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Null-controllable set computation

for a class of constrained bilinear systems

Moritz Schulze Darup† and M. Mönnigmann†

Abstract

We present a method for the exact computation of null-controllable sets for single-input
bilinear systems with input and state constraints. The proposed approach is based on
first linearizing the bilinear system exactly, and applying known methods for the recursive
calculation of null-controllable sets subsequently. While these steps are obvious from a
conceptual point of view, it has to be taken into account that the constraints are trans-
formed in the exact linearization step. Unfortunately, the transformed constraints are
in general non-convex, even if the original constraints are convex. We show how to rep-
resent the transformed constraints in terms of a finite number of convex sets, which is
instrumental for the computer-based evaluation of the null-controllable sets.

1 Introduction

The analysis of controllability has a long history in control theory. For linear unconstrained
systems, Hautus [6] derived the well-known algebraic criterion for the detection of global
null-controllability in 1970. Gutman and Cwikel [5] as well as Keerthi and Gilbert [8]
provided algorithms for the iterative but exact computation of null-controllable sets for
linear systems with input and state constraints. The computation of null-controllable sets
for nonlinear constrained systems is considerably more difficult than for linear constrained
systems. Consequently, approaches for nonlinear systems usually involve approximations
(see, e.g., [1]).

We present an algorithm for the exact computation of null-controllable sets for a partic-
ular, admittedly special, class of nonlinear constrained systems. Specifically, we consider
single-input bilinear systems [2, 4] of the form

x(k + 1) = Ax(k) + (b+N x(k))u(k), x(0) = x0, (1)

with input and state constraints

u(k) ∈ U ⊂ R, x(k) ∈ X ⊂ R
n, ∀ k ∈ N , (2)
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where A,N ∈ R
n×n and b ∈ R

n. The sets U and X are restricted to be convex polytopes
with the origin in their interiors. A sequence of inputs is called admissible, if all its
elements and the resulting trajectory of (1) respect (2). We calculate the i-step null-
controllable set Ni, i.e., the set of all states x0 ∈ X that can be steered to the origin
with an admissible input sequence that is at most i ∈ N steps long. It is the main idea
behind the proposed algorithm to reformulate system (1), (2) in terms of a linearized
system resulting from exact linearization [7]. We then use well-know algorithms for linear
constrained systems [5, 8] to calculate null-controllable sets for (1), (2). Unfortunately,
the state and input transformation required for the exact linearization result in a more
complicated description of the constraints (2). However, we show that the transformed
constraints can be represented by a finite set of convex constraints, which is instrumental
for the exact computation of the null-controllable sets.

We state basic notation and preliminaries in Sect. 2. Section 3 deals with the exact
linearization of bilinear system. The main results of the paper, i.e. the reformulation of
the transformed constraints and the design of an algorithm for the exact computation of
null-controllable sets, are treated in Sect. 4. Finally, Sects. 5 and 6 present two illustrative
examples and state conclusions, respectively.

2 Notation and Preliminaries

We denote matrices by capital letters, vectors and scalars with lowercase letters and sets
with calligraphic letters. Let A ∈ R

n×n and B ∈ R
n×m. By BT , rk(B) and cs(B) denote

the transpose, rank and column space of the matrix B. For ν ∈ N , define Cν(A,B) ∈
R
n×ν(n·m) recursively by Cν(A,B) := [ Cν−1(A,B) Aν−1B ], where C0(A,B) := [ ] is

defined to be an empty matrix. Let In ∈ R
n×n and ei ∈ R

n refer to the identity matrix
and the i-th canonical basis vector, respectively. Let A ⊆ R

n and C ⊆ R
m. By A⊥ denote

the orthogonal complement of A. Furthermore, we define the sets B C := {B c | c ∈ C}
and B−1A := {c ∈ R

m |B c ∈ A}. Recall that B−1A equals B̂A with B̂ = B−1, if B
is invertible, but B−1A is well defined even if B is not invertible. Li

fh(x) denotes the

i-th Lie derivative of h along f , where L0
fh(x) = h(x) (see [7] for details). Finally, define

N
k
i := {j ∈ N | i ≤ j ≤ k}.

