A Posteriori Error Analysis of Space-Time Finite Element Discretizations of the Time-Dependent Stokes Equations

R. Verfürth

Fakultät für Mathematik Ruhr-Universität Bochum

www.ruhr-uni-bochum.de/num1

Milan / February 14th, 2011

1/22

RUB

A Posteriori Analysis of Time-Dependent Stokes Equations

RUB

Time-Dependent Stokes Equations

$$\partial_t \mathbf{u} - \boldsymbol{\nu} \Delta \mathbf{u} + \nabla p = \mathbf{f} \quad \text{in } \Omega \times (0, T)$$
$$\operatorname{div} \mathbf{u} = 0 \quad \text{in } \Omega \times (0, T)$$
$$\mathbf{u} = 0 \quad \text{on } \Gamma \times (0, T)$$
$$\mathbf{u}(\cdot, 0) = \mathbf{u}_0 \quad \text{in } \Omega$$

Outline

Variational Problem

Discretization

A Posteriori Error Analysis

2/22

RUB

A Posteriori An Variational P

A Posteriori Analysis of Time-Dependent Stokes Equations \sqcup Variational Problem

Variational Formulation

Find $\mathbf{u} \in L^2(0,T; H_0^1(\Omega)^d) \cap L^\infty(0,T; L^2(\Omega)^d)$ with $\partial_t \mathbf{u} \in L^2(0,T; H^{-1}(\Omega)^d)$ and $p \in L^2(0,T; L_0^2(\Omega))$ such that for almost all $t \in (0,T)$ and all $\mathbf{v} \in H_0^1(\Omega)^d$, $q \in L_0^2(\Omega)$

$$\mathbf{u}(\cdot,0) = \mathbf{u}_0 \quad \text{in } H^{-1}(\Omega)^a$$

and

$$\int_{\Omega} \partial_t \mathbf{u} \cdot \mathbf{v} + \nu \int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} - \int_{\Omega} p \operatorname{div} \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v},$$
$$\int_{\Omega} q \operatorname{div} \mathbf{u} = 0.$$

A Posteriori Analysis of Time-Dependent Stokes Equations $\hfill \Box$ Variational Problem

Stability

Inserting ${\bf u}$ as a test-function in the variational formulation and taking into account that ${\rm div}\,{\bf u}=0$ yields

$$\left\{ \|\partial_t \mathbf{u} + \nabla p\|_{L^2(H^{-1})}^2 + \|\mathbf{u}\|_{L^{\infty}(L^2)}^2 + \nu \|\mathbf{u}\|_{L^2(H^1)}^2 \right\}^{\frac{1}{2}} \\ \leq \left\{ (4 + \frac{2}{\nu}) \|\mathbf{f}\|_{L^2(H^{-1})}^2 + (4\nu + 2) \|\mathbf{u}_0\|_{L^2}^2 \right\}^{\frac{1}{2}}.$$

5/22

RUE

A Posteriori Analysis of Time-Dependent Stokes Equations

RUB

Discrete Problem

Find $\mathbf{u}_{\mathcal{T}_n}^n \in V_n$, $p_{\mathcal{T}_n}^n \in P_n$ such that $\mathbf{u}_{\mathcal{T}_0}^0 = \pi_0 \mathbf{u}_0$ and for all $\mathbf{v}_{\mathcal{T}_n} \in V_n$, $q_{\mathcal{T}_n} \in P_n$ with $\mathbf{u}^{n\theta} = \theta \mathbf{u}_{\mathcal{T}_n}^n + (1 - \theta) \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1}$ $\int_{\Omega} \frac{1}{\tau_n} (\mathbf{u}_{\mathcal{T}_n}^n - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1}) \cdot \mathbf{v}_{\mathcal{T}_n} + \nu \int_{\Omega} \nabla \mathbf{u}^{n\theta} : \nabla \mathbf{v}_{\mathcal{T}_n}$ $- \int_{\Omega} p_{\mathcal{T}_n}^n \operatorname{div} \mathbf{v}_{\mathcal{T}_n} + \int_{\Omega} q_{\mathcal{T}_n} \operatorname{div} \mathbf{u}_{\mathcal{T}_n}^n$ $+ \sum_{K \in \mathcal{T}_n} \vartheta_K h_K^2 \int_K [\frac{\mathbf{u}_{\mathcal{T}_n}^n - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1}}{\tau_n} - \nu \Delta \mathbf{u}^{n\theta} + \nabla p_{\mathcal{T}_n}^n] \cdot \nabla q_{\mathcal{T}_n}$ $+ \sum_{E \in \mathcal{E}_n} \vartheta_E h_E \int_E \mathbb{J}_E(p_{\mathcal{T}_n}^n) \mathbb{J}_E(q_{\mathcal{T}_n}) + \sum_{K \in \mathcal{T}_n} \widetilde{\vartheta}_K \int_K \operatorname{div} \mathbf{u}_{\mathcal{T}_n}^n \operatorname{div} \mathbf{v}_{\mathcal{T}_n}$ $= \int_{\Omega} \mathbf{f}^{n\theta} \cdot \mathbf{u}_{\mathcal{T}_n} + \sum_{K \in \mathcal{T}_n} \vartheta_K h_K^2 \int_K \mathbf{f}^{n\theta} \cdot \nabla q_{\mathcal{T}_n}$

