RUB

Beyond Luck Mathematics and Games

R. Verfürth

Fakultät für Mathematik Ruhr-Universität Bochum

www.ruhr-uni-bochum.de/num1

Milan / November 19th, 2012

1/ 30

RUB

Beyond Luck – Mathematics and Games \Box Classification of Games

Two Main Aspects

► Chance

► Strategy

Overview

Classification of Games Combinatorial Games Evaluation of Positions Efficient Evaluation of Positions Computational Work Winning Strategies and Decidability Epilogue References

Beyond Luck – Mathematics and Games

Importance of Strategy

- ▶ Low: Throwing dices, Lotteries
- ▶ Medium: Poker, Bridge, Monopoly
- ▶ Crucial: Othello, Nine Men's Morris, Checkers, Chess, Go

RUB

RUB

Structure

- ▶ Two players are drawing alternatively.
- For every possible position there is a finite number of possible draws.
- There is a finite number of possible final outcomes (Win, Loss, Tie).
- The gain of one player equals the loss of the other one (zero-sum-game).
- ▶ There is no infinite sequence of positions.
- ▶ Chance is excluded.

5/ 30

Beyond Luck – Mathematics and Games

RUB

Evaluation of Positions

- F(p) is the value of position p for the player with the right to draw.
- ▶ -F(p) is the value for the other player.
- ► Value of a terminal position:

$$F(p) = \begin{cases} \infty & \text{for a win} \\ -\infty & \text{for a loss} \\ 0 & \text{for a tie} \end{cases}$$

▶ Value of a non-terminal position?

Beyond Luck – Mathematics and Games

Problems

- ► Evaluate a given position.
- ▶ Find an optimal draw.
- ► Can winning be enforced?
- ▶ Is the game fair?

RUE

RUE

Beyond Luck – Mathematics and Games — Evaluation of Positions

Tree

Value of a Non-Terminal Position

- Position p allows d possible draws which give rise to positions p₁, ..., p_d.
- F(p) should give the value of p.
- $F(p) = \max\{-F(p_1), \dots, -F(p_d)\}$
- ► Recursive definition!
- ► Neg-max search

9/ 30

Beyond Luck – Mathematics and Games

RUB

11/ 30

Naive Programme

```
int value(Position p) {
    if( endPosition(p) )
        return F(p);
    int v = - INF;
    while( nextChild(p, q) )
        v = max( v, -value(q) );
    return v;
}
```


Naive Realisation

- \blacktriangleright Search the complete tree and evaluate F recursively.
- ► This is too costly.
- ▶ Use a fixed depth for the search or a time-monitor.
- This only yields an approximation for F.

RUF

RUF

Beyond Luck – Mathematics and Games

Goals

- Try to decide as early as possible whether a given branch of the tree yields a better result.
- Try to prune (cut) inefficient branches as close as possible to the root (= current position).
- Try to achieve an increased search-depth with a shorter computing time.

α - β -pruning (Donald N. Knuth)

• Construct a function $G(p, \alpha, \beta)$ such that:

$$G(p, \alpha, \beta) = \begin{cases} \alpha & \text{if } F(p) \le \alpha, \\ F(p) & \text{if } \alpha \le F(p) \le \beta, \\ \beta & \text{if } \beta \le F(p). \end{cases}$$

• At the root: $G(p, -\infty, \infty)$

13/ 30

RUE

Beyond Luck – Mathematics and Games

RUB

Improved Programme

```
int value(Position p, int alpha, int beta) {
    if( endPosition(p) )
        return F(p);
    int v = alpha;
    while( nextChild(p, q) && v < beta )
        v = max( v, -value(q, -beta, -v) );
    return v;
}</pre>
```


Beyond Luck – Mathematics and Games Efficient Evaluation of Positions

Realisation

- Initialise the value v of G with $v = \alpha$.
- Stop maximising as soon as $v \ge \beta$.
- ▶ On the next level set

 $\alpha_{\rm new} = -\beta_{\rm old},$ $\beta_{\rm new} = -v.$

RUB

RUE

Beyond Luck – Mathematics and Games

Tree with Pruning

RUB

Best Case

- For every position the first possible draw leads to an optimum, i.e. the values are ordered increasingly on every level.
- ▶ The algorithm only checks the optimal positions.
- ▶ Any other algorithm has at least the same cost.

17/30

RUB

19/ 30

Beyond Luck – Mathematics and Games Computational Work

Worst Case

- There is always a permutation of the positions such that all positions must be checked.
- Any other algorithm has at least the same cost.

Beyond Luck – Mathematics and Games Computational Work

Counter Example

RUB

RUE

Beyond Luck – Mathematics and Games

Generic Case

- h height of the tree (= number of levels)
- d width of the tree (= number of possible draws per position)
- The cost is proportional to $(r_d)^h$ with a number r_d depending on d.
- ▶ $1 \le r_d \le d$
- ► $r_2 \approx 1.8$
- ▶ $r_3 \approx 2.5$
- \blacktriangleright $r_d \approx \frac{d}{\ln d}$

Mathematical Tools

- ► Combinatorics
- Generating functions for the analysis of the recursions
- \blacktriangleright Perron-Frobenius Theorems for the asymptotic behaviour of r

Game-Dependent Modifications

- ▶ Ad hoc evaluation of positions without search
- ► Use of symmetries
- ▶ Hash-tables of already analysed positions
- ▶ Opening libraries
- ▶ End-game libraries

RUE

RUF

21/ 30

RUE

Beyond Luck – Mathematics and Games

RUB

Winning Strategies

- Player A has a winning strategy, if player B cannot prevent A from winning even when playing optimally.
- At most one player can have a winning strategy.

Beyond Luck – Mathematics and Games

Strategies for a Tie

- Player A has a strategy for a tie, if player B cannot avoid a tie even when playing optimally.
- ▶ Both players can have a strategy for a tie.

Decidability

- A game is decidable, if one player has a winning strategy or both players have a strategy for a tie.
- A game is fair, if both players have a strategy for a tie.

RUE

Known Results

- 4×4 Othello: black wins.
- 6 × 6 Othello: black wins.
 (Feinstein 1993, 5 weeks on a workstation, 10¹⁰ positions)
- Nine Men's Morris is fair.
 (Gasser-Nievergelt 1994, 3 years on a PC-cluster, forward-backward-search, 49 sub-spaces with 10⁶ - 10¹⁰ positions, use symmetries)
- Checkers is fair.
 (Schaeffer-Lake 2007, forward-backward-search, sub-spaces with up to 10¹⁸ positions)

25/30

Beyond Luck – Mathematics and Games

RUB

Expected Results

- 8 × 8 Othello may be fair (about 10³⁷ positions)
- Chess may be fair (about 10⁴⁴ positions)
- ▶ Go may be fair (??) (about 10¹⁷⁰ positions)

Beyond Luck – Mathematics and Games

"High Noon"

Who draws looses.

- ▶ Red looses after 37 draws.
- ▶ Black looses after 30 draws.

26/30

RUF

Beyond Luck – Mathematics and Games $\[b]$ Epilogue

RUB

A quoi bon?

- ► Economy (Nash-equilibrium)
- ► Data mining
- \blacktriangleright Classification and regression trees
- Fast solvers for upwind discretizations of diffusion-convection equations

Beyond Luck – Mathematics and Games \Box References

References

J. Bewersdorff

Luck, logic and white lies: The mathematics of games A K Peters, 2004

- Handout of this talk www.rub.de/num1 Link: Vorträge / Talks
- Bachelor theses on "Mathematics and Games" www.rub.de/num1
 Link: Abschlussarbeiten / Theses

29/ 30