
Adaptive Finite Element Methods
Lecture Notes Winter Term 2018/19

R. Verfürth

Fakultät für Mathematik, Ruhr-Universität Bochum

Contents

Chapter I. Introduction 7
I.1. Motivation 7
I.2. Sobolev and finite element spaces 10
I.2.1. Domains and functions 10
I.2.2. Differentiation of products 11
I.2.3. Integration by parts formulae 11
I.2.4. Weak derivatives 11
I.2.5. Sobolev spaces and norms 13
I.2.6. Friedrichs and Poincaré inequalities 14
I.2.7. Finite element partitions 14
I.2.8. Finite element spaces 16
I.2.9. Approximation properties 18
I.2.10. Nodal shape functions 18
I.2.11. A quasi-interpolation operator 21
I.2.12. Bubble functions 22

Chapter II. A posteriori error estimates 25
II.1. A residual error estimator for the model problem 26
II.1.1. The model problem 26
II.1.2. Variational formulation 26
II.1.3. Finite element discretization 26
II.1.4. Equivalence of error and residual 26
II.1.5. Galerkin orthogonality 27
II.1.6. L2-representation of the residual 28
II.1.7. Upper error bound 29
II.1.8. Lower error bound 31
II.1.9. Residual a posteriori error estimate 34
II.2. A catalogue of error estimators for the model problem 36
II.2.1. Solution of auxiliary local discrete problems 36
II.2.2. Hierarchical error estimates 42
II.2.3. Averaging techniques 47
II.2.4. H(div)-lifting 49
II.2.5. Asymptotic exactness 52
II.2.6. Convergence 54
II.3. Elliptic problems 54
II.3.1. Scalar linear elliptic equations 54
II.3.2. Mixed formulation of the Poisson equation 57

3

4 CONTENTS

II.3.3. Displacement form of the equations of linearized
elasticity 60

II.3.4. Mixed formulation of the equations of linearized
elasticity 62

II.3.5. Non-linear problems 67
II.4. Parabolic problems 69
II.4.1. Scalar linear parabolic equations 69
II.4.2. Variational formulation 70
II.4.3. An overview of discretization methods for parabolic

equations 71
II.4.4. Space-time finite elements 72
II.4.5. Finite element discretization 73
II.4.6. A preliminary residual error estimator 74
II.4.7. A residual error estimator for the case of small

convection 76
II.4.8. A residual error estimator for the case of large

convection 76
II.4.9. Space-time adaptivity 77
II.4.10. The method of characteristics 79
II.4.11. Finite volume methods 81
II.4.12. Discontinuous Galerkin methods 87

Chapter III. Implementation 89
III.1. Mesh-refinement techniques 89
III.1.1. Marking strategies 89
III.1.2. Regular refinement 91
III.1.3. Additional refinement 92
III.1.4. Marked edge bisection 93
III.1.5. Mesh-coarsening 94
III.1.6. Mesh-smoothing 96
III.2. Data structures 99
III.2.1. Nodes 99
III.2.2. Elements 100
III.2.3. Grid hierarchy 101
III.3. Numerical examples 101

Chapter IV. Solution of the discrete problems 111
IV.1. Overview 111
IV.2. Classical iterative solvers 114
IV.3. Conjugate gradient algorithms 115
IV.3.1. The conjugate gradient algorithm 115
IV.3.2. The preconditioned conjugate gradient algorithm 116
IV.3.3. Non-symmetric and indefinite problems 118
IV.4. Multigrid algorithms 119
IV.4.1. The multigrid algorithm 119
IV.4.2. Smoothing 121

CONTENTS 5

IV.4.3. Prolongation 121
IV.4.4. Restriction 122

Bibliography 125

Index 127

CHAPTER I

Introduction

I.1. Motivation

In the numerical solution of practical problems of physics or engi-
neering such as, e.g., computational fluid dynamics, elasticity, or semi-
conductor device simulation one often encounters the difficulty that the
overall accuracy of the numerical approximation is deteriorated by local
singularities arising, e.g., from re-entrant corners, interior or boundary
layers, or sharp shock-like fronts. An obvious remedy is to refine the
discretization near the critical regions, i.e., to place more grid-points
where the solution is less regular. The question then is how to identify
those regions and how to obtain a good balance between the refined
and un-refined regions such that the overall accuracy is optimal.

