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Leonhard Euler's original version of the calculus of variations (1744) used 
elementary mathematics and was intuitive, geometric, and easily visualized. In 
1755 Euler (1707-1783) abandoned his version and adopted instead the more 
rigorous and formal algebraic method of Lagrange. Lagrange’s elegant technique 
of variations not only bypassed the need for Euler’s intuitive use of a limit-taking 
process leading to the Euler-Lagrange equation but also eliminated Euler’s 
geometrical insight. More recently Euler's method has been resurrected, shown to 
be rigorous, and applied as one of the direct variational methods important in 
analysis and in computer solutions of physical processes. In our classrooms, 
however, the study of advanced mechanics is still dominated by Lagrange's analytic 
method, which students often apply uncritically using "variational recipes" because 
they have difficulty understanding it intuitively. The present paper describes an 
adaptation of Euler's method that restores intuition and geometric visualization. 
This adaptation can be used as an introductory variational treatment in almost all of 
undergraduate physics and is especially powerful in modern physics. Finally, we 
present Euler's method as a natural introduction to computer-executed numerical 
analysis of boundary value problems and the finite element method. 

 
I. INTRODUCTION 

In his pioneering 1744 work The method of finding plane curves that show some 
property of maximum and minimum,1 Leonhard Euler introduced a general mathematical 
procedure or method for the systematic investigation of variational problems. Along the way 
he formulated the variational principle for mechanics, his version of the principle of least 
action.2 Mathematicians consider this event to be the beginning of one of the most important 
branches of mathematics, the calculus of variations. Physicists regard it as the first variational 
treatment of mechanics, which later contributed significantly to analytic mechanics and 
ultimately to the fundamental underpinnings of twentieth-century physics, including general 
relativity and quantum mechanics. 

It is not certain3 when Euler first became seriously interested in variational problems 
and properties. We know that he was influenced by Newton and Leibniz, but primarily by 
James and Johann Bernoulli who were also attracted to the subject. The best known examples 
of variational calculus include Fermat’s principle of least time ("between fixed endpoints, 
light takes the path for which the travel time is shortest"), Bernoulli’s brachistochrone 
problem4 ("find a plane curve between two points along which a particle descends in the 
shortest time under the influence of gravity"), and the so-called isoperimetric problem ("find 
the plane curve which encloses the greatest area for a given perimeter").  

While each of Euler's contemporaries devised a special method of solution depending 
on the character of the particular variational problem, Euler's own approach was purely 
mathematical and therefore much more general. Employing geometrical considerations and 
his phenomenal intuition for the limit-taking process of calculus, Euler established a method 
that allows us to solve problems using only elementary calculus.  
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In 1755, the 19-year-old Joseph-Louis Lagrange wrote Euler a brief letter to which he 
attached a mathematical appendix with a revolutionary technique of variations. Euler 
immediately dropped his method, espoused that of Lagrange, and renamed the subject the 
calculus of variations.5 Lagrange’s elegant techniques eliminated from Euler’s methods not 
only the need for an intuitive approach to the limit process, but also Euler’s geometrical 
insight. It reduced the entire process to a quite general and powerful analytical manipulation 
which to this day characterizes the calculus of variations. Euler's method was little used by 
others, partly because in his time the limit-taking process was intuitive, lacking the rigorous 
basis provided 100 years later by Weierstrass.   

At the beginning of the twentieth century, interest in the nature and existence of 
solutions of variational problems and partial differential equations led to developments in 
approximation techniques. Euler’s method again attracted the attention of mathematicians, 
and eventually the modern analysis of variational problems and differential equations6,7,8,9 
fully vindicated Euler’s intuition. Euler’s method rose like a phoenix and became one of the 
first direct variational methods.6,7,8,9 At approximately the same time other direct methods 
appeared: the well-known Rayleigh-Ritz method (1908) and its extension called Galerkin’s 
method (1915). Direct methods offer a unified treatment that permits a deep understanding of 
the existence and nature of solutions of partial differential equations. Finally, all these 
methods for solving differential equations led to the formulation of the powerful Finite 
Element Method (FEM) (1943, 1956)10 for carrying out accurate numerical computer 
predictions of physical processes. 

