Mathematisches Institut der Universität Basel Vorlesung Infinitesimalrechnung I (WS 99/00)

PD Dr. Jörg Winkelmann

Aufgabenblatt 7

Abgabetermin: 10. Dezember 1999

1. Man untersuche folgende Reihen auf Konvergenz/Divergenz:

$$\sum_{k=1}^{\infty} \frac{k^3}{2^k}, \quad \sum_{n=1}^{\infty} \frac{2^n}{n^3}, \quad \sum_{n=1}^{\infty} \frac{n+2}{n^2-n+2}$$

und berechne

$$\sum_{m=2}^{\infty} \left(\frac{1}{4}\right)^{2m+1}$$

2. Man untersuche folgende Reihen auf Konvergenz/Divergenz:

$$\sum_{k=1}^{\infty} \frac{k!}{k^k}, \quad \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n^{\frac{3}{4}}}$$

- 3. Sei (a_n) eine Folge in $\mathbb R$ mit $a_n \geq 0$ für alle n. Zeige: Wenn $\sum_n a_n$ konvergiert, dann konvergiert auch $\sum_n a_n^2$. Gilt die Umkehrung?
- 4. Sei (a_n) eine Folge in \mathbb{R} mit $a_n \geq 0$ für alle n, und (b_n) eine beschränkte Folge in \mathbb{R} .

Zeige: Wenn $\sum_n a_n$ konvergiert, dann auch $\sum_n a_n b_n$.

5. Sei $(a_n)_n$ eine Folge, sodass die Reihe $\sum_n a_n$ konvergiert. Für jede natürliche Zahl n sei r_n definiert durch

$$r_n = \sum_{k=n}^{\infty} a_n.$$

Zeige: $\lim_{n\to\infty} r_n = 0$.

(*) 6. Sei p_n die durch

$$p_n = \prod_{k=2}^n \left(1 - \frac{1}{k}\right)$$

definierte Folge. Untersuche, ob p_n konvergiert, und bestimme gegebenenfalls den Grenzwert.