Another closely related problem is to obtain reliable estimates of the
accuracy of the computed numerical solution. A priori error estimates,
as provided, e.g., by the standard error analysis for finite element or
finite difference methods, are often insufficient since they only yield
information on the asymptotic error behaviour and require regularity
conditions of the solution which are not satisfied in the presence of
singularities as described above.

These considerations clearly show the need for an error estimator
which can a posteriori be extracted from the computed numerical so-
lution and the given data of the problem. Of course, the calculation
of the a posteriori error estimate should be far less expensive than the
computation of the numerical solution. Moreover, the error estimator
should be local and should yield reliable upper and lower bounds for
the true error in a user-specified norm. In this context one should note,
that global upper bounds are sufficient to obtain a numerical solution
with an accuracy below a prescribed tolerance. Local lower bounds,
however, are necessary to ensure that the grid is correctly refined so
that one obtains a numerical solution with a prescribed tolerance using
a (nearly) minimal number of grid-points.

Disposing of an a posteriori error estimator, an adaptive mesh-
refinement process has the structure of Algorithm I.1.1.

Algorithm I.1.1 is best suited for stationary problems. For transient
calculations, some changes have to be made:

• The accuracy of the computed numerical solution has to be
estimated every few time-steps.

7

8 I. INTRODUCTION

Algorithm I.1.1 General adaptive algorithm

Require: data of the pde, tolerance ε.
Provide: approximate solution to the pde with error less than ε.

1: Construct an initial admissible partition T0.
2: for k = 0, 1, . . . do
3: Solve the discrete problem corresponding to Tk.
4: for K ∈ Tk do
5: Compute an estimate ηK of the error on K.
6: end for
7: η ←

{∑
K∈TK η

2
K

}1/2

8: if η ≤ ε then
9: stop . Desired accuracy attained

10: end if
11: Based on (ηK)K determine a set T̃k of elements to be refined.

12: Based on T̃k determine an admissible refinement Tk+1 of Tk.
13: end for

• The refinement process in space should be coupled with a time-
step control.
• A partial coarsening of the mesh might be necessary.
• Occasionally, a complete re-meshing could be desirable.

In both stationary and transient problems, the refinement and un-
refinement process may also be coupled with or replaced by a moving-
point technique, which keeps the number of grid-points constant but
changes there relative location.

In order to make Algorithm I.1.1 operative we must specify

• a discretization method,
• a solver for the discrete problems,
• an error estimator which furnishes the a posteriori error esti-

mate,
• a refinement strategy which determines which elements have

to be refined or coarsened and how this has to be done.

The first point is a standard one and is not the objective of these lecture
notes. The second point will be addressed in Chapter IV (p. 111). The
third point is the objective of Chapter II (p. 25). The last point will
be addressed in Chapter III (p. 89).

In order to get a first impression of the capabilities of such an adap-
tive refinement strategy, we consider a simple, but typical example. We
are looking for a function u which is harmonic, i.e. satisfies

−∆u = 0,

in the interior Ω of a circular segment centered at the origin with radius
1 and angle 3

2
π, which vanishes on the straight parts ΓD of the boundary

∂Ω, and which has normal derivative 2
3

sin(2
3
ϕ) on the curved part ΓN

I.1. MOTIVATION 9

Figure I.1.1. Triangulation obtained by uniform refinement

of ∂Ω. Using polar co-ordinates, one easily checks that

u = r2/3 sin

(
2

3
ϕ

)
.

We compute the Ritz projections uT of u onto the spaces of continuous
piecewise linear finite elements corresponding to the two triangulations
shown in Figures I.1.1 and I.1.2, i.e., solve the problem:

Find a continuous piecewise linear function uT such that∫
Ω

∇uT · ∇vT =

∫
ΓN

2

3
sin

(
2

3
ϕ

)
vT

holds for all continuous piecewise linear functions vT .