For more than a century, students in advanced undergraduate classes in mechanics 
have been taught to use Lagrange’s calculus of variations to derive the Lagrange equations of 
motion from Hamilton’s principle, which is also known as the principle of least action (so 
renamed by Landau and Feynman). Students often meet the calculus of variations first in an 
advanced mechanics class, find the manipulations daunting, do not develop a deep conceptual 
understanding of either the new (to them) mathematics or the new physics, and end up 
memorizing "variational recipes."  

In what follows we describe a strategy that allows us to introduce important 
variational treatments of mechanics and physical laws11 as "core technology" while at the 
same time teaching students to apply it with understanding and insight. In recent papers12, 13, 14 
we have demonstrated that the visualization provided by Euler’s method leads to elementary-
calculus derivations of Lagrange's equations of motion, Newtonian mechanics, and the 
connection between symmetries and conservation laws. This approach is easily extended to 
variational treatments in all areas of physics where the calculus of variations is used. 

Section II provides a description of Euler’s method from his 1744 work, together with 
summary notes for its pedagogic use not published in our previous articles. The historical 
context with last developments in 20th century, which shows the significance and basic 
simplicity of Euler's work, is mainly available in the mathematical literature6,7,8,9  but is not 
well known to many in the physics community. 

Section III outlines the connection between the Euler method and computer 
simulations. Using interactive software students carry out their own investigations of the 
principle of least action and Lagrangian mechanics, a process that contemporary education 
research shows to be effective in developing understanding of concepts and their applications. 

The final Sec. IV lists how Euler's method can effectively substitute for the Lagrange 
method in almost all of undergraduate physics, especially modern physics. In order to 
compare the methods of Euler and Lagrange, we supply references to works whose authors 
apply each of the two methods to the same subjects. 
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II. BASIC IDEAS OF EULER’S METHOD  
A. Euler’s original considerations 

The transcription of Euler’s original derivations from his 1744 work is reproduced in 
Goldstine’s book3. Several other mathematics and physics books offer somewhat modified 
versions.15 Here we present only the essential considerations of the Euler approach.16 

Euler’s starting point was his ingenious reduction of the variety of variational 
problems to a single abstract mathematical form. He recognized that solving the variational 
problem requires finding an extremal (or more strictly stationary) value of a definite integral.  
As a first example Euler presents a solution of the simplest variational problem: A function 

),,( yyxFF ′= has three variables: the independent coordinate x, the dependent coordinate y, 
and its derivative y′  with respect to the independent coordinate. Our problem is to determine 

the curve y = y(x), with ax ≤≤0 , which will make the definite integral ∫ ′a
dxyyxF

0
),,(             

extremal. Such an integral occurs in the brachistrochrone problem or in the description of 
motion using the principle of least action. 

Euler presents three crucial procedures which allowed him to solve the problem using 
only elementary calculus:  

(1) Divide the interval between x = 0 and x = a into many small subintervals, each of 
width x∆ . 

(2) Replace the given integral by a sum ∑ ∆′ xyyxF ),,( . In each term of this sum 
evaluate the function F at the initial point x, y of the corresponding subinterval and 
approximate the derivative xyy dd /=′  by the slope of the straight line between initial and 
final points of the subinterval. 