A Posteriori Analysis of Time-Dependent Stokes Equations

Partitions and Spaces

- $\mathcal{I} = \{(t_{n-1}, t_n] : 1 \le n \le N_{\mathcal{I}}\}$ partition of [0, T].
- $\blacktriangleright \tau_n = t_n t_{n-1}.$
- \mathcal{T}_n , $0 \le n \le N_{\mathcal{I}}$, affine equivalent, admissible, shape regular partitions of Ω .
- Modified transition condition: There are two partitions \mathcal{T}'_n and \mathcal{T}''_n such that \mathcal{T}_n and \mathcal{T}_{n-1} are refinements of \mathcal{T}'_n and such that \mathcal{T}''_n is a refinement of \mathcal{T}_n and \mathcal{T}_{n-1} and such that $h_{K'} \leq h_K \leq h_{K''}$ holds for all $K' \subset K \subset K''$ uniformly for all n.
- $V_n \subset H_0^1(\Omega), P_n \subset L_0^2(\Omega)$ finite element spaces corresponding to \mathcal{T}_n .

6/22

RUE

Examples of Spaces V_n and P_n

- ▶ Without stabilization:
 - ► Mini element
 - Hood-Taylor element
 - ▶ Modified Hood-Taylor element
 - ▶ Higher order Hood-Taylor elements
 - Bernardi-Raugel element
- ▶ With stabilization:
 - Equal order interpolation
 - \blacktriangleright Continuous velocities of order k and discontinuous pressures of order k-1

Basic Steps

- ▶ Error and residual are equivalent.
- ▶ The residual splits into a spatial and a temporal residual.
- The norm of the sum of these is equivalent to the sum of their norms.
- Derive an error indicator for the spatial residual.
- Derive an error indicator for the temporal residual.
- ▶ The first step requires properties of the Stokes projection.

9/ 22

A Posteriori Analysis of Time-Dependent Stokes Equations

RUB

Sketch of Proof

- ▶ First part:
 - Insert Πv as test function in the defining equations and use the stability of the divergence operator.
- ► Second part:
 - Insert II**v** as test function in the dual Stokes problem $\int_{\Omega} \nabla \mathbf{z} : \nabla \mathbf{w} - \int_{\Omega} s \operatorname{div} \mathbf{w} = \int_{\Omega} \Pi \mathbf{v} \cdot \mathbf{w}, \int_{\Omega} r \operatorname{div} \mathbf{z} = 0.$
 - Use approximation properties of the L²-projection onto piecewise constant or continuous piecewise linear functions and regularity results for the dual Stokes problem.