The triangulation of Figure I.1.1 is obtained by five uniform refine-
ments of an initial triangulation T0 which consists of three right-angled
isosceles triangles with short sides of unit length. In each refinement
step every triangle is cut into four new ones by connecting the mid-
points of its edges. Moreover, the midpoint of an edge having its two
endpoints on ∂Ω is projected onto ∂Ω. The triangulation in Figure
I.1.2 is obtained from T0 by applying six steps of the adaptive refine-
ment strategy described above using the error estimator ηR,K of Section
II.1.9 (p. 34). A triangle K ∈ Tk is divided into four new ones if

ηR,K ≥ 0.5 max
K′∈Tk

ηR,K′

(cf. Algorithm III.1.1 (p. 90)). Midpoints of edges having their two
endpoints on ∂Ω are again projected onto ∂Ω. For both meshes we list

10 I. INTRODUCTION

in Table I.1.1 the number NT of triangles, the number NN of unknowns,
and the relative error

ε =
‖∇(u− uT)‖
‖∇u‖

with ‖·‖ denoting the L2(Ω)-norm. It clearly shows the advantages of
the adaptive refinement strategy.

Table I.1.1. Number of triangles NT and of unknowns
NN and relative error ε for uniform and adaptive refine-
ment

refinement NT NN ε
uniform 6144 2945 0.8%
adaptive 3296 1597 0.9%

Figure I.1.2. Triangulation obtained by adaptive refinement

I.2. Sobolev and finite element spaces

I.2.1. Domains and functions. The following notations concern-
ing domains and functions will frequently be used:

Ω open, bounded, connected set in Rd, d ∈ {2, 3};
Γ boundary of Ω, supposed to be Lipschitz-continuous;

ΓD Dirichlet part of Ω, supposed to be non-empty;

ΓN Neumann part of Ω, may be empty;

n exterior unit normal to Ω;

I.2. SOBOLEV AND FINITE ELEMENT SPACES 11

p, q, r, . . . scalar functions with values in R;

u,v,w, . . . vector-fields with values in Rd;

S,T, . . . tensor-fields with values in Rd×d;

I unit tensor;

∇ gradient;

div divergence;

div u =
d∑
i=1

∂ui
∂xi

;

div T =

(
d∑
i=1

∂Tij
∂xi

)
1≤j≤d

;

∆ = div∇ Laplace operator;

D(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
1≤i,j≤d

deformation tensor;

u · v inner product;

S : T dyadic product (inner product of tensors).

I.2.2. Differentiation of products. The product formula for dif-
ferentiation yields the following formulae for the differentiation of prod-
ucts of scalar functions, vector-fields and tensor-fields:

div(pu) = ∇p · u + p div u,

div(T · u) = (div T) · u + T : D(u).

I.2.3. Integration by parts formulae. The above product for-
mulae and the Gauss theorem for integrals give rise to the following
integration by parts formulae:∫

Γ

pu · ndS =

∫
Ω

∇p · udx+

∫
Ω

p div udx,∫
Γ

n ·T · udS =

∫
Ω

(div T) · udx+

∫
Ω

T : D(u)dx.

I.2.4. Weak derivatives. Recall that A denotes the closure of a
set A ⊂ Rd.

Example I.2.1. For the sets

A = {x ∈ R3 : x2
1 + x2

2 + x2
3 < 1} open unit ball

B = {x ∈ R3 : 0 < x2
1 + x2

2 + x2
3 < 1} punctuated open unit ball

12 I. INTRODUCTION

C = {x ∈ R3 : 1 < x2
1 + x2

2 + x2
3 < 2} open annulus

we have

A = {x ∈ R3 : x2
1 + x2

2 + x2
3 ≤ 1} closed unit ball

B = {x ∈ R3 : x2
1 + x2

2 + x2
3 ≤ 1} closed unit ball

C = {x ∈ R3 : 1 ≤ x2
1 + x2

2 + x2
3 ≤ 2} closed annulus.