(3) Employ a visualized “geometrical” way of thinking.  
Goldstine’s book3 displays (p.69) the original Euler’s figure (Fig. 1) in which the 

curve anz represents the unknown extremal curve y = y(x): 
 

 
FIG. 1. Original Euler’s figure used in his derivation 

 
Figure 1 illustrates the fact that if we shift an arbitrarily chosen point on the curve, for 

example point n, up or down by an increment nv, then in addition to the obvious change in the 
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ordinate yn of the point n, there are also changes in neighboring segments mn and no and their 
slopes. All other points and slopes remain unchanged. These changes mean that only two 
terms in the integral sum ∑ ∆′ xyyxF ),,(  are affected, the first corresponding to segment mn 
and the second to segment no. The resulting change in the integral sum is a function of the 
single variable yn . Because the curve anz is assumed to be extremal already, this function of 
the variable yn  must have a stationary value at n. 

This new problem can be solved easily using the ordinary calculus of maxima and 
minima. The condition for the sum to be stationary corresponds to a zero value of its 
derivative with respect yn. To calculate this derivative Euler derives the changes in both 
affected terms corresponding to segment mn and no caused by varying yn and demands that 
these changes result in zero net change in the sum, from which Euler finally extracts the 
equation: 

x
y
F

y
F

y
F

mnn
∆





′∂

∂−
′∂

∂−
∂
∂=0   (1) 

where yn is again the ordinate of the point n and ny′  is its derivative at the point n and my ′  is 
the similar derivative corresponding to the point m. 

In the limit as ∆x approaches zero, the sum returns to the original integral and Eq. (1) 
becomes a differential equation at point m. Moreover, since the location of the triplet of points 
m, n, o along the curve was chosen arbitrarily, the differential equation holds for the entire 
interval between x = 0 and x = a:  


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F
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y
F0         for  ax ≤≤0  (2) 

This final result is usually called the Euler-Lagrange equation and it expresses the 
first necessary condition for an extremal value of the integral. Euler gives a number of  
specific and general examples that illustrate how to use his method, all conceptually similar to 
that outlined above. 

To prepare for later sections of the present paper, we recall the standard physical 
notation used in the variational treatment of classical mechanics based on the principle of 
least action. Motion in one dimension is sufficient to illustrate the method. Then the 
description of motion includes as independent variable the time t (instead of x) along with the 
time-dependent generalized coordinate q (instead of y). As a generalized coordinate q one can 
choose not only one of the Cartesian coordinates x, y, z but also any other coordinate that 
describes position, such as ϕ or r. The role of the function F is played by the Lagrangian 
function, L = K − U, the difference between kinetic and potential energy. The definite integral  

( )∫∫ −==
2

1

2

1

t

t

t

t

dtUKLdtS  (3)  

is called the action integral, or in short the action and is assigned the symbol S. According to 
this notation, the Euler-Lagrange equation (2) has the well-known form: 

0=





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∂−
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∂

q
L

dt
d

q
L .  (4) 

where a dot over the q represents differentiation with respect to time. 
If we consider x as coordinate q, Euler’s diagram (Fig. 1) is simply the spacetime 

diagram, and the unknown curve x(t) is called the worldline. Finally, the variational principle 
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of least action says that the actual path followed by particle is the one for which the action S is 
minimal (or more precisely stationary). 
 
B. Advantages and disadvantages of the method 

Two major objections can be made to the Euler procedure:  
(1) There are two limit-taking processes leading to the differential equations: partial 

derivatives with respect to coordinates and passage to the limit ∆x → 0. From the 
mathematical viewpoint the use of partial derivatives is justified, but one must demonstrate 
the legitimacy of the limit-taking passage ∆x→ 0. Euler neither established17 the existence of 
this limit nor proved the fact that the limit converges to the real extremal curve. The Lagrange 
method of variations is free from such use of the double limit process but also does not 
contain geometrical insights, since geometrical examples typically cannot represent general 
results.  