2.1 Null-Controllable Set Computation for Linear Systems

For N = 0 the bilinear system (1) degenerates into a linear system of the form x(k+1) =
Ax(k) + b u(k). Gutman and Cwikel [5] introduced an iterative procedure for calculating
i-step null-controllable sets for linear systems subject to constraints (2). Starting with
N0 = {0}, the recursion

Ni+1 = {x ∈ X | ∃u ∈ U : Ax+ b u ∈ Ni} (3)

results in a nested sequence (Ni ⊆ Ni+1) of null-controllable sets [5]. Keerthi and Gilbert
[8] provided a computationally efficient algorithm to evaluate Ni+1 based on projections.
In this context, let the extended state and the associated constraints be defined by

z :=

[

x
u

]

and Z := {z |x ∈ X , u ∈ U},

respectively. Then, the recursion (3) can be carried out according to [8]

Ni+1 = P {z ∈ Z |S z ∈ Ni} (4)

= P
(

S−1Ni ∩ Z
)

, (5)
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where P, S ∈ R
n×(n+1) with P := [ In 0 ] and S := [ A b ]. We state the following

remark for later use. Note that Z is convex, since X and U are convex sets by assumption
and recall that a projection is a particular linear transformation.

Remark 1: The sets Ni+1 are convex for linear systems. This follows from (5), since
intersections of convex sets are convex sets, and since BA and B−1A are convex sets for
every linear transformation B and every convex set A (see, e.g., [10], Thms. 2.1 and 3.4).

2.2 Exact Linearization of Input Affine Systems

Consider an input affine system of the form

x(k + 1) = f(x(k)) + g(x(k))u(k), y(k) = h(x(k)). (6)

System (6) is said to have relative degree r at x∗, if the following conditions hold [7]:

LgL
i
fh(x) = 0 for all x in a neighborhood of x∗

and all i ∈ N
r−2
0 , (7)

LgL
r−1
f h(x∗) 6= 0. (8)

The relative degree can be used to determine whether there exists an exact state space lin-
earization to (6). This is stated more concisely in Lemma 1 below. If an exact linearization
exists, the transformed system has the form

x̃(k + 1) = Ã x̃(k) + b̃ ũ(k), (9)

where

Ã =

[

0 In−1

0 0

]

and b̃ = en. (10)

Lemma 1 (cf. Lem. 4.2.1 in [7]): The state space system (6) can be transformed into the
linear system (9) in a neighborhood of x∗, if and only if (6) has relative degree r = n at
x∗.

If the condition r = n is satisfied at x∗, the transformation from (6) to (9) is given by
u = α(x)(ũ − β(x)) and x̃ = γ(x), where

α(x) =
1

LgL
n−1
f h(x)

, β(x) = Ln
fh(x), (11)

γi(x) = Li−1
f h(x), i = 1, . . . , n. (12)

This transformation is in general nonlinear.

3 Exact Linearization of Bilinear Systems

The bilinear system (1) obviously belongs the system class (6) for f(x) = Ax and g(x) =
b+N x. We restrict ourselves to linear outputs of the form

y(k) = h(x(k)) = cTx(k), (13)

where c ∈ R
n. This restriction is imposed in order to keep (11) and (12) tractable. We

collect some conditions in the following assumption for ease of reference.
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Assumption 1: There exists a linear output (13) for the bilinear system (1) such that the
resulting SISO system has relative degree r = n for all x∗ ∈ X ∗ with

X ∗ = {x ∈ R
n | b+N x 6= 0}. (14)

