Beyond Luck
 Mathematics and Games

R. Verfürth

Fakultät für Mathematik
Ruhr-Universität Bochum
www.ruhr-uni-bochum.de/num1
Milan / November 19th, 2012
$\square_{\text {Classification of Games }}$

Two Main Aspects

- Chance
- Strategy

Overview
Classification of Games
Combinatorial Games
Evaluation of Positions
Efficient Evaluation of Positions
Computational Work
Winning Strategies and Decidability
Epilogue
References

Importance of Strategy

- Low: Throwing dices, Lotteries
- Medium: Poker, Bridge, Monopoly
- Crucial: Othello, Nine Men's Morris, Checkers, Chess, Go

Structure

- Two players are drawing alternatively.
- For every possible position there is a finite number of possible draws.
- There is a finite number of possible final outcomes (Win, Loss, Tie).
- The gain of one player equals the loss of the other one (zero-sum-game).
- There is no infinite sequence of positions.
- Chance is excluded.

Evaluation of Positions

- $F(p)$ is the value of position p for the player with the right to draw.
- $-F(p)$ is the value for the other player.
- Value of a terminal position:

$$
F(p)= \begin{cases}\infty & \text { for a win } \\ -\infty & \text { for a loss } \\ 0 & \text { for a tie }\end{cases}
$$

- Value of a non-terminal position?

Problems

- Evaluate a given position.
- Find an optimal draw.
- Can winning be enforced?
- Is the game fair?

Beyond Luck - Mathematics and Games LEvaluation of Positions	RUB

Tree

Value of a Non-Terminal Position

- Position p allows d possible draws which give rise to positions p_{1}, \ldots, p_{d}.
- $F(p)$ should give the value of p.
- $F(p)=\max \left\{-F\left(p_{1}\right), \ldots,-F\left(p_{d}\right)\right\}$
- Recursive definition!
- Neg-max search

Naive Realisation

- Search the complete tree and evaluate F recursively.
- This is too costly.
- Use a fixed depth for the search or a time-monitor.
- This only yields an approximation for F.

Goals

- Try to decide as early as possible whether a given branch of the tree yields a better result.
- Try to prune (cut) inefficient branches as close as possible to the root (= current position).
- Try to achieve an increased search-depth with a shorter computing time.
$\alpha-\beta$-pruning (Donald N. Knuth)
- Construct a function $G(p, \alpha, \beta)$ such that:

$$
G(p, \alpha, \beta)= \begin{cases}\alpha & \text { if } F(p) \leq \alpha, \\ F(p) & \text { if } \alpha \leq F(p) \leq \beta, \\ \beta & \text { if } \beta \leq F(p) .\end{cases}
$$

- At the root: $G(p,-\infty, \infty)$

Improved Programme

```
int value(Position p, int alpha, int beta) {
    if( endPosition(p) )
        return F(p);
    int v = alpha;
    while( nextChild(p, q) && v < beta )
        v = max( v, -value(q, -beta, -v) );
    return v;
}
```


Realisation

- Initialise the value v of G with $v=\alpha$.
- Stop maximising as soon as $v \geq \beta$.
- On the next level set

$$
\begin{aligned}
& \alpha_{\text {new }}=-\beta_{\mathrm{old}} \\
& \beta_{\mathrm{new}}=-v
\end{aligned}
$$

Beyond Luck - Mathematics and Games
$ட_{\text {Efficient Evaluation of Positions }}$

Tree with Pruning

Best Case

- For every position the first possible draw leads to an optimum, i.e. the values are ordered increasingly on every level.
- The algorithm only checks the optimal positions.
- Any other algorithm has at least the same cost.

Worst Case

- There is always a permutation of the positions such that all positions must be checked.
- Any other algorithm has at least the same cost.

Counter Example

Beyond Luck - Mathematics and Games
$L_{\text {Computational Work }}$

Generic Case

- h height of the tree (= number of levels)
- d width of the tree ($=$ number of possible draws per position)
- The cost is proportional to $\left(r_{d}\right)^{h}$ with a number r_{d} depending on d.
- $1 \leq r_{d} \leq d$
- $r_{2} \approx 1.8$
- $r_{3} \approx 2.5$
- $r_{d} \approx \frac{d}{\ln d}$

Mathematical Tools

- Combinatorics
- Generating functions for the analysis of the recursions
- Perron-Frobenius Theorems for the asymptotic behaviour of r

Winning Strategies

- Player A has a winning strategy, if player B cannot prevent A from winning even when playing optimally.
- At most one player can have a winning strategy.

Game-Dependent Modifications

- Ad hoc evaluation of positions without search
- Use of symmetries
- Hash-tables of already analysed positions
- Opening libraries
- End-game libraries

Beyond Luck - Mathematics and Games

-Winning Strategies and Decidability

Strategies for a Tie

- Player A has a strategy for a tie, if player B cannot avoid a tie even when playing optimally.
- Both players can have a strategy for a tie.

Decidability

- A game is decidable, if one player has a winning strategy or both players have a strategy for a tie.
- A game is fair, if both players have a strategy for a tie.
-Winning Strategies and Decidability

Expected Results

- 8×8 Othello may be fair
(about 10^{37} positions)
- Chess may be fair
(about 10^{44} positions)
- Go may be fair (??)
(about 10^{170} positions)

Known Results

- 4×4 Othello: black wins.
- 6×6 Othello: black wins.
(Feinstein 1993, 5 weeks on a workstation, 10^{10} positions)
- Nine Men's Morris is fair.
(Gasser-Nievergelt 1994, 3 years on a PC-cluster, forward-backward-search, 49 sub-spaces with $10^{6}-10^{10}$ positions, use symmetries)
- Checkers is fair.
(Schaeffer-Lake 2007, forward-backward-search, sub-spaces with up to 10^{18} positions)
Beyond Luck - Mathematics and Games
$\left\llcorner\begin{array}{l}\text { Winning Strategies and Decidability } \\ \llcorner \end{array}\right.$ RUB
"High Noon"
- Who draws looses.

- Red looses after 37 draws.
- Black looses after 30 draws.

A quoi bon?

- Economy (Nash-equilibrium)
- Data mining
- Classification and regression trees
- Fast solvers for upwind discretizations of diffusion-convection equations

