end{align*}
$$

$$
=\sum_{k=1}^{n(n+1) / 2} 2 k-1 \quad \quad(\text { Lemma } 2)
$$

References

[Knu] Donald E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley, 1997

[^0]: *holger.sebert@ruhr-uni-bochum.de