The Lie derivatives and conditions (7), (8) read

Li
fh(x) = cTAi x and LgL

i
fh(x) = cTAi(b+N x),

and

cTAi(b+N x) = 0 ∀x ∈ R
n and ∀ i ∈ N

n−2
0 , (15)

cTAn−1(b+N x∗) 6= 0 ∀x∗ ∈ X ∗, (16)

respectively, for a bilinear system (1) that satisfies Assumption 1. Note that the relative
degree is not defined for all x∗ that are not in X ∗. For every x∗ ∈ X ∗, the exact linearization
(9) results for the linearizing input transformation

u =
1

cTAn−1(b+N x)
(ũ− cTAn x) (17)

and the linear coordinate transformation x̃ = γ(x) = M x, where

M = CT
n (A

T , c) (18)

equals the observability matrix for linear systems. Since the transformation x = M−1x̃
is linear, it turns out to be convenient to express (9) in the original state x instead of x̃.
The resulting system reads

x(k + 1) = Â x(k) + b̂ û(k), (19)

where
Â = M−1ÃM, b̂ = M−1b̃ and û = ũ. (20)

Systems (9) and (19) are one to one, since M is invertible.
The exact linearization obviously hinges on Assumption 1. Proposition 1 given below

states a necessary condition for Assumption 1 to hold. Unfortunately, the class of tractable
bilinear systems is small as illustrated in Lem. 2 further below.

Proposition 1: Let B := [ b N ] and let X ∗ be as in (14). Assume there exists a c ∈ R

for the binlinear system (1) such that the SISO system with output y = cTx(k) has relative
degree r = n for all x∗ ∈ X ∗. Then

rk(Cn−1(A,B)) < rk(Cn(A,B)). (21)

Proof. There exists a c such that the SISO system with output y = cTx(k) has relative
degree r = n for all x∗ ∈ X ∗ if and only if (15), (16) hold. Since the l.h.s. in (15) can be
written as

cTAi(b+N x) = cTAiB
[ 1
x

]

, (22)

condition (15) holds for all x ∈ R
n if and only if

cAiB = 0 for all i ∈ N
n−2
0 (23)
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It remains to apply (22) to (16). This yields

cTAn−1B
[ 1
x∗

]

6= 0 ⇒ cTAn−1B 6= 0, (24)

where the converse does in general not hold. Note that Prop. 1 essentially states only a
necessary condition, because (24) is only an implication but not an equivalence. Relation
(23) and the relation on the r.h.s. of (24) can equivalently be written as

cTCn−1(A,B) = 0 and cTAn−1B 6= 0, or (25)

c ∈ cs(Cn−1(A,B))⊥ and c /∈ cs(An−1B)⊥. (26)

We complete the proof by showing that (26) implies

cs(Cn−1(A,B)) ⊂ cs(Cn(A,B)) (27)

which in turn implies the claim (21). To show (26) =⇒ (27) assume (26) holds, assume
(27) does not hold, and show a contradiction results. If (27) does not hold, we have the
first of the following two relations

cs(Cn−1(A,B)) ⊇ cs(Cn(A,B)) (28)

= cs
([

Cn−1(A,B) An−1B
])

(29)

and the second relation holds by definition of Cν(A,B) (cf. Sect. 2). Relation (29) implies
cs(An−1B) ⊆ cs(Cn−1(A,B)), from which we infer cs(An−1B)⊥ ⊇ cs(Cn−1(A,B))⊥, which
in turn yields

c ∈ cs(Cn−1(A,B))⊥ ⇒ c ∈ cs(An−1B)⊥

The last statement contradicts (26), which completes the proof. �

Lemma 2: A necessary condition for (21) to be fulfilled is rk(B) = 1.

Proof. It is well-known from linear systems theory (see e.g. [3], p. 151) that rk(Sν(A,B)) =
rk(Sn(A,B)) for all

ν ≥ n+ 1− rk(B).

In order to satisfy (21), we must have n + 1 − rk(B) > n − 1 or equivalently rk(B) < 2.
On the other hand (21) implies rk(B) > 0. �

4 Null-Controllable Set Computation for Bilinear Systems

In principle, the computation of null-controllable sets for bilinear systems can be carried
out analogously to the procedure in the linear case. The recursion (3) for linear systems
has to be replaced by

Ni+1 = {x ∈ X | ∃u ∈ U : Ax+ (b+N x)u ∈ Ni}, (30)

with N0 = {0} in the bilinear case. It is possible to adapt the projection method (4),
(5) to the bilinear case by using the exact linearization (19). This will be shown in the
remainder of the section. As a preparation we show that (19) is not only useful for all
x ∈ X ∗ but all x ∈ R

n in the following lemma.
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Lemma 3: Let c ∈ R
n be such that conditions (15), (16) hold for the bilinear system (1),

(2) and let Â, b̂ be as in (19). Define ϕ : Rn × R → R by

ϕ(x, u) := cTAn−1(b+N x)u+ cTAnx. (31)

Then
Ax+ (b+N x)u = Â x+ b̂ ϕ(x, u), (32)

for all x ∈ R
n and all u ∈ R.