A Posteriori Analysis of Time-Dependent Stokes Equations $\bigsqcup_{} A$ Posteriori Error Analysis

Stokes Projection

Stokes projection
$$\Pi \mathbf{v} : H_0^1(\Omega)^d \to V^\perp$$
:

$$\int_{\Omega} \nabla \Pi \mathbf{v} : \nabla \mathbf{w} - \int_{\Omega} q \operatorname{div} \mathbf{w} = 0, \quad \int_{\Omega} r \operatorname{div} \Pi \mathbf{v} = \int_{\Omega} r \operatorname{div} \mathbf{v}$$
For all $\mathbf{v} \in H^1(\Omega)^d$

- For all $\mathbf{v} \in H_0^1(\Omega)^d$: $\|\nabla \Pi \mathbf{v}\| \leq \frac{1}{\beta} \|\operatorname{div} \mathbf{v}\|$ with β the analytical inf-sup constant.
- If $\int_{\Omega} q_{\mathcal{T}} \operatorname{div} \mathbf{v} = 0$ for all piecewise constant or all continuous piecewise linear $q_{\mathcal{T}}$:

 $\|\nabla \Pi \mathbf{v}\| \le c_{\Pi} \Big\{ \sum_{K \in \mathcal{T}} h_K^{2\boldsymbol{\alpha}_K} \|\operatorname{div} \mathbf{v}\|_K^2 \Big\}^{\frac{1}{2}}$

with $\alpha_K = 1$ if K does not contain a re-enetrant corner and $\alpha_K = \frac{1}{2}$ otherwise.

10/ 22

A Posteriori Analysis of Time-Dependent Stokes Equations

RUB

Errors and Residuals

- ▶ $\mathbf{u}_{\mathcal{I}}$: continuous piecewise linear w.r.t. time equals $\mathbf{u}_{\mathcal{T}_n}^n$ at time t_n
- Velocity error: $\mathbf{e} = \mathbf{u} \mathbf{u}_{\mathcal{I}}$

A Posteriori Error Analysis

- ▶ $p_{\mathcal{I}}$: piecewise constant w.r.t. time equals $p_{\mathcal{I}_n}^n$ on $(t_{n-1}, t_n]$
- Pressure error: $\varepsilon = p p_{\mathcal{I}}$
- ► Residual of momentum equation: $\langle R_{\rm m}, \mathbf{v} \rangle = \int_{\Omega} (\mathbf{f} \cdot \mathbf{v} - \partial_t \mathbf{u}_{\mathcal{I}} \cdot \mathbf{v} - \nu \nabla \mathbf{u}_{\mathcal{I}} : \nabla \mathbf{v} + p_{\mathcal{I}} \operatorname{div} \mathbf{v})$
- ► Residual of continuity equation:

$$\langle \mathbf{R}_{\mathrm{c}}, q \rangle = -\int_{\Omega} q \operatorname{div} \mathbf{u}_{\mathcal{I}}$$

Equivalence of Error and Residual

► Lower bound:

$$\begin{aligned} \|R_{\mathbf{m}}\|_{L^{2}(H^{-1})} + \|R_{\mathbf{c}}\|_{L^{2}(L^{2})} \\ \lesssim \left\{ \|\partial_{t}\mathbf{e} + \nabla\varepsilon\|_{L^{2}(H^{-1})}^{2} + \|\mathbf{e}\|_{L^{\infty}(L^{2})}^{2} + \frac{1}{\nu}\nu\|\mathbf{e}\|_{L^{2}(H^{1})}^{2} \right\}^{\frac{1}{2}} \end{aligned}$$

► Upper bound:

$$\left\{ \|\partial_{t}\mathbf{e} + \nabla\varepsilon\|_{L^{2}(H^{-1})}^{2} + \|\mathbf{e}\|_{L^{\infty}(L^{2})}^{2} + \nu\|\mathbf{e}\|_{L^{2}(H^{1})}^{2} \right\}^{\frac{1}{2}}$$

$$\lesssim \left\{ \frac{1}{\nu} \|R_{\mathbf{m}}\|_{L^{2}(H^{-1})}^{2} + \|R_{\mathbf{c}}\|_{L^{2}(L^{2})}^{2} + \|\mathbf{e}_{0}\|^{2} + \max_{0 \le n \le N_{\mathcal{I}}} \sum_{K \in \mathcal{T}_{n}} h_{K}^{2\alpha_{K}} \|\operatorname{div} \mathbf{u}_{\mathcal{T}_{n}}^{n}\|_{K}^{2}$$

$$+ \left(\sum_{n=1}^{N_{\mathcal{I}}} \sum_{K \in \mathcal{T}_{n}} h_{K}^{2\alpha_{K}} \|\operatorname{div} (\mathbf{u}_{\mathcal{T}_{n}}^{n} - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1})\|_{K}^{2} \right\}^{\frac{1}{2}} \right)^{2} \right\}^{\frac{1}{2}}$$