Given a continuous function ϕ : Rd → R, we denote its support by

suppϕ = {x ∈ Rd : ϕ(x) 6= 0}.
The set of all functions that are infinitely differentiable and have their
support contained in Ω is denoted by C∞0 (Ω):

C∞0 (Ω) = {ϕ ∈ C∞(Ω) : suppϕ ⊂ Ω}.

Remark I.2.2. The condition ”suppϕ ⊂ Ω” is a non trivial one,
since suppϕ is closed and Ω is open. Functions satisfying this condition
vanish at the boundary of Ω together with all their derivatives.

Given a sufficiently smooth function ϕ and a multi-index α ∈ Nd,
we denote its partial derivatives by

Dαϕ =
∂α1+...+αdϕ

∂xα1
1 . . . ∂xαdd

.

Given two functions ϕ, ψ ∈ C∞0 (Ω), the Gauss theorem for integrals
yields for every multi-index α ∈ Nn the identity∫

Ω

Dαϕψ = (−1)α1+...+αd

∫
Ω

ϕDαψ.

This identity motivates the definition of the weak derivatives:

Given two integrable functions ϕ, ψ ∈ L1(Ω) and a multi-
index α ∈ Nd, ψ is called the α-th weak derivative of ϕ if
and only if the identity∫

Ω

ψρ = (−1)α1+...+αd

∫
Ω

ϕDαρ

holds for all functions ρ ∈ C∞0 (Ω). In this case we write

ψ = Dαϕ.

Remark I.2.3. For smooth functions, the notions of classical and
weak derivatives coincide. However, there are functions which are not

I.2. SOBOLEV AND FINITE ELEMENT SPACES 13

differentiable in the classical sense but which have a weak derivative
(cf. Example I.2.4 below).

Example I.2.4. The function |x| is not differentiable in (−1, 1),
but it is differentiable in the weak sense. Its weak derivative is the
piecewise constant function which equals −1 on (−1, 0) and 1 on (0, 1).

I.2.5. Sobolev spaces and norms. We will frequently use the
following Sobolev spaces and norms:

Hk(Ω) = {ϕ ∈ L2(Ω) : Dαϕ ∈ L2(Ω) for all α ∈ Nd

with α1 + . . .+ αd ≤ k},

|ϕ|k =

∑
α∈Nd

α1+...+αd=k

‖Dαϕ‖2
L2(Ω)

1
2

,

‖ϕ‖k =

{
k∑
`=0

|ϕ|2`

} 1
2

=

∑
α∈Nd

α1+...+αd≤k

‖Dαϕ‖2
L2(Ω)

1
2

,

H1
0 (Ω) = {ϕ ∈ H1(Ω) : ϕ = 0 on Γ},

H1
D(Ω) = {ϕ ∈ H1(Ω) : ϕ = 0 on ΓD},

H
1
2 (Γ) = {ψ ∈ L2(Γ) : ψ = ϕ

∣∣
Γ

for some ϕ ∈ H1(Ω)},
‖ψ‖ 1

2
,Γ = inf{‖ϕ‖1 : ϕ ∈ H1(Ω), ϕ

∣∣
Γ

= ψ}.

Note that all derivatives are to be understood in the weak sense.

Remark I.2.5. The space H
1
2 (Γ) is called trace space of H1(Ω), its

elements are called traces of functions in H1(Ω).

Remark I.2.6. Except in one dimension, d = 1, H1 functions are
in general not continuous and do not admit point values (cf. Example
I.2.7 below). A function, however, which is piecewise differentiable is
in H1(Ω) if and only if it is globally continuous. This is crucial for
finite element functions.

Example I.2.7. The function |x| is not differentiable, but it is in

H1((−1, 1)). In two dimensions, the function ln
(

ln
(√

x2
1 + x2

2

))
is

an example of an H1-function that is not continuous and which does
not admit a point value in the origin. In three dimensions, a similar
example is given by ln(

√
x2

1 + x2
2 + x2

3).