(2) Although the basic ideas of Euler's method are conceptually simple and familiar, 
nevertheless applying the method in detail requires manipulation3,15 of sums containing many 
symbols and subscripts. As a result, this method becomes cumbersome and less transparent 
than the elegant Lagrange technique.18 

In response to the first criticism, we recall that modern 20th century analysis provided 
an exact proof of Euler’s method, among other results. In light of these advances, we now see 
that Euler’s imaginative use of his procedure did not fail, and his geometrical emphasis 
caused no loss in generality. Moreover, although Lagrange was proud of the fact that his great 
work Mécanique Analytique (1788) contained no figures or geometrical considerations, 
contemporary instruction in physics and modern physics itself make use of geometrical 
representations, for example Feynman diagrams in quantum physics and phase diagrams in 
chaos theory.  

We have to agree with the second objection, that many subscripts and the use of sums 
decreases the clarity and transparency of Euler's method for teaching purposes. Happily it is 
possible to remove this weakness, modifying Euler’s method to make it more accessible and 
simple. One of our recent papers13 describes such modification. Here we mention only the key 
steps which simplify and clarify the method.  

(a) Euler’s diagram (Fig.1) and the geometrical method tell us that only two terms of 
the integral sum are affected; all the rest remain constant and need not enter the derivation. 
Because the definite action integral is a summation, one can conclude “if the action integral is 
extremal along the entire worldline, then it is also extremal for every subsection of the 
wordline.”19 Therefore it is sufficient to consider only an infinitesimal subsection of any 
unknown worldline: three points near to one another connected by two straight-line segments 
(analogous to mno in Fig.1). Then the action contains only the two required terms and there is 
no need to use subscripts and formal sums. 

(b) We do not need to calculate the two terms of our Riemann integral using initial 
points of the subintervals. Instead we take their midpoints. The midpoint approximation leads 
to the same symmetrical structure for both terms of the action and is quite natural from the 
student’s viewpoint. 

Another way to increase the power and clarity of Euler’s method is to spend some 
time applying it intuitively and inductively before moving on to the Lagrange formalism. 
Advanced textbooks18 typically apply the deductive approach: first they derive the general 
Lagrange equations of motion from the principle of least action and then apply the Lagrange 
formalism to particular problems. If instead we pause to work out examples using the Euler 
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method, we achieve a remarkable simplification and reinforce the later introduction of 
Lagrange's equations.13 

As an example of this simplification, we analyze the motion of a particle in a uniform 
gravitational field. Think of a particle thrown vertically upward near Earth’s surface and 
choose arbitrarily three infinitesimally close events 1, 2, 3 on two segments A and B of the 
particle’s worldline (see Fig. 2). Let x1, x2, x3 be the spatial coordinates of these three events 
and ∆t be the time separation between them. 

 

x 1   
x 3   
x 2   

t 1   t 2   t 3   

segment  A   
segment  B   

1 

2   

3   

 
FIG. 2 Two segments of the worldline (dependence of height on time) of a particle projected 
vertically near Earth's surface. Points 1, 2 and 3 are three successive events on the worldline. All 
coordinates with the exception of x2 are fixed. We change x2 to satisfy the principle of least 
action. 

 
The action S in Eq. (3) has two contributions:  
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where the expression in each curly bracket is the kinetic energy minus the potential energy. 
All space and time coordinates are fixed with the exception of the position x2 of the middle 
event, which we vary to satisfy the principle of least action. Taking the ordinary derivative of 
the total action S = SA + SB and setting the result equal to zero, we obtain after rearrangement:  

  
2

2
123

t
xxx

mmg
∆

+−
=−  (7) 

In the limit ∆t→ 0 Eq. (7) reduces to Newton's second law of motion12 F=ma.   
The same result can also be obtained by direct use of Lagrange's equation, but in our 

experience when students start with the Lagrange equation they typically concentrate on 
learning the "recipe" or the "problem solving strategy" without considering the physical 
interpretation.  
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III. THE EULER METHOD AS A NUMERICAL TOOL 
A. Euler’s method in numerical analysis 

Unlike Lagrange’s purely analytic method, the Euler method provides a basis for 
computer modeling. Computer implementation of the method in appropriate interactive 
software allows students to employ basic concepts of the principle of least action and 
Lagrangian mechanics to visualize the variational problem, to focus on physical ideas and 
concepts, and to develop physical intuition. No algebraic or analytic manipulations or 
differential equation overlays this student activity.  