13/22

RU

A Posteriori Analysis of Time-Dependent Stokes Equations A Posteriori Error Analysis

RUE

Decomposition of Residuals

► Spatial residuals:

$$\langle R_{\mathrm{m},h}, \mathbf{v} \rangle = \int_{\Omega} \left(\mathbf{f}^{n\theta} \cdot \mathbf{v} - \partial_t \mathbf{u}_{\mathcal{I}} \cdot \mathbf{v} - \nu \nabla \mathbf{u}^{n\theta} : \nabla \mathbf{v} + p_{\mathcal{T}_n}^n \operatorname{div} \mathbf{v} \right)$$
$$\langle R_{\mathrm{c},h}(\mathbf{u}_{\mathcal{I}}, p_{\mathcal{I}}), q \rangle = -\int_{\Omega} q \operatorname{div} \mathbf{u}_{\mathcal{T}_n}^n$$

► Temporal residuals:

•
$$\langle R_{\mathrm{m},\tau}, \mathbf{v} \rangle = \nu \int_{\Omega} \nabla \left[\mathbf{u}^{n\theta} - \mathbf{u}_{\mathcal{I}} \right] : \nabla \mathbf{v}$$

• $\langle R_{\mathrm{c},\tau}, q \rangle = \int_{\Omega} q \operatorname{div} \left[\mathbf{u}_{\mathcal{T}_{n}}^{n} - \mathbf{u}_{\mathcal{I}} \right]$

- ► Decomposition:
 - $R_{\rm m} = R_{{\rm m},h} + R_{{\rm m},\tau}, R_{\rm c} = R_{{\rm c},h} + R_{{\rm c},\tau}$
- Sharpness of the triangle inequality: The norms of $R_{\rm m}$ and $R_{\rm c}$ are equivalent to the sums of the norms of $R_{{\rm m},\tau}$, $R_{{\rm m},h}$ and $R_{c,\tau}$, $R_{c,h}$, resp.

A Posteriori Analysis of Time-Dependent Stokes Equations A Posteriori Error Analysis

Sketch of Proof

- ► Lower bound:
 - ▶ Follows from the definition of the errors and residuals and the Cauchy-Schwarz inequality.
- ► Upper bound:
 - Inserting $\mathbf{e} \Pi \mathbf{u}_{\mathcal{I}}$ in the definition of $R_{\rm m}$ yields $\frac{d}{dt} \|\mathbf{e}\|^2 + \nu \|\nabla \mathbf{e}\|^2 \lesssim \|R_{\mathbf{m}}\|_{H^{-1}}^2 + \|R_{\mathbf{c}}\|^2 - 2\langle \partial_t(\mathbf{u} - \mathbf{u}_{\mathcal{I}}), \Pi \mathbf{u}_{\mathcal{I}} \rangle.$ • The term involving $\Pi \mathbf{u}_{\mathcal{I}}$ is controlled using the properties of
 - the Stokes projection.
 - ▶ Integration w.r.t. time yields the upper bound.

A Posteriori Analysis of Time-Dependent Stokes Equations

RUE

Sharpness of the Triangle Inequality

For every Banach space Y, elements $\varphi, \psi \in Y^*$, interval (a, b)and parameter $\theta \in [\frac{1}{2}, 1]$ there holds

$$\begin{split} &\sqrt{\frac{5}{14}} \Big(1 - \frac{\sqrt{3}}{2}\Big) \Big\{ \|\varphi\|_{L^2(Y^*)}^2 + \|(\theta - \frac{t - a}{b - a})\psi\|_{L^2(Y^*)}^2 \Big\}^{\frac{1}{2}} \\ &\leq \|\varphi + (\theta - \frac{t - a}{b - a})\psi\|_{L^2(Y^*)} \\ &\leq \|\varphi\|_{L^2(Y^*)} + \|(\theta - \frac{t - a}{b - a})\psi\|_{L^2(Y^*)} \end{split}$$