Proof. Let x ∈ X ∗ at first, where X ∗ is defined as in (14). Rearranging (17) yields ũ =
ϕ(x, u), where we use that (17) is well defined, since x ∈ X ∗ implies cT An−1(b+N x) 6= 0.
We infer from (19) and the last equation in (20) that x(k + 1) = Â x(k) + b̂ ϕ(x(k), u(k)).
On the other hand x(k + 1) = Ax(k) + (b + N x(k))u(k) according to (1), therefore the
claim holds for all x ∈ X ∗ and all u ∈ R.

Now let x ∈ R
n\X ∗. According to the definition of X ∗ in (14), x ∈ R

n\X ∗ is equivalent
to b+N x = 0, therefore

ϕ(x, u) = cTAnx. (33)

Substituting b+N x = 0 and (33) into (32) yields

A = Â+ b̂ cTAn. (34)

Thus, (32) holds for all x ∈ R
n \X ∗ if and only if (34) holds. Equation (34) can be proved

by substituting the coordinate transformation (20), the definition of Ã and b̃ from (10)
and the definition of M from (18) into the r.h.s. of (34). �

It remains to state the original constraints (2) in terms of the variables x and û = ϕ(x, u)
of the linearized system (19). Let

ẑ :=

[

x
û

]

and Ẑ := {ẑ | û = ϕ(x, u), x ∈ X , u ∈ U}. (35)

Then, by definition, we have x ∈ X , u ∈ U if and only if ẑ ∈ Ẑ. The following lemma
provides a more detailed description of Ẑ.

Lemma 4: The set Ẑ defined in (35) can be expressed as Ẑ = Ẑ ′ ∪ Ẑ ′′, where

Ẑ ′ =
{

ẑ
∣

∣

∣
x ∈ X ∩ X ∗,

û− cTAn x

cTAn−1(b+N x)
∈ U

}

,

Ẑ ′′ = {ẑ |x ∈ X \ X ∗, û = cTAn x}.

Proof. Since X = (X ∩ X ∗) ∪ (X \ X ∗), we may rewrite (35) as the union

Ẑ = {ẑ | û = ϕ(x, u), x ∈ X ∩ X ∗, u ∈ U} ∪
{ẑ | û = ϕ(x, u), x ∈ X \ X ∗, u ∈ U}.

(36)

Consider the case x ∈ X ∩X ∗ first. In this case, the input transformation (17) applies and,
with û = ũ from (20), we have u = (û − cTAn x)/(cTAn−1(b +N x)). Upon substituting
this expression for u into the r.h.s. of (36) Ẑ ′ results. If, on the other hand, x ∈ X \ X ∗,
then equation (33) implies that the second set on the r.h.s. of (36) is equal to Ẑ ′′. �
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At first sight, it is surprising that the set U from the input constraints does not appear
in the definition of the set Ẑ ′′. This is due to the fact that cTAn−1(b + N x) = 0 for all
x /∈ X ∗. Hence, according to (31), the original input u has no effect on the artificial input
û and we may choose u = 0 to satisfy the constraints U .