We now recapitulate Euler’s procedure briefly and more precisely as a numerical 

method.20,21,22 To find the stationary value of a functional ∫=
2

1
LdtS , Euler’s procedure is as 

follows:  
(1) We divide the interval into n small subintervals of equal time duration ∆t, 

replacing the unknown curve with a piecewise-linear function. In other words, we replace the 
curve by a broken line of n connected segments (see Fig.3). 

 

t 

x 

t0 t1 

x0 x1 x2 xn-1 xn 

tn−1 tn 
 

FIG. 3. Example of a piecewise-linear function approximating a smooth curve. 
 
(2) We approximate the action integral S by the sum ∑ ∆≈ tLS  with terms calculated 

at initial points of subintervals or we can apply the more useful midpoint approximation. The 
derivative is given by a difference coefficient, the slope of the straight line between initial and 
final points of the given subinterval.  

(3) Since we fix all times  t0, t1, t2, ...., tn-1, tn and the two endpoints x0 and xn, therefore 
S is a function )...,,( 121 −nxxxS . To find the stationary value S, we choose the values of x1, x2, 
...., xn-1 to satisfy the following equations: 

0   ...,  ,0   ,0
121

=
∂

∂=
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∂=

∂
∂

−nx
S

x
S

x
S

                                          (8) 

(4) Solving the system of equations (8), with or without the help of a computer, we 
obtain an approximate solution of the variational problem.  

Today Euler’s method is one of the so-called direct variational methods for solving 
boundary value problems. As we will see in Sec. IV it can be regarded as a special case of the 
finite element method. 
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Technical detail: In the second step of the Euler method we could use the trapezoidal 
rule for the approximation of the action integral S, which is as efficient as the midpoint 
approximation.23 
 
B. Visualization of Euler’s method. Hunting for the least-action worldline 

Our one-dimensional version of Euler's numerical method offers a great opportunity to 
visualize the whole process of finding the stationary curve (worldline) by minimizing the 
action integral. For simplicity consider a particle moving in a one dimensional potential 
energy U(x). Then the action integral (3) has the form  

         dtxUmvS ∫ 



 −=

2

1

2 )(
2
1   (9) 

The computer24 can display a trial broken worldline of the particle as shown in Fig. 3. 
If we calculate the action S with the help of the trapezoidal rule,23 the result is:  
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The student uses the computer mouse to select an arbitrary moveable point k with 
ordinate xk on the worldline, then drags the point up and down parallel to the x-axis while 
monitoring the displayed value of the total action in order to find the minimal (stationary) 
action for the time value of that point. Mathematically this procedure corresponds to finding 
the solution of the equation 0/ =∂∂ kxS . If we take the derivative of action (10), with respect 
xk, the equation is: 

         2
11 2)(

t
xxx

m
dx

xdU kkk

xk ∆
+−

=− −+  .  (11) 

This is the finite difference version of Newton’s law of motion. 
The student then drags the remaining intermediate points up and down, cycling 

repeatedly through all the moveable points until the time value of every point results in the 
least (stationary) value of the total action. This condition implies that all equations (8) or (11) 
are satisfied. According to the principle of least action, the resulting worldline approximates 
the one taken by the particle. This method of successive displacements or hunting for the 
least-action worldline is straightforward but tedious when many intermediate points are 
involved. After students have experienced this insightful but tiresome manual process, the 
computer can be deployed to find automatically the minimum-action location of intermediate 
events. This process of using the principle of least action directly to predict the motion of 
mechanical systems25 encourages students to think critically and intuitively as they 
manipulate the mathematical machinery. 

