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Introduction

The Basic Steps of A Priori Error Estimation

I Derive a variational formulation of the differential equation.

I Replace the infinite dimensional test and trial spaces of the
variational problem by finite dimensional subspaces
consisting of functions which are piece-wise polynomials on
a partition into non-overlapping subdomains.

I Abstract results (e.g. Lemmas of Céa and Lax-Milgram)
imply that the discrete problem admits a unique solution
and that its error is proportional to the error of the best
approximation with a constant depending on properties of
the variational problem.

I Bound the error of the best approximation by the error of a
suitable interpolation.
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Introduction

Drawbacks of A Priori Error Estimates

I They only yield information on the asymptotic behaviour
of the error.

I They give no information on the actual size of the error
and its spatial and temporal distribution.

I The error estimate is globally deteriorated by local
singularities arising from e.g. re-entrant corners or interior
or boundary layers.
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Introduction

Goals of A Posteriori Error Estimation and
Adaptivity

I From the data of the differential equation and the
computed solution of the discrete problem extract an
easy-to-compute and precise information on the actual size
of the error and its spatial and temporal distribution.

I Obtain an approximation for the solution of the differential
equation with a given tolerance using a (nearly) minimal
amount of unknowns.
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Introduction

Example: A Reaction-Diffusion Equation with
an Interior Layer

Triangles Quadrilaterals
uniform adaptive uniform adaptive

Unknowns 16129 2923 16129 4722
Triangles 32768 5860 0 3830

Quadrilaterals 0 0 16384 2814
Error 3.8% 3.5% 6.1% 4.4%

6/ 28

Constant-Free A Posteriori Error Estimates

Introduction

Standard Residual A Posteriori Error Estimates

I Prove the equivalence of error and residual.

I Derive an L2-representation of the residual using
integration by parts element-wise.

I Establish an upper bound for the dual norm of the residual
using its Galerkin-orthogonality and error estimates for a
suitable quasi-interpolation operator.

I Derive lower bounds for the dual norm of the residual using
suitable local cut-off functions and inverse estimates.

I The upper and lower bounds involve multiplicative
constants c∗ and c∗ which are not known explicitly and c∗

may be larger than 1.
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Introduction

Constant-Free A Posteriori Error Estimates

I The theorem of Prager and Synge allows to express the
error of any approximation in terms of vector-fields which
are in equilibrium with the exterior force.

I Judiciously choose the vector-field.

I This yields an upper bound for the error with constant 1.

I The approach is completely different from the standard
approach and superior.
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Introduction

Goals

I Constant-free a posteriori error estimates fit into the
standard abstract framework.

I Contrary to standard residual estimates, constant-free
estimates are not robust with respect to dominant reaction
or convection terms.

I Using a suitable localization of the residual, the constant c∗

of standard residual estimates can be expressed explicitly
in terms of Poincaré constants which can be computed
from geometric data of the partition.
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The Setting

Model Problem

−∆u+ κ2u = f in Ω

u = 0 on Γ

I First: κ = 0

I Later: κ� 1

I Energy norm:

‖|u‖| =
{
‖∇u‖2 + κ2‖u‖2

} 1
2

10/ 28

Constant-Free A Posteriori Error Estimates

The Setting

Discretization

I T : admissible, affine equivalent, shape regular partition

I Sk,00 (T ): continuous, piece-wise polynomials of degree k
vanishing on Γ

I uT ∈ Sk,00 (T ): finite element approximation of u
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The Setting

Residual

I Define the residual as a continuous linear functional by

〈R, v〉 =

∫
Ω
fv −

∫
Ω

{
∇uT · ∇v + κ2uT v

}
=

∫
Ω

{
∇(u− uT ) · ∇v + κ2(u− uT )v

}
.

I Its dual norm is equivalent to the energy norm of the error

‖|u− uT ‖| = ‖|R‖|∗.
I It admits the L2-representation

〈R, v〉 =

∫
Ω
rv +

∫
Σ
jv

with r|K = f + ∆uT − κ2uT and j|E = −JE(nE · ∇uT ).