14 I. INTRODUCTION

Example I.2.8. Consider the open unit ball

Ω = {x ∈ Rd : x2
1 + . . .+ x2

d < 1}
in Rd and the functions

ϕα(x) = {x2
1 + . . .+ x2

d}
α
2 , α ∈ R.

Then we have

ϕα ∈ H1(Ω) ⇐⇒

{
α ≥ 0 if d = 2,

α > 1− d
2

if d > 2.

I.2.6. Friedrichs and Poincaré inequalities. The following in-
equalities are fundamental:

‖ϕ‖0 ≤ cΩ|ϕ|1 for all ϕ ∈ H1
D(Ω),

Friedrichs inequality

‖ϕ‖0 ≤ c′Ω|ϕ|1 for all ϕ ∈ H1(Ω) with

∫
Ω

ϕ = 0

Poincaré inequality.

The constants cΩ and c′Ω depend on the domain Ω and are propor-
tional to its diameter.

I.2.7. Finite element partitions. The finite element discretiza-
tions are based on partitions of the domain Ω into non-overlapping
simple subdomains. The collection of these subdomains is called a par-
tition and is labeled T . The members of T , i.e. the subdomains, are
called elements and are labeled K.

Any partition T has to satisfy the following conditions:

• Ω ∪ Γ is the union of all elements in T .
• (Affine equivalence) Each K ∈ T is either a trian-

gle or a parallelogram, if d = 2, or a tetrahedron
or a parallelepiped, if d = 3.
• (Admissibility) Any two elements in T are either

disjoint or share a vertex or a complete edge or –
if d = 3 – a complete face.
• (Shape-regularity) For any element K, the ratio of

its diameter hK to the diameter ρK of the largest
ball inscribed into K is bounded independently of
K.

Remark I.2.9. In two dimensions, d = 2, shape regularity means
that the smallest angles of all elements stay bounded away from zero.
In practice one usually not only considers a single partition T , but

I.2. SOBOLEV AND FINITE ELEMENT SPACES 15

complete families of partitions which are often obtained by successive
local or global refinements. Then, the ratio hK/ρK must be bounded
uniformly with respect to all elements and all partitions.

With every partition T we associate its shape parameter

CT = max
K∈T

hK
ρK

.

Remark I.2.10. In two dimensions triangles and parallelograms
may be mixed (cf. Figure I.2.1). In three dimensions tetrahedrons
and parallelepipeds can be mixed provided prismatic elements are also
incorporated. The condition of affine equivalence may be dropped. It,
however, considerably simplifies the analysis since it implies constant
Jacobians for all element transformations.

@
@
@
@@

�
�
�
��

Figure I.2.1. Mixture of triangular and quadrilateral elements

With every partition T and its elements K we associate the follow-
ing sets:

NK: the vertices of K,
EK: the edges or faces of K,
N : the vertices of all elements in T , i.e.

N =
⋃
K∈T

NK ,

E: the edges or faces of all elements in T , i.e.

E =
⋃
K∈T

EK ,

NE: the vertices of an edge or face E ∈ E ,
NΓ: the vertices on the boundary,
NΓD : the vertices on the Dirichlet boundary,
NΓN : the vertices on the Neumann boundary,
NΩ: the vertices in the interior of Ω,
EΓ: the edges or faces contained in the boundary,

16 I. INTRODUCTION

EΓD : the edges or faces contained in the Dirichlet
boundary,
EΓN : the edges or faces contained in the Neumann

boundary,
EΩ: the edges or faces having at least one endpoint in

the interior of Ω.

For every element, face, or edge S ∈ T ∪ E we denote by hS its
diameter. Note that the shape regularity of T implies that for all
elements K and K ′ and all edges E and E ′ that share at least one
vertex the ratios hK

hK′
, hE
hE′

and hK
hE

are bounded from below and from

above by constants which only depend on the shape parameter CT of
T .

