RUB

Constant-Free A Posteriori Error Estimates

Outline

Introduction

The Setting

The Standard Approach to Constant-Free Estimates

A Different Look at Constant-Free Estimates

A Different Look at Residual Estimates

Concluding Remarks

2/ 28

RUF

Constant-Free A Posteriori Error Estimates

RUB

1/28

The Basic Steps of A Priori Error Estimation

Constant-Free A Posteriori Error

Estimates

R. Verfürth

Fakultät für Mathematik

Ruhr-Universität Bochum

Duisburg / May 18th, 2010

- Derive a variational formulation of the differential equation.
- Replace the infinite dimensional test and trial spaces of the variational problem by finite dimensional subspaces consisting of functions which are piece-wise polynomials on a partition into non-overlapping subdomains.
- Abstract results (e.g. Lemmas of Céa and Lax-Milgram) imply that the discrete problem admits a unique solution and that its error is proportional to the error of the best approximation with a constant depending on properties of the variational problem.
- Bound the error of the best approximation by the error of a suitable interpolation.

Constant-Free A Posteriori Error Estimates — Introduction

Drawbacks of A Priori Error Estimates

- They only yield information on the asymptotic behaviour of the error.
- They give no information on the actual size of the error and its spatial and temporal distribution.
- The error estimate is globally deteriorated by local singularities arising from e.g. re-entrant corners or interior or boundary layers.

Goals of A Posteriori Error Estimation and Adaptivity

- From the data of the differential equation and the computed solution of the discrete problem extract an easy-to-compute and precise information on the actual size of the error and its spatial and temporal distribution.
- Obtain an approximation for the solution of the differential equation with a given tolerance using a (nearly) minimal amount of unknowns.

5/28

RUE

Constant-Free A Posteriori Error Estimates

RUB

Standard Residual A Posteriori Error Estimates

- ▶ Prove the equivalence of error and residual.
- Derive an L²-representation of the residual using integration by parts element-wise.
- Establish an upper bound for the dual norm of the residual using its Galerkin-orthogonality and error estimates for a suitable quasi-interpolation operator.
- Derive lower bounds for the dual norm of the residual using suitable local cut-off functions and inverse estimates.
- The upper and lower bounds involve multiplicative constants c* and c* which are not known explicitly and c* may be larger than 1.

Example: A Reaction-Diffusion Equation with an Interior Layer

	Triangles		Quadrilaterals	
	uniform	adaptive	uniform	adaptive
Unknowns	16129	2923	16129	4722
Triangles	32768	5860	0	3830
Quadrilaterals	0	0	16384	2814
Error	3.8%	3.5%	6.1%	4.4%

RUE

Constant-Free A Posteriori Error Estimates

- The theorem of Prager and Synge allows to express the error of any approximation in terms of vector-fields which are in equilibrium with the exterior force.
- ▶ Judiciously choose the vector-field.
- ▶ This yields an upper bound for the error with constant 1.
- The approach is completely different from the standard approach and superior.

Goals

- ▶ Constant-free a posteriori error estimates fit into the standard abstract framework.
- ▶ Contrary to standard residual estimates, constant-free estimates are not robust with respect to dominant reaction or convection terms.
- Using a suitable localization of the residual, the constant c^* of standard residual estimates can be expressed explicitly in terms of Poincaré constants which can be computed from geometric data of the partition.

9/28

Constant-Free A Posteriori Error Estimates L The Setting

RUB

Discretization

- \mathcal{T} : admissible, affine equivalent, shape regular partition
- $S_0^{k,0}(\mathcal{T})$: continuous, piece-wise polynomials of degree k vanishing on Γ
- $u_{\mathcal{T}} \in S_0^{k,0}(\mathcal{T})$: finite element approximation of u

Constant-Free A Posteriori Error Estimates L The Setting

Model Problem

$$-\Delta u + \kappa^2 u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \Gamma$$

- First: $\kappa = 0$
- Later: $\kappa \gg 1$
- ► Energy norm:

$$|||u||| = \left\{ ||\nabla u||^2 + \kappa^2 ||u||^2 \right\}^{\frac{1}{2}}$$

10/ 28

RUE

RUF

L The Setting

Constant-Free A Posteriori Error Estimates

Residual

• Define the residual as a continuous linear functional by

$$R, v\rangle = \int_{\Omega} fv - \int_{\Omega} \{\nabla u_{\mathcal{T}} \cdot \nabla v + \kappa^2 u_{\mathcal{T}} v\}$$
$$= \int_{\Omega} \{\nabla (u - u_{\mathcal{T}}) \cdot \nabla v + \kappa^2 (u - u_{\mathcal{T}}) v\}$$

- ▶ Its dual norm is equivalent to the energy norm of the error
 - $|||u u_{\mathcal{T}}||| = |||R|||_{*}.$
- ▶ It admits the L^2 -representation

$$\langle R, v \rangle = \int_{\Omega} rv + \int_{\Sigma} jv$$
with $|v| = -f + \Delta v$

with
$$r|_K = f + \Delta u_T - \kappa^2 u_T$$
 and $j|_E = -\mathbb{J}_E(\mathbf{n}_E \cdot \nabla u_T)$.