I It fulfils the Galerkin orthogonality

〈R, vT 〉 = 0 for all vT ∈ S1,0
0 (T ).
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The Standard Approach to Constant-Free Estimates

Theorem of Prager and Synge

I If
I κ = 0,
I u solves the model problem,
I U ∈ H1(Ω) is arbitrary,
I ρ ∈ H(div; Ω) satisfies −div ρ = f in Ω

I then

‖∇u−∇U‖2 = ‖ρ−∇U‖2 − ‖∇u− ρ‖2
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The Standard Approach to Constant-Free Estimates

Proof

I For every w ∈ H1
0 (Ω):∫

Ω
∇u · ∇w =

∫
Ω
fw = −

∫
Ω

div ρw =

∫
Ω
ρ · ∇w

I Insert w = u and w = U :

‖∇u−∇U‖2 + ‖∇u− ρ‖2

= 2‖∇u‖2 − 2

∫
Ω
∇u · ∇U + ‖∇U‖2 − 2

∫
Ω
ρ · ∇u+ ‖ρ‖2

= 2

∫
Ω
ρ · ∇u− 2

∫
Ω
ρ · ∇U + ‖∇U‖2 − 2

∫
Ω
ρ · ∇u+ ‖ρ‖2

= ‖∇U‖2 − 2

∫
Ω
ρ · ∇U + ‖ρ‖2

= ‖∇U − ρ‖2
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The Standard Approach to Constant-Free Estimates

Standard Constant-Free Estimates

I Apply the theorem of Prager and Synge to U = uT .

I Then
‖∇u−∇uT ‖ ≤ ‖∇uT − ρ‖

holds for every ρ ∈ H(div; Ω) with −div ρ = f .

I Construct ρ judiciously.

I Myriads of constructions: Repin, Smolianski, Ern,
Vohralik, Braess - Schöberl, . . .
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A Different Look at Constant-Free Estimates

HT (div; Ω)-Lifting of Residuals

I Assume that the continuous linear functional R satisfies

I 〈R, v〉 =

∫
Ω

rv +

∫
Σ

jv for all v ∈ H1
0 (Ω),

I 〈R, vT 〉 = 0 for all vT ∈ S1,0
0 (T ).

I Then there is a vector field ρT ∈ HT (div; Ω) with

〈R, v〉 =

∫
Ω
ρT · ∇v for all v ∈ H1

0 (Ω).

I ρT can be constructed by sweeping through the elements.

I If r and j are piece-wise polynomials ρT can be chosen
from a broken RT- or BDM-space.

I ‖|R‖|∗ ≤ ‖ρT ‖
I ‖ρT ‖ ≤ csc∗maxK∈T max

{
1, hKκ

2
}
‖|R‖|∗
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A Different Look at Constant-Free Estimates

Idea of the Proof

I Prove an auxiliary existence and stability result on
elements.

I Construct ρT on patches of elements by marching through
the elements.

I Put together the contributions of the patches.
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A Different Look at Constant-Free Estimates

A Single Element

I Assume that f ∈ L2(K) and g ∈ L2(∂K) satisfy∫
K
f +

∫
∂K

g = 0.

I Then there is ρK ∈ H(div;K) with
I −div ρK = f on K,
I ρK · nK = g on ∂K.

I ρK satisfies the stability estimate

‖ρK‖ ≤
1

π
hK‖f‖+

√
2π + 1

π

(hK |∂K|
|K|

) 1
2
h

1
2
K‖g‖.

I Proof:
I ρK = ∇vK with −∆vK = f on K and nK · ∇vK = g on ∂K.
I Transform to the reference element and back.
I Use the H1-stability of the Neumann problem on the

reference element.
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A Different Look at Constant-Free Estimates

A Patch of Elements

I Sweep through the elements K sharing a given vertex z.

I Apply the previous result to

f = λzr and g =


λzj on (∂K ∩ σz) \ (E ∪ E′),
αE′ on E′,

λzj − αE on E,

0 on ∂K \ σz

�
�
�

�
�
�

�
�
�@

@
@@

@
@

�
�
�

�
�
�

�
�
�@

@
@@

@
@

�
�
�

�
�
�

@
@
@

@
@
@

I The construction is feasible since 〈R, λz〉 = 0.
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A Different Look at Constant-Free Estimates

Global Assembly
I The previous step yields vector-fields ρz with∫

ωz

ρz · ∇v =

∫
ωz

λzrv +

∫
σz

λzjv.

I Set ρT =
∑
z

ρz.