Technical details: The system of equations (8) is frequently a system of linear 
equations (for example for a linear potential function). In that case the method of successive 
displacements becomes the well-known Gauss-Seidel iterative method or Gauss-Seidel 
relaxation. This method is one of the basic linear iterative methods of numerical analysis and 
can be found in almost every introductory textbook of numerical analysis.26,27 We do not 
discuss the question of convergence here, since it goes beyond the scope of the present paper.   
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IV. WHEN TO USE EULER’S METHOD  
This section briefly describes applications of calculus of variations to many branches 

of physics, each with an appropriate variational principle that employs Euler’s method. The 
section also includes references to works using Euler’s method and, for comparison, 
references to publications that treat the same problems using Lagrange’s approach.  

A. Classical mechanics: Newton’s laws of motion  
B. Symmetries and constants of motion: Noether’s theorem 
C. Special Relativity: Motion and conservation laws 
D. General relativity: Black holes 
E. Electromagnetism: Motion of a charged particle 
F. Liquids and Solids: An equilibrium state  
G. Quantum mechanics: Feynman’s sum over path theory  
H. Ray Optics: Fermat’s principle 
I. Calculus of variations: Introductory elementary problems 
J. Numerical mathematics: Boundary value problems & FEM 

 
A. Classical mechanics: Newton’s laws 

As mentioned in Sec. II.A, Newtonian mechanics can be reformulated as a single 
unifying principle, the principle of least action. A recent article28 spells out in detail the 
derivation of Newton's laws of motion from the principle of least action using Euler’s method.  

 
B. Symmetries and constants of the motion: Noether’s theorem  

The simple demonstration of the fundamental relation between symmetries of nature 
and conservation laws described by Noether’s theorem is given in Refs. 29. The first article in 
that reference uses Euler's method and the principle of least action, along with elementary 
calculus. 
   
C. Special Relativity: Motion and conservation laws 

In special relativity the principle of least action defines action for a free particle with 
mass m moving from event 1 to event 2:30   

 ∫−=
2

1
dsmcS   (12) 

where ds represents the spacetime interval (“line element”) between two events that are 
infinitesimally close on the particle’s world line in flat space-time. We note that the action 
integral (12) does not depend on our choice of inertial reference system, because the interval 
ds is invariant under Lorentz transformation. Hence the principle of least action automatically 
satisfies the core of special relativity—the principle of relativity.  

Since the interval ds also corresponds to wristwatch or proper time recorded by the 
clock moving with the particle (ds = cdτ), the action (12) is equal to the integral  

∫ τ−=
2

1
2 dmcS  (13) 

Minimal (or stationary) action (13) along a real worldline makes the total proper 

time ∫ τ=τ
2

1
d  maximal (or stationary). Therefore, because of the minus sign in front of the 
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integral in equation (13), the relativistic principle of least action implies the principle of 
maximal proper time, sometimes called maximal aging. 

Simple use of the principle of least action (or maximal proper time) employing our 
adapted Euler method14,31 immediately yields well-known relativistic forms of momentum 
and energy and verifies them to be constants of the motion. 
 
D. General relativity: Black holes  

Einstein tells us that there is no gravitational force, but only curved space-time. His 
general relativity theory (theory of gravitation) always allows us to create a local inertial 
frame with respect to which a particle moves along a worldline that is incrementally straight. 
Therefore it should not be surprising that the same32 expressions (12) and (13) for action and 
the same principle of least action describes the motion of a particle in general relativity as in 
special relativity. In this case, however, the expression for the incremental proper time dτ of 
equation (13) (or ds) is provided by the metric, the solution to Einstein's field equations that 
describes any non-varying curved space-time such as that around spinning or nonspinning 
centers of gravitational attraction: planets, stars, quasars, neutron stars, and black holes. The 
same general33 Euler method again allows us to describe and explore the motion of free 
particles, satellites, and light in the vicinity of these astronomical structures. 
 