► It fulfils the Galerkin orthogonality $\langle \mathbf{R}, v_{\mathcal{T}} \rangle = 0$ for all $v_{\mathcal{T}} \in S_0^{1,0}(\mathcal{T})$.

Theorem of Prager and Synge

► If

- $\blacktriangleright \kappa = 0.$
- \blacktriangleright *u* solves the model problem,
- $U \in H^1(\Omega)$ is arbitrary,
- $\rho \in H(\operatorname{div}; \Omega)$ satisfies $-\operatorname{div} \rho = f$ in Ω

▶ then

$$|\nabla u - \nabla U||^2 = \|\rho - \nabla U\|^2 - \|\nabla u - \rho\|^2$$

13/ 28

RUE

Constant-Free A Posteriori Error Estimates L The Standard Approach to Constant-Free Estimates

RUB

Standard Constant-Free Estimates

- Apply the theorem of Prager and Synge to $U = u_{\tau}$.
- ▶ Then

 $\|\nabla u - \nabla u_{\mathcal{T}}\| < \|\nabla u_{\mathcal{T}} - \rho\|$

holds for every $\rho \in H(\operatorname{div}; \Omega)$ with $-\operatorname{div} \rho = f$.

- \blacktriangleright Construct ρ judiciously.
- ▶ Myriads of constructions: Repin, Smolianski, Ern, Vohralik, Braess - Schöberl, ...

Constant-Free A Posteriori Error Estimates -The Standard Approach to Constant-Free Estimates

Proof

For every w ∈ H₀¹(Ω):

$$\int_{\Omega} \nabla u \cdot \nabla w = \int_{\Omega} fw = -\int_{\Omega} \operatorname{div} \rho w = \int_{\Omega} \rho \cdot \nabla w$$

Insert w = u and w = U:

$$\|\nabla u - \nabla U\|^{2} + \|\nabla u - \rho\|^{2}$$

$$= 2\|\nabla u\|^{2} - 2\int_{\Omega} \nabla u \cdot \nabla U + \|\nabla U\|^{2} - 2\int_{\Omega} \rho \cdot \nabla u + \|\rho\|^{2}$$

$$= 2\int_{\Omega} \rho \cdot \nabla u - 2\int_{\Omega} \rho \cdot \nabla U + \|\nabla U\|^{2} - 2\int_{\Omega} \rho \cdot \nabla u + \|\rho\|^{2}$$

$$= \|\nabla U\|^{2} - 2\int_{\Omega} \rho \cdot \nabla U + \|\rho\|^{2}$$

$$= \|\nabla U\|^{2} - 2\int_{\Omega} \rho \cdot \nabla U + \|\rho\|^{2}$$

$$= \|\nabla U - \rho\|^{2}$$

Constant-Free A Posteriori Error Estimates LA Different Look at Constant-Free Estimates

RUF

14/28

$H_{\mathcal{T}}(\operatorname{div}; \Omega)$ -Lifting of Residuals

 \blacktriangleright Assume that the continuous linear functional R satisfies

$$\langle R, v \rangle = \int_{\Omega} rv + \int_{\Sigma} jv \text{ for all } v \in H_0^1(\Omega),$$

$$\langle R, v \rangle = 0 \text{ for all } v \in S^{1,0}(\mathcal{T})$$

- $(R, v_{\mathcal{T}}) = 0$ for all $v_{\mathcal{T}} \in S_0^{1,0}(\mathcal{T})$.
- Then there is a vector field $\rho_{\mathcal{T}} \in H_{\mathcal{T}}(\operatorname{div}; \Omega)$ with

$$\langle R, v \rangle = \int_{\Omega} \rho_{\mathcal{T}} \cdot \nabla v \text{ for all } v \in H_0^1(\Omega).$$

- $\rho_{\mathcal{T}}$ can be constructed by sweeping through the elements.
- If r and j are piece-wise polynomials ρ_{τ} can be chosen from a broken RT- or BDM-space.
- $|||R|||_* \le ||\rho_{\mathcal{T}}||$
- $\|\rho_{\mathcal{T}}\| \le c_s c_* \max_{K \in \mathcal{T}} \max\{1, h_K \kappa^2\} \|\|R\|\|_*$

Idea of the Proof

- Prove an auxiliary existence and stability result on elements.
- Construct $\rho_{\mathcal{T}}$ on patches of elements by marching through the elements.
- ▶ Put together the contributions of the patches.