Having specified Ẑ, null-controllable sets for the bilinear system (1), (2) can be computed
with the recursion

Ni+1 = P
(

[Â b̂]−1Ni ∩ Ẑ
)

, (37)

which is the analogue of (5) for bilinear systems. Unfortunately, it is not obvious how
to apply (37) in a computational procedure, since Ẑ is in general not convex. We try to
reformulate Ẑ (and later Ni+1) in terms of the union of convex sets as a remedy. First
note that the polytopic constraints (2) can be expressed as

U = {u ∈ R |huu ≤ du}, X = {x ∈ R
n|Hx x ≤ dx}, (38)

where hu, du ∈ R
2, Hx ∈ R

p×n, dx ∈ R
p, and p ∈ N refers to the number of hyperplanes

required to state the constraints X . Note that U can also be stated as U = {u ∈ R |u ≤
u ≤ u} in the single-input case, where u, u ∈ R and u < 0 < u. A comparison of the
interval U and (38) yields

hu =

[

1
−1

]

and du =

[

u
−u

]

, (39)

which we note for later use. The set Ẑ can now be expressed as a union of convex polytopes
as detailed in Lemma 5.

Lemma 5: Let U and X be convex polytopes of the form (38). Then, the set Ẑ as defined
in (35) can be expressed as the union Ẑ = Ẑ1 ∪ Ẑ2 of the two convex polytopes

Ẑ1 = {ẑ ∈ R
n+1|H

(+)
ẑ ẑ ≤ d

(+)
ẑ } and (40)

Ẑ2 = {ẑ ∈ R
n+1|H

(−)
ẑ ẑ ≤ d

(−)
ẑ }, (41)

where

H
(±)
ẑ =





Hx 0
∓cTAn−1N 0

∓hu c
TAn ∓ du c

TAn−1N ±hu



, (42)

d
(±)
ẑ =





dx
±cTAn−1b

±du c
TAn−1b



. (43)

Proof: We prove the claim by showing that Ẑ1 ∪ Ẑ2 = Ẑ ′ ∪ Ẑ ′′, where Ẑ ′ and Ẑ ′′ are
as in Lem. 4. First note that ẑ = (xT û )T ∈ Ẑ ′ if and only if

Hx x ≤ dx, (44)

b+N x 6= 0, (45)

hu

(

û− cTAn x

cTAn−1(b+N x)

)

≤ du. (46)

According to (16), we have

b+N x 6= 0 ⇔ cTAn−1(b+N x) 6= 0. (47)
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Since cTAn−1(b+N x) is a real number, condition (45) is equivalent to

cTAn−1(b+N x) > 0 or cTAn−1(b+N x) < 0. (48)

Ẑ ′ can be written as the union Ẑ ′ = Ẑ ′′′ ∪ Ẑ ′′′′, where Ẑ ′′′ and Ẑ ′′′′ are described by the
inequalities

Hx x ≤ dx,
cTAn−1(b+N x) > 0,
hu (û− cTAn x) ≤ du c

TAn−1(b+N x)
(49)

if the l.h.s. in (48) applies, and

Hx x ≤ dx,
cTAn−1(b+N x) < 0,
hu (û− cTAn x) ≥ du c

TAn−1(b+N x),
(50)

if the r.h.s. in (48) applies. Note that the last inequality in (49) (resp. (50)) results from
the multiplication with the positive (resp. negative) value cTAn−1(b + N x). A careful

inspection of the coefficients in (49) and (50) shows that we found the matrices H
(±)
ẑ

and d
(±)
ẑ , where “+” and “−” refer to (49) and (50), respectively. However, Ẑ ′′′ ⊂ Ẑ1

and Ẑ ′′′′ ⊂ Ẑ2, because there appear strict inequalities in (49) and (50), where non-strict
inequalities apply in the definition of Ẑ1 and Ẑ2. More precisely, Ẑ1 is defined by the
non-strict inequalities

Hx x ≤ dx,
cTAn−1(b+N x) ≥ 0,
hu (û− cAn x) ≤ du c

TAn−1(b+N x)
(51)

A comparison of (49) and (51) shows that the elements of Ẑ1 \ Ẑ ′′′ obey

Hx x ≤ dx,
cTAn−1(b+N x) = 0,
hu (û− cTAn x) ≤ 0,

(52)

where 0 on the l.h.s. of the last inequality results from cTAn−1(b +N x) = 0. Moreover,
due to the special structure of hu as specified in (39), we have

hu (û− cTAn x) ≤ 0 ⇔ û− cTAn x = 0. (53)