E. Electromagnetism: Motion of a charged particle 

The Euler method and the principle of least action with the ( )∫ −= dtUKS  can also 
be applied to the motion of a particle with charge q in the electromagnetic field.  

If we assume an electrostatic field E described by the scalar potential ϕ(x, y, z), then 
the potential energy of the particle is U = qϕ. Therefore application of the Euler method is 
identical with the three dimensional case in Sec. IV A and leads to the equation of motion 

Fa =m , where EF qq −=ϕ∇−= . 
For a charge q moving at a velocity v in a uniform magnetic field B, which according 

to the classical electromagnetic theory is derivable from a vector potential A(x, y, z) by 
AB ×∇= , we have Av ⋅−= qU . We interpret this quantity as the "interaction potential 

energy.“ Direct application of Euler's method34 again gives Fa =m  but this time with 
BvF ×= q .  

Because action is additive, particle motion in a variable electromagnetic field leads to 
the potential Av ⋅−ϕ= qqU . Combining this with previous results leads to a single Lorentz 
force equation of motion Fa =m , where )( BvEF ×+= q . 

These considerations can also be extended to the relativistic motion of a charged 
particle merely by formally replacing the Newtonian expression for kinetic energy (1/2)mv2 in 

the action with the relativistic expression: 222 /1 cvmc −− . But the term 222 /1 cvmc −−  
in the relativistic formula for the action S is not what we have called the kinetic energy (see 
Feynman Ref. 19). 

 

 
F. Liquids and Solids: An Equilibrium state  

If we apply the principle of least action to a conservative mechanical system described 
by a potential U(x) in an equilibrium state at rest, then the Euler method immediately provides 
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the principle of least (stationary) potential energy. Here is a simple proof.35 The state of 
equilibrium is described by constant coordinates. In our case of a three-point worldline this 
means x1 = x2 = x3. Application of the Euler method to the principle of least action gives the 
same condition as (11) at point 2: 

2
123 2)(

2 t
xxxm

dx
xdU

x ∆
+−=−  (14) 

Since x1 = x2 = x3 , we have: 

0)(

2

=
xdx

xdU  (15) 

Equation (15) means that U is an extremum, or rather has a stationary value, at 
equilibrium.  

The principle of least potential energy has many applications36,37,38 such as the statics 
of engineering structures (theory of elasticity) and surface phenomena (liquids). 
 
G. Quantum mechanics: Feynman’s sum over paths theory 

Classical action plays a fundamental role in Feynman’s quantum mechanics,39 a third 
formulation of the subject in addition those of Schrödinger and Heisenberg. As we can see in 
Ref. 24, some of the ideas of Euler’s computer method can be used in student exploration of 
the microworld, leading to an understanding of the basic concepts of quantum physics (such 
as the wave function, quantum interference, evolution of quantum states, boundary states) 
without using complex functions or partial differential equations.  
 
H. Ray Optics: Fermat's principle 

Euler’s method, particularly the interactive computer application (Sec. III B), permits 
a highly visual demonstration of Fermat’s principle,40

 the earliest extremal principle that still 
survives in modern physics. Since Fermat's principle accounts for every feature of classical 
ray optics, hunting for the minimum-time path allows exploration and understanding of 
reflection, refraction (at a plane surface, in layers of glass, or in the atmosphere), mirages, and 
ray tracing in optical systems. 
 
I. Calculus of variations: Introductory elementary problems 

Euler’s method is used in some mathematics texts to introduce the calculus of 
variations.7,38 Lagrange's variational techniques can be applied to problems in parallel with 
interactive computer exploration of the same problems using Euler's method, leading to a 
deeper understanding of both and of the physical systems that they describe. 