17/28

RUE

Constant-Free A Posteriori Error Estimates

RUB

19/28

A Patch of Elements

- Sweep through the elements K sharing a given vertex z.
- ► Apply the previous result to

$$f = \lambda_z r \text{ and } g = \begin{cases} \lambda_z j & \text{on } (\partial K \cap \sigma_z) \setminus (E \cup E') \\ \alpha_{E'} & \text{on } E', \\ \lambda_z j - \alpha_E & \text{on } E, \\ 0 & \text{on } \partial K \setminus \sigma_z \end{cases}$$

• The construction is feasible since $\langle R, \lambda_z \rangle = 0$.

Constant-Free A Posteriori Error Estimates

A Single Element

▶ Assume that $f \in L^2(K)$ and $g \in L^2(\partial K)$ satisfy

$$\int_{K} f + \int_{\partial K} g = 0$$

- Then there is $\rho_K \in H(\operatorname{div}; K)$ with
 - $-\operatorname{div}\rho_K = f$ on K,
 - $\blacktriangleright \rho_K \cdot \mathbf{n}_K = g \text{ on } \partial K.$
- ρ_K satisfies the stability estimate

$$\rho_K \| \le \frac{1}{\pi} h_K \|f\| + \frac{\sqrt{2\pi + 1}}{\pi} \Big(\frac{h_K |\partial K|}{|K|}\Big)^{\frac{1}{2}} h_K^{\frac{1}{2}} \|g\|$$

- ► Proof:
 - $\rho_K = \nabla v_K$ with $-\Delta v_K = f$ on K and $\mathbf{n}_K \cdot \nabla v_K = g$ on ∂K .
 - ▶ Transform to the reference element and back.
 - ▶ Use the H^1 -stability of the Neumann problem on the reference element.

18/28

RUF

Constant-Free A Posteriori Error Estimates

Global Assembly

 \blacktriangleright The previous step yields vector-fields ρ_z with

$$\int_{\omega_z} \rho_z \cdot \nabla v = \int_{\omega_z} \lambda_z r v + \int_{\sigma_z} \lambda_z j v.$$

• Set $\rho_T = \sum \rho_z.$

Then

$$\int_{\Omega} \rho_{\mathcal{T}} \cdot \nabla v = \sum_{z} \int_{\omega_{z}} \rho_{z} \cdot \nabla v$$

$$= \sum_{z} \left\{ \int_{\omega_{z}} \lambda_{z} r v + \int_{\sigma_{z}} \lambda_{z} j v \right\}$$

$$= \sum_{z} \langle R, \lambda_{z} v \rangle$$

 $=\langle R,v\rangle.$

Localization of Residuals

• Since $\sum_{z} \lambda_{z} = 1$, we have for every $v \in H_{0}^{1}(\Omega)$ $\langle R, v \rangle = \sum_{z} \langle R, \lambda_{z} v \rangle$, $\sum_{z} \|\lambda_{z}^{\frac{1}{2}} \nabla v\|^{2} = \sum_{z} \int_{\Omega} \lambda_{z} |\nabla v|^{2} = \|\nabla v\|^{2}$. • The Galerkin orthogonality yields for every $v_{z} \in \mathbb{R}$ with $v_{z}\lambda_{z} \in S_{0}^{1,0}(\mathcal{T})$ $\langle R, \lambda_{z} v \rangle = \langle R, \lambda_{z}(v - v_{z}) \rangle$. • v_{z} can be chosen such that $\|\lambda_{z}^{\frac{1}{2}}(v - v_{z})\| \leq c(\omega_{z})h_{z}\|\lambda_{z}^{\frac{1}{2}}\nabla v\|$ $\left\{\sum_{E \subset \sigma_{z}} h_{E}^{\perp}\|\lambda_{z}^{\frac{1}{2}}(v - v_{z})\|_{E}^{2}\right\}^{\frac{1}{2}} \leq c(\sigma_{z})h_{z}\|\lambda_{z}^{\frac{1}{2}}\nabla v\|$ with $h_{z} = \operatorname{diam}(\omega_{z}) = \operatorname{diam}(\sigma_{z})$ and $h_{E}^{\perp} = \frac{\int_{\omega_{E}} \lambda_{z}}{\int_{E} \lambda_{z}}$.