Finally, from (47) we infer that

cTAn−1(b+N x) = 0 ⇔ b+N x = 0. (54)

Using (53) and (54), we may rewrite (52) as

Hx x ≤ dx,
b+N x = 0,

û− cTAn x = 0,
(55)

which is the set of conditions that defines Ẑ ′′ as introduced in Lemma 4. This implies
Ẑ ′′ = Ẑ1 \ Ẑ ′′′, therefore

Ẑ1 = (Ẑ1 \ Ẑ ′′′) ∪ Ẑ ′′′ = Ẑ ′′ ∪ Ẑ ′′′.
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Analogously, it can be shown that Ẑ2 = Ẑ ′′ ∪ Ẑ ′′′′ holds. These statements complete the
proof, since we have

Ẑ = Ẑ ′ ∪ Ẑ ′′ = Ẑ ′′ ∪ Ẑ ′′′ ∪ Ẑ ′′′′

= (Ẑ ′′ ∪ Ẑ ′′′) ∪ (Ẑ ′′ ∪ Ẑ ′′′′) = Ẑ1 ∪ Ẑ2
�

We pointed out above that the sets Ni+1 are in general not convex for bilinear systems.
Just as for Ẑ, a representation of the sets Ni+1 in terms of convex sets can be found. This
is summarized in the following lemma.

Lemma 6: Let Ẑ1 and Ẑ2 be defined as in Eqs. (40)–(43). Assume there exist convex sets
N 1

i , . . . ,N
l
i such that Ni =

⋃l
j=1N

j
i . Define the sets

N 2 j−1
i+1 = P

(

[Â b̂]−1N j
i ∩ Ẑ1

)

and (56)

N 2 j
i+1 = P

(

[Â b̂]−1N j
i ∩ Ẑ2

)

(57)

for j = 1, . . . , l. Then, for every j ∈ {1, . . . , 2 l}, N j
i+1 is a convex set and

Ni+1 =
⋃l

j=1N
2 j−1
i+1 ∪N 2 j

i+1. (58)

for Ni+1 as specified in (37).

Proof. The sets N 2 j−1
i+1 and N 2 j

i+1 can be shown to be convex using the arguments from

Rem. 1, since N 1
i , . . . ,N

l
i and Ẑ1, Ẑ2 are convex by assumption and due to Lem. 5,

respectively. In order to prove relation (58), we have to show that the r.h.s. in (37) and
(58) are equal. This can be seen from from the following chain of equalities, which are
commented below. Let S̃ = [Â b̂]−1 for short.

P
(

S̃Ni ∩ Ẑ
)

= P
(

S̃(N 1
i ∪ · · · ∪ N l

i ) ∩ (Ẑ1 ∪ Ẑ2)
)

= P
(

(S̃N 1
i ∪ · · · ∪ S̃N l

i ) ∩ (Ẑ1 ∪ Ẑ2)
)

= P
(

(S̃N 1
k ∩ Ẑ1) ∪ · · · ∪ (S̃N l

i ∩ Ẑ2)
)

= P (S̃N 1
k ∩ Ẑ1) ∪ · · · ∪ P (S̃N l

i ∩ Ẑ2)
= N 1

i+1 ∪ · · · ∪ N 2 l
i+1,

The first equality holds, since Ni =
⋃l

j=1N
j
i and Ẑ = Ẑ1 ∪ Ẑ2 by assumption and due

to Lem. 5, respectively. The second and fourth equality hold, because S̃ (A ∪ B) =
[Â b̂]−1 (A∪B) = [Â b̂]−1A∪ [Â b̂]−1 B for arbitrary sets A,B ⊂ R

n. The third equality
results with the distributive law. The last equality results by substituting (56), (57). �

The following proposition summarizes how exact null-controllable sets can be calculated
for bilinear systems based on Lemmas 3, 5 and 6.

Proposition 2: Assume the bilinear system (1), (2) satisfies Assumption 1. Let i∗ ∈ N ,
i∗ > 0 be arbitrary. Then, the null-controllable set Ni∗ can be computed with Alg. 1.