Sketch of Proof

- Only the lower bound has to be proven.
- A scaling argument shows that w.l.o.g. a = 0, b = 1.
- Choose $v, w \in Y$ such that $\langle \varphi, v \rangle = \|\varphi\|_*^2, \|v\|_Y = \|\varphi\|_*, \langle \psi, w \rangle = \|\psi\|_*^2, \|w\|_Y = \|\psi\|_*.$
- Hölder's inequality yields $\|3t^2v + (\theta - t)w\|_{L^2(Y)} \le \sqrt{\frac{14}{5}} \{\|\varphi\|_{L^2(Y^*)}^2 + \|(\theta - t)\psi\|_{L^2(Y^*)}^2\}^{\frac{1}{2}}.$
- Applying the inequality $-ab \ge -\frac{a^2}{2} \frac{b^2}{2}$ twice gives $\int_{-\infty}^{1} \langle \varphi + (\theta t)\psi, 3t^2v + (\theta t)w \rangle dt \ge$

$$J_0 \left\{ \|\varphi\|_{L^2(Y^*)}^2 + \|(\theta - t)\psi\|_{L^2(Y^*)}^2 \right\}^{\frac{1}{2}}$$

17/22

RUE

A Posteriori Analysis of Time-Dependent Stokes Equations

RUB

Estimation of the Temporal Residual

- ▶ $R_{\rm m}$ is piecewise linear w.r.t. time.
- \blacktriangleright $R_{\rm c}$ is piecewise constant w.r.t. time.
- ▶ Exact integration w.r.t. time yields

$$\begin{split} \bullet \quad & \sqrt{\frac{\tau_n}{12}} \|\nabla(\mathbf{u}_{\mathcal{T}_n}^n - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1})\| \leq \|R_{m,\tau}\|_{L^2(H^{-1})} \\ & \leq \sqrt{\frac{\tau_n}{3}} \|\nabla(\mathbf{u}_{\mathcal{T}_n}^n - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1}) \\ \bullet \quad \|R_{c,\tau}\|_{L^2(L^2)} = \sqrt{\frac{\tau_n}{3}} \|\operatorname{div}(\mathbf{u}_{\mathcal{T}_n}^n - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1})\|. \end{split}$$

► Set

$$\mathbf{P}_{\tau}^{n} = \left\{ \|\nabla(\mathbf{u}_{\mathcal{T}_{n}}^{n} - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1})\|^{2} + \|\operatorname{div}(\mathbf{u}_{\mathcal{T}_{n}}^{n} - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1})\|^{2} \right\}^{\frac{1}{2}}$$

A Posteriori Analysis of Time-Dependent Stokes Equations A Posteriori Error Analysis

Estimation of the Spatial Residual

- ▶ The spatial residual is the residual of a standard discretization of a stationary Stokes problem.
- Standard techniques for stationary problems yield

•
$$||R_{\mathbf{m},h}||_{H^{-1}} + ||R_{\mathbf{c},h}|| \le c^* \{\eta_h^n + \Theta_h^n\}$$

•
$$\eta_h^n \le c_* \{ \|R_{\mathrm{m},h}\|_{H^{-1}} + \|R_{\mathrm{c},h}\| + \Theta_h^n \}$$

with

$$\begin{split} \bullet \ \eta_h^n &= \left\{ \sum_K h_K^2 \| \mathbf{f}_{\mathcal{T}_n}^{n\theta} - \partial_t \mathbf{u}_{\mathcal{I}} + \nu \Delta \mathbf{u}^{n\theta} - \nabla p_{\mathcal{T}_n}^n \|_K^2 \\ &+ \sum_E h_E \| \mathbb{J}_E (\mathbf{n}_E \cdot (\nu \nabla \mathbf{u}^{n\theta} - p_{\mathcal{T}_n}^n I)) \|_E^2 \\ &+ \sum_K \| \text{div } \mathbf{u}_{\mathcal{T}_n}^n \|_K^2 \right\}^{\frac{1}{2}} \\ \bullet \ \Theta_h^n &= \left\{ \sum_K h_K^2 \| \mathbf{f} - \mathbf{f}_{\mathcal{T}_n}^{n\theta} \|_K^2 \right\}^{\frac{1}{2}}. \end{split}$$