\times	
X	

Constant-Free A Posteriori Error Estimates

RUB

21/28

RUE

Poincaré and Friedrichs Inequalities

- Set $v_z = \frac{\int_{\omega_z} \lambda_z v}{\int_{\omega_z} \lambda_z}$ if $z \in \Omega$ and $v_z = 0$ if $z \in \Gamma$.
- Then c(ω_z) is the Poincaré or Friedrichs constant of ω_z with weight function λ_z.
- ▶ The Friedrichs constant can be expressed in terms of the corresponding Poincaré constant.
- $c(\omega_z) = \frac{1}{\pi}$ if ω_z is convex.
- If ω_z is not convex, c(ω_z) can be arbitrarily large and can be bounded explicitly and sharply in terms of the number of elements in ω_z and the ratio of the maximal over the minimal distance to z of all vertices on ∂ω_z \ {z}.

A Vertex-Oriented Residual Error Estimate

▶ The previous results yield the upper bound

$$\begin{split} \|\|R\|\|_{*} &\leq \left\{\sum_{z} \eta_{z}^{2}\right\}^{\frac{1}{2}} \\ \text{with} \\ \eta_{z} &= c(\omega_{z})\alpha_{z} \|\lambda_{z}^{\frac{1}{2}}r\| + c(\sigma_{z}) \left\{\sum_{E \subset \sigma_{z}} \alpha_{z}h_{z}(h_{E}^{\perp})^{-1} \|\lambda_{z}^{\frac{1}{2}}j\|_{E}^{2}\right\}^{\frac{1}{2}} \\ \alpha_{z} &= \min\{h_{z}, \kappa^{-1}\}. \end{split}$$

- η_z can be bounded from above by the standard element-oriented residual error estimator.
- Inverse estimates for local cut-off functions prove the standard lower bounds.

22/ 28

RUF

Constant-Free A Posteriori Error Estimates

Trace Equalities and Inequalities

▶ For every element K and every face E of K set

$\gamma_{K,E}(x) = x - a_{K,E}$ if K is a simplex, $\gamma_{K,E}(x) = \frac{(x - a_{K,E}) \cdot \mathbf{n}_{K,E}}{\mathbf{m}_{K,E} \cdot \mathbf{n}_{K,E}} \mathbf{m}_{K,E}$ if K is a parallelepiped.

- Then the trace equality $\frac{1}{|E|} \int_E w - \frac{1}{|K|} \int_K w = \frac{1}{\nu_K |K|} \int_K \gamma_{K,E} \cdot \nabla w$ holds with $\nu_K = d$ for simplices and $\nu_K = 1$ for parallelepipeds.
- The trace equality implies the trace inequality $h_E^{\perp} \|\lambda_z^{\frac{1}{2}}v\|_E^2 \leq \|\lambda_z^{\frac{1}{2}}v\|_K^2 + \frac{2h_K}{\nu_K+1}\|\lambda_z^{\frac{1}{2}}v\|_K\|\lambda_z^{\frac{1}{2}}\nabla v\|_K.$
- This allows to express $c(\sigma_z)$ in terms of $c(\omega_z)$.

The Role of the L^2 -Representation

- ▶ An L^2 -representation holds for all systems in divergence form.
- The contribution j of the skeleton Σ is the difficult part to handle.
- Constant-free estimates take care of this term by lifting it to $H_{\mathcal{T}}(\operatorname{div}; \Omega)$.
- Residual estimates control this term with the help of trace inequalities.

25/28

RUE

Constant-Free A Posteriori Error Estimates

RUB

The Role of Robustness

- Robustness is mandatory for singularly perturbed problems with dominant low order terms.
- The lack of robustness of the constant-free estimates is a structural drawback.
- It is due to the fact that the vector-field $\rho_{\mathcal{T}}$ only controls the principal part of the differential operator.
- ▶ Full robustness can be recovered by combining the constant-free estimates with standard robust residual estimates with explicit constants (cf. Ern et al).

The Role of the Galerkin Orthogonality

- ▶ The assumption of Galerkin orthogonality can be dropped.
- ▶ This gives rise to an additional consistency error.
- ▶ If the consistency error is due some Petrov-Galerkin stabilization or to an inexact solution of the discrete problem, it can be controlled by the error estimator.

RUF

Constant-Free A Posteriori Error Estimates

References

 Neittaanmäki, P. and Repin, S. Reliable Methods for Computer Simulation. Error Control and A Posteriori Error Estimates Elsevier, 2004
 Braess, D. and Schöberl, J. Equilibrated residual error estimator for edge elements Math. Comput. 77, 651 - 672 (2008)
 Verfürth, R. A note on constant-free a posteriori error estimates SIAM J. Numer. Anal. 47, 3180 - 3194 (2009)
 Veeser, A. and Verfürth, R.

Explicit upper bounds for dual norms of residuals SIAM J. Numer. Anal. 47, 2387 - 2405 (2009)