With any element K, any edge or face E, and any vertex x we
associate the following sets (cf. figures I.2.2 and I.2.3)

ωK =
⋃

EK∩EK′ 6=∅

K ′, ω̃K =
⋃

NK∩NK′ 6=∅

K ′,

ωE =
⋃

E∈EK′

K ′, ω̃E =
⋃

NE∩NK′ 6=∅

K ′,

ωx =
⋃

x∈NK′

K ′.

Due to the shape-regularity of T the diameter of any of these sets
can be bounded by a multiple of the diameter of any element or edge
contained in that set. The constant only depends on the the shape
parameter CT of T .

I.2.8. Finite element spaces. For any multi-index α ∈ Nd we
set for abbreviation

|α|1 = α1 + . . .+ αd,

|α|∞ = max{αi : 1 ≤ i ≤ d},
xα = xα1

1 · . . . · x
αd
d .

Denote by

K̂ = {x̂ ∈ Rd : x1 + . . .+ xd ≤ 1, xi ≥ 0, 1 ≤ i ≤ d}
the reference simplex for a partition into triangles or tetrahedra and
by

K̂ = [0, 1]d

the reference cube for a partition into parallelograms or parallelepipeds.

Then every element K ∈ T is the image of K̂ under an affine mapping

I.2. SOBOLEV AND FINITE ELEMENT SPACES 17

�
�
�

�
�
�@

@
@

@
@
@

@
@
@
@
@
@

�
�

�
�

�
�

@
@
@
@
@
@

�
�

�
�

�
��

�
�

@
@
@

@
@
@

�
�
��

�
�

@
@
@

�
�
�

�
�
�

�
�
�

�
�
�@

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@�

�
�

�
�
�

@
@
@

@
@
@�

�
�

�
�
�

@
@
@
@
@
@

�
�

�
�

�
�

•

Figure I.2.2. Some domains ωK , ω̃K , ωE, ω̃E, and ωx

�
�
�

�
�
�@

@
@

@
@
@

�
�
�
�
�
�@

@
@
@
@
@

@
@
@

�
�
�

Figure I.2.3. Some examples of domains ωx

FK . For every integer number k set

Rk(K̂) =

{
span{xα : |α|1 ≤ k} if K is the reference simplex,

span{xα : |α|∞ ≤ k} if K is the reference cube

and set

Rk(K) =
{
p̂ ◦ F−1

K : p̂ ∈ R̂k

}
.

With this notation we define finite element spaces by

Sk,−1(T) = {ϕ : Ω→ R : ϕ
∣∣
K
∈ Rk(K) for all K ∈ T },

Sk,0(T) = Sk,−1(T) ∩ C(Ω),

Sk,00 (T) = Sk,0(T) ∩H1
0 (Ω) = {ϕ ∈ Sk,0(T) : ϕ = 0 on Γ}.

Sk,0D (T) = Sk,0(T) ∩H1
D(Ω) = {ϕ ∈ Sk,0(T) : ϕ = 0 on ΓD}.

18 I. INTRODUCTION

Note, that k may be 0 for the first space, but must be at least 1 for
the other spaces.

Example I.2.11. For the reference triangle, we have

R1(K̂) = span{1, x1, x2},

R2(K̂) = span{1, x1, x2, x
2
1, x1x2, x

2
2}.

For the reference square on the other hand, we have

R1(K̂) = span{1, x1, x2, x1x2},

R2(K̂) = span{1, x1, x2, x1x2, x
2
1, x

2
1x2, x

2
1x

2
2, x1x

2
2, x

2
2}.

I.2.9. Approximation properties. The finite element spaces de-
fined above satisfy the following approximation properties:

inf
ϕT ∈Sk,−1(T)

‖ϕ− ϕT ‖0 ≤ chk+1|ϕ|k+1 ϕ ∈ Hk+1(Ω), k ∈ N,

inf
ϕT ∈Sk,0(T)

|ϕ− ϕT |j ≤ chk+1−j|ϕ|k+1 ϕ ∈ Hk+1(Ω),

j ∈ {0, 1}, k ∈ N∗,
inf

ϕT ∈Sk,00 (T)

|ϕ− ϕT |j ≤ chk+1−j|ϕ|k+1 ϕ ∈ Hk+1(Ω) ∩H1
0 (Ω),

j ∈ {0, 1}, k ∈ N∗.