I Then∫
Ω
ρT · ∇v =

∑
z

∫
ωz

ρz · ∇v

=
∑
z

{∫
ωz

λzrv +

∫
σz

λzjv
}

=
∑
z

〈R, λzv〉

= 〈R, v〉.
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A Different Look at Residual Estimates

Localization of Residuals
I Since

∑
z λz = 1, we have for every v ∈ H1

0 (Ω)

〈R, v〉 =
∑
z

〈R, λzv〉,∑
z

‖λ
1
2
z∇v‖2 =

∑
z

∫
Ω
λz|∇v|2 = ‖∇v‖2.

I The Galerkin orthogonality yields for every vz ∈ R with
vzλz ∈ S1,0

0 (T )
〈R, λzv〉 = 〈R, λz(v − vz)〉.

I vz can be chosen such that

‖λ
1
2
z (v − vz)‖ ≤ c(ωz)hz‖λ

1
2
z∇v‖{∑

E⊂σz

h⊥E‖λ
1
2
z (v − vz)‖2E

} 1
2 ≤ c(σz)hz‖λ

1
2
z∇v‖

with hz = diam(ωz) = diam(σz) and h⊥E =

∫
ωE

λz∫
E λz

.
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A Different Look at Residual Estimates

A Vertex-Oriented Residual Error Estimate

I The previous results yield the upper bound

‖|R‖|∗ ≤
{∑

z

η2
z

} 1
2

with

ηz = c(ωz)αz‖λ
1
2
z r‖+ c(σz)

{∑
E⊂σz

αzhz(h
⊥
E)−1‖λ

1
2
z j‖2E

} 1
2
,

αz = min{hz, κ−1}.
I ηz can be bounded from above by the standard

element-oriented residual error estimator.

I Inverse estimates for local cut-off functions prove the
standard lower bounds.

22/ 28

Constant-Free A Posteriori Error Estimates

A Different Look at Residual Estimates

Poincaré and Friedrichs Inequalities

I Set vz =

∫
ωz
λzv∫

ωz
λz

if z ∈ Ω and vz = 0 if z ∈ Γ.

I Then c(ωz) is the Poincaré or Friedrichs constant of ωz
with weight function λz.

I The Friedrichs constant can be expressed in terms of the
corresponding Poincaré constant.

I c(ωz) = 1
π if ωz is convex.

I If ωz is not convex, c(ωz) can be arbitrarily large and can
be bounded explicitly and sharply in terms of the number
of elements in ωz and the ratio of the maximal over the
minimal distance to z of all vertices on ∂ωz \ {z}.
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A Different Look at Residual Estimates

Trace Equalities and Inequalities

I For every element K and every face E of K set
I γK,E(x) = x− aK,E

if K is a simplex, ��@@
•

I γK,E(x) =
(x−aK,E)·nK,E

mK,E ·nK,E
mK,E

if K is a parallelepiped.
��

?
��	
•

I Then the trace equality
1

|E|

∫
E
w − 1

|K|

∫
K
w =

1

νK |K|

∫
K
γK,E · ∇w

holds with νK = d for simplices and νK = 1 for
parallelepipeds.

I The trace equality implies the trace inequality

h⊥E‖λ
1
2
z v‖2E ≤ ‖λ

1
2
z v‖2K + 2hK

νK+1‖λ
1
2
z v‖K‖λ

1
2
z∇v‖K .

I This allows to express c(σz) in terms of c(ωz).
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Concluding Remarks

The Role of the L2-Representation

I An L2-representation holds for all systems in divergence
form.

I The contribution j of the skeleton Σ is the difficult part to
handle.

I Constant-free estimates take care of this term by lifting it
to HT (div; Ω).

I Residual estimates control this term with the help of trace
inequalities.
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Concluding Remarks

The Role of the Galerkin Orthogonality

I The assumption of Galerkin orthogonality can be dropped.

I This gives rise to an additional consistency error.

I If the consistency error is due some Petrov-Galerkin
stabilization or to an inexact solution of the discrete
problem, it can be controlled by the error estimator.
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Concluding Remarks

The Role of Robustness

I Robustness is mandatory for singularly perturbed problems
with dominant low order terms.

I The lack of robustness of the constant-free estimates is a
structural drawback.

I It is due to the fact that the vector-field ρT only controls
the principal part of the differential operator.

I Full robustness can be recovered by combining the
constant-free estimates with standard robust residual
estimates with explicit constants (cf. Ern et al).
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Concluding Remarks
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