Proof of Prop. 2. Assumption 1 guarantees the existence of an output (13) such that the
exact linearization can be carried out. An appropriate c ∈ R

n is selected in line 1 of Alg.
1. The linearized system (19), which applies for all x ∈ R

n and u ∈ U according to Lem.
3, is defined in lines 2 and 3. Lines 4 and 5 implement the constraints Ẑ = Ẑ1 ∪ Ẑ2

from Lem. 5. The null-controllable sets N1, . . . ,Ni∗ are computed with the procedure
introduced in Lem. 6 in lines 6-10. �
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Algorithm 1: Null-controllable set computation.

1 choose c ∈ R
n such that (15), (16) hold

2 calculate transformation matrix M according to (18)

3 define linearized system by Â = M−1ÃM and b̂ = M−1b̃

4 compute H
(+)
ẑ , d

(+)
ẑ , H

(−)
ẑ and d

(−)
ẑ according to (42), (43)

5 define Ẑ1 and Ẑ2 according to (40), (41) and set N 1
0 = {0}

6 for i = 0 to i∗ − 1 do

7 for j = 1 to l = 2i do

8 calculate N 2 j−1
i+1 and N 2 j

i+1 according to (56), (57)

9 set Ni+1 =
⋃l

j=1N
2 j−1
i+1 ∪ N 2 j

i+1.

10 return sets N 1
i∗ , . . . ,N

2 l
i∗ that describe Ni∗ and terminate

Remark 2: Alg. 1 results in l := 2i
∗
convex regions. This exponential growth of the number

of regions cannot be avoided, but mitigated by fusing regions to form larger convex regions.
Formally, this results in an optimization problem of the form

min
l̃, Ñ 1

i
,...,Ñ l̃

i

l̃ s.t.
⋃l̃

j=1 Ñ
j
i =

⋃l
j=1N

j
i ,

Ñ j
i convex for j = 1, . . . , l̃.

(59)

It is generally not possible to solve (59) exactly. However, there exists algorithms for an
approximate solution [9].

Remark 2 results in a significant simplification in Sect. 5.

5 Numerical examples

We present two examples. We begin with a one-dimensional system to illustrate the
convex subsets Ẑ1 and Ẑ2 and the constraints Ẑ = Ẑ1 ∪ Ẑ2 of the transformed linearized
system (19). Moreover, the computation of the null-controllable sets Ni can be analyzed in
detail for such a simple example. Subsequently, we study a two-dimensional example and
illustrate the non-convexity of the sets Ni. For both examples, we consider the constraints

X = {x ∈ R
n | ‖x‖∞ ≤ 2} and U = {u ∈ R | ‖u‖∞ ≤ 1}

and evaluate the null-controllable set Ni∗ = N12, where i∗ = 12 was chosen more or less
arbitrarily.

Example 1: Consider the bilinear system (1), (2) with the parameters A = 1.2, b = 0.4
and N = 0.8. Note that condition (21) holds, which is necessary for the existence of an
appropriate linear output. The choice c = 1.0 defines an output (13) such that the resulting
SISO system has relative degree r = n = 1. The transformation matrix M defined in (18)
reads M = cT = 1.0. The system matrices of the linearized system (19) read Â = 0.0 and
b̂ = 1.0.

The sets Ẑ1 and Ẑ2 defined in (40)–(43), where

H
(±)
ẑ =













1.0 0.0
−1.0 0.0
∓0.8 0.0

∓1.2∓ 0.8 ±1.0
±1.2∓ 0.8 ∓1.0













, d
(±)
ẑ =













2.0
2.0

±0.4
±0.4
±0.4
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in this example, are visualized in Fig. 1. Algorithm 1 yields the null-controllable sets listed
on the l.h.s. in Tab. I. Since the example is one-dimensional, the sets Ni are intervals,
which we denote by Ni = [ξ

i
, ξi]. Consider the first step

[Â b̂]−1N0 = [ 0.0 1.0 ]−1{0} = {ẑ ∈ R
2 | ẑ2 = û = 0}

for illustration. The intersection [Â b̂]−1N0 ∩ Ẑ1 is highlighted in Fig. 1 in green. The
projection of this line segment according to (56) results in N1 = [−0.2, 1.0], which is the
result listed in Tab. I. An analysis of the subsequent steps reveals that the upper bound ξi
quickly converges to the bound x = 2 of the state constraints X = [x, x]. In contrast, the
lower bound ξ

i
tends towards −0.4 > x. This is reasonable, since initial states x0 ≤ −0.4

cannot be steered to the origin. For example, consider x(0) = −0.4, which results in
x(1) = −0.48 + 0.08u(0). Obviously, even choosing the largest admissible control action
u(0) = 1 does not result in convergence to the origin.