18/ 22

RUE

A Posteriori Analysis of Time-Dependent Stokes Equations \Box A Posteriori Error Analysis

A Posteriori Error Estimates

- ► Upper bound: $\begin{cases} \|\partial_t \mathbf{e} + \nabla \varepsilon\|_{L^2(H^{-1})}^2 + \|\mathbf{e}\|_{L^{\infty}(L^2)}^2 + \nu \|\mathbf{e}\|_{L^2(H^1)}^2 \end{cases}^{\frac{1}{2}} \\ \lesssim \left\{ \sum_n \tau_n \left[\left(\eta_\tau^n \right)^2 + \left(\eta_h^n \right)^2 + \left(\Theta_h^n \right)^2 \right] + \|\mathbf{u}_0 - \mathbf{u}_{\mathcal{T}_0}^0 \|^2 \right. \\ + \max_n \sum_K h_K^{2\alpha_K} \|\operatorname{div} \mathbf{u}_{\mathcal{T}_n}^n \|_K^2 \\ + \left(\sum_n \left[\sum_K h_K^{2\alpha_K} \|\operatorname{div} (\mathbf{u}_{\mathcal{T}_n}^n - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1}) \|_K^2 \right]^{\frac{1}{2}} \right)^2 \right\}^{\frac{1}{2}} \end{cases}$
- ► Lower bound:

$$\left\{ \sum_{n} \tau_{n} \left[\left(\eta_{\tau}^{n} \right)^{2} + \left(\eta_{h}^{n} \right)^{2} \right] \right\}^{\frac{1}{2}} \\ \lesssim \left\{ \| \partial_{t} \mathbf{e} + \nabla \varepsilon \|_{L^{2}(H^{-1})}^{2} + \| \mathbf{e} \|_{L^{\infty}(L^{2})}^{2} + \nu \| \mathbf{e} \|_{L^{2}(H^{1})}^{2} \\ + \| \mathbf{u}_{0} - \mathbf{u}_{\mathcal{T}_{0}}^{0} \|^{2} + \sum_{n} \tau_{n} \left(\Theta_{h}^{n} \right)^{2} \right\}^{\frac{1}{2}}$$

Comments

- The terms $\sqrt{\tau_n}\eta_h^n$ control the spatial error and can be used to adapt the spatial meshes.
- The terms $\sqrt{\tau_n}\eta_{\tau}^n$ control the temporal error and can be used to adapt the time-steps.
- If $h_K^{2\alpha_K} \leq \tau_n$ holds for all K and n, $\max_n \sum_K h_K^{2\alpha_K} ||\operatorname{div} \mathbf{u}_{\mathcal{T}_n}^n||_K^2$ can be absorbed by $\sum_n \tau_n (\eta_h^n)^2$. This also holds in the presence of re-entrant corners.
- If $h_K^{2\alpha_K} \leq \tau_n^2$ holds for all K and n,

 $\left(\sum_{n} \left[\sum_{K} h_{K}^{2\alpha_{K}} \|\operatorname{div}(\mathbf{u}_{\mathcal{T}_{n}}^{n} - \mathbf{u}_{\mathcal{T}_{n-1}}^{n-1})\|_{K}^{2}\right]^{\frac{1}{2}}\right)^{2} \text{ can be absorbed}$ by $T \sum_{n} \tau_{n} (\eta_{\tau}^{n})^{2}$. This does not hold in the presence of re-entrant corners.

21/22

RUB

A Posteriori Analysis of Time-Dependent Stokes Equations

References

- (with Ch. Bernardi) A posteriori error analysis of the fully discretized time-dependent Stokes equations, M2AN 38 (2004), no. 3, 437 455
- A posteriori error estimates for finite element discretizations of the heat equation, Calcolo 40 (2003), no. 3, 195 – 212.
- Robust a posteriori error estimates for nonstationary convection-diffusion equations,
 SIAM J. Numer. Anal. 43 (2005), no. 4, 1783 1802
- A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations, Calcolo 47 (2010), 149 – 167

22/22