 
J. Numerical mathematics: Boundary value problems and Finite Element Method 

Euler’s method can be used to introduce the theory and basic concepts of the Finite 
Element Method (FEM).41 As usual, the first step consists in dividing the interval over which 
the solution is defined into a number of small subintervals, called elements in the FEM. The 
second step is to replace the unknown curve with a piecewise-linear function (Fig.3) labeled 
ϕ. Starting with the trial broken worldline ϕ given by x0, x1, ..., xn , it is not difficult to show 
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that ϕ can be expressed as a linear combination of the "hat functions" ϕ0, ϕ1, ...,  ϕn shown in 
Fig. 4: nnxxx ϕ++ϕ+ϕ=ϕ ....1100 . 

t0 t1 tn-1 tn 

ϕ
1 1 

t0 t1 tn-1 tn 

ϕ
0 1 

t0 t1 tn-1 tn 

ϕn-1 
1 

t0 t1 tn-1 tn 

ϕn 
1 

 
 

FIG.4 “Hat functions,” an example of basis functions used in the FEM. 
 

Such a set of so-called basis functions ϕ0, ϕ1, ... , ϕn  represents the simplest type used 
for one-dimensional applications of the FEM. Each function is zero except on a very small 
number of segments, a general feature of basis functions.   

The next step of the FEM is finding positions x1, ... , xn-1 for the given boundary 
conditions x0 = a, xn = b that minimize the action integral S. The integral is calculated 
approximately with the help of methods of numerical integration (such as the trapezoidal 
rule). Since the basis functions ϕ0, ϕ1, ... ,  ϕn, and endpoints x0 and xn are fixed, the action S 
due to varying ϕ is a function of only the coordinates x1, ..., xn-1. Finding the minimum value 
of the function S corresponds to solving a system of equations (8) with respect to unknowns 
x1, ..., xn-1. The solution of the system (8) is regarded as an approximate solution to the 
variational problem obtained by FEM.  

The last two procedures in the FEM, approximating a function with a linear 
combination of basis functions and finding coefficients of a linear combination of these 
functions which minimizes the action integral, are known as the Rayleigh-Ritz method.42 

The accuracy of the FEM can be increased by (1) increasing the number of elements, 
(2) changing the set of basis functions or (3) changing the numerical integration formula. 
Such improvements often employ quadratic basis functions and the Gauss-Legendre 
numerical integration. Such refinements permit us to solve more general problems than those 
in mechanics, for example heat diffusion or quantum systems described by Schrödinger’s 
wave equation.43  

Euler’s method is the simplest and most fundamental example of finite element 
analysis . Its importance equals that of generally known Euler's one-step method for solving 
initial value problems in the field of ordinary differential equations. Like Euler’s one-step 
method, the Euler variational method can be implemented simply and transparently, and every 
individual step is clearly visible and easy to understand. It illustrates all essential features of 
finite element analysis and numerical solutions of variational problems.  
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V. CONCLUSIONS 
The Euler variational method provides a conceptually and mathematically simple tool 

to introduce the principle of least action and Lagrangian mechanics. Even introductory 
examples offer dramatic simplification compared with the traditional Lagrange approach. 
Euler’s method, based on elementary calculus, provides important geometric-visual insights, 
and its computer adaptation gives students a powerful tool to explore least-action mechanics 
without manipulation of equations. For beginners, Euler's method promises to be the key that 
unlocks the gate to the central variational treatments of physics. 

The overwhelming majority of calculus-of-variations applications using Euler’s 
method is connected to the principle of least action and demonstrates the generality of this 
principle and its power to illuminate almost all of undergraduate physics. Simultaneously the 
method allows us to present the principle of least action as a bridge between classical and 
contemporary physics as soon as possible without specific mathematical tools. 

Applying the computer adaptation of the method permits a natural introduction to 
numerical analysis of boundary value problems and the powerful finite element method. 

Although Euler's legacy is more than 250 years old, it remains centrally important for 
mathematicians and physicists and richly deserves the accolade of Pierre-Simon Laplace: 
"Lisez Euler, Lisez Euler, c'est notre maître à tous." ("Read Euler, read Euler, he is our master 
in everything.")44 
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