x

û

Ẑ1

Ẑ2
[Â b̂]−1N0 ∩ Ẑ1

210−1−2

4

2

0

−2

−4

Figure 1: Sets Ẑ1 and Ẑ2 for example 1. The set [Â b̂]−1N0 ∩ Ẑ1, which is required
in step k = 0 of the recursion (56)−(57), is marked in green.

Example 2: Consider the bilinear system (1)−(2) with the parameters

A =

[

1.12 0.54
0.76 0.92

]

, b =

[

0.5
−1.0

]

, N =

[

0.4 −0.6
−0.8 1.2

]

.

It is easy to prove that condition (21) is satisfied and that cT =
[

2.0 1.0
]

defines an
appropriate output (13). This choice results in

M =

[

2.0 1.0
3.0 2.0

]

, Â =

[

6.0 4.0
−9.0 −6.0

]

, b̂ =

[

−1.0
2.0

]

.

The sets Ẑ1 and Ẑ2 can be defined according to (40)–(43). Finally, evaluating the null-
controllable sets N1 through N12 according to Alg. 1 yields the null-controllable region
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shown in Fig. 2. In contrast to the one-dimensional example above, the sets Ni are non-
convex for every i > 0. The sets Ni are therefore represented as a union of convex sets
N j

i as described in Sect. 4. The example can also serve as an illustration of the reduction

of the number of the N j
i mentioned in Rem. 1. In step i = 12, for example, the number

of regions can be reduced from l = 2i = 4096 to l̃ = 18 (see r.h.s. of Tab. I for additional
values).

Table 1: Numerical results for examples 1 (left) and 2 (right).

i Ni

0 [ 0.0000, 0.0000]
1 [−0.2000, 1.0000]
2 [−0.3000, 2.0000]
5 [−0.3875, 2.0000]
12 [−0.3999, 2.0000]

i l = 2i l̃

0 1 1
1 2 2
2 4 4
5 32 13
12 4096 18

In order to verify the computed null-controllable region, we calculated an approximation
of the infeasible set, i.e. the complement of the maximal null-controllable set N∞ :=
limi→∞Ni. We used an algorithm introduced in [11] for this purpose, which is based
on a sequential hyperrectangular partition of the state space. The outer approximation
of the infeasible set, which is shown in red in Fig. 2, confirms the result found for the
null-controllable set.

x1

x
2

N12

210−1−2

2

1

0

−1

−2

Figure 2: Exact null-controllable set N12 for example 2 shown in green. Inner approx-
imation of the infeasible set based on [11] shown in red.
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6 Conclusions

We presented a method for the exact computation of null-controllable sets for bilinear
systems with input and state constraints. The proposed approach is based on an exact
linearization of the dynamical system, a corresponding transformation for the constraints,
and the application of recursive methods for the calculation of null-controllable sets for
linear constrained systems. The transformation of the constraints results in non-convex
constraints even if the bilinear system was originally subject to convex input and state
constraints. However, we showed that the transformed constraints can be represented
by two convex sets. This is essential for an efficient computer-based evaluation of the
null-controllable sets. We illustrated the approach with two examples. For the more
complicated two-dimensional example, we found, as anticipated, a non-convex shape of
the null-controllable set. We verified our results with outer approximations of the null-
controllable set.

We pointed out that the approach in the current form only applies to a small class of
bilinear systems (1), specifically single-input systems with rk(B) = 1, where B = [ b N ].
Future work has to address the extension to multi-input systems and output constraints.
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