I.2.10. Nodal shape functions. Recall that N denotes the set
of all element vertices.

For any vertex x ∈ N the associated nodal shape function is denoted
by λx. It is the unique function in S1,0(T) that equals 1 at vertex x
and that vanishes at all other vertices y ∈ N\{x}.

The support of a nodal shape function λx is the set ωx and consists
of all elements that share the vertex x (cf. Figure I.2.3).

The nodal shape functions can easily be computed element-wise
from the co-ordinates of the element’s vertices.

��
��

��@
@
@ ��

��
��

��
��

��

a0 a0a1 a1

a2 a2a3

Figure I.2.4. Enumeration of vertices of triangles and
parallelograms

I.2. SOBOLEV AND FINITE ELEMENT SPACES 19

Example I.2.12. (1) Consider a triangle K with vertices a0, . . . , a2

numbered counterclockwise (cf. Figure I.2.4). Then the restrictions to
K of the nodal shape functions λa0 , . . . , λa2 are given by

λai(x) =
det(x− ai+1 , ai+2 − ai+1)

det(ai − ai+1 , ai+2 − ai+1)
i = 0, . . . , 2,

where all indices have to be taken modulo 3.
(2) Consider a parallelogramK with vertices a0, . . . , a3 numbered coun-
terclockwise (cf. Figure I.2.4). Then the restrictions to K of the nodal
shape functions λa0 , . . . , λa3 are given by

λai(x) =
det(x− ai+2 , ai+3 − ai+2)

det(ai − ai+2 , ai+3 − ai+2)
· det(x− ai+2 , ai+1 − ai+2)

det(ai − ai+2 , ai+1 − ai+2)

i = 0, . . . , 3,

where all indices have to be taken modulo 4.
(3) Consider a tetrahedron K with vertices a0, . . . , a3 enumerated as in
Figure I.2.5. Then the restrictions to K of the nodal shape functions
λa0 , . . . , λa3 are given by

λai(x) =
det(x− ai+1 , ai+2 − ai+1 , ai+3 − ai+1)

det(ai − ai+1 , ai+2 − ai+1 , ai+3 − ai+1)
i = 0, . . . , 3,

where all indices have to be taken modulo 4.
(4) Consider a parallelepiped K with vertices a0, . . . , a7 enumerated as
in Figure I.2.5. Then the restrictions to K of the nodal shape functions
λa0 , . . . , λa7 are given by

λai(x) =
det(x− ai+1 , ai+3 − ai+1 , ai+5 − ai+1)

det(ai − ai+1 , ai+3 − ai+1 , ai+5 − ai+1)
·

det(x− ai+2 , ai+3 − ai+2 , ai+6 − ai+2)

det(ai − ai+2 , ai+3 − ai+2 , ai+6 − ai+2)
·

det(x− ai+4 , ai+5 − ai+4 , ai+6 − ai+4)

det(ai − ai+4 , ai+5 − ai+4 , ai+6 − ai+4)

i = 0, . . . , 7,

where all indices have to be taken modulo 8.

Remark I.2.13. For every element (triangle, parallelogram, tetra-
hedron, or parallelepiped) the sum of all nodal shape functions corre-
sponding to the element’s vertices is identical equal to 1 on the element.

The functions λx, x ∈ N , form a bases of S1,0(T). The bases
of higher-order spaces Sk,0(T), k ≥ 2, consist of suitable products of
functions λx corresponding to appropriate vertices x.

Example I.2.14. (1) Consider a again a triangle K with its vertices
numbered as in Example I.2.12 (1). Then the nodal basis of S2,0(T)

∣∣
K

20 I. INTRODUCTION

�
�
�

�
�
�

@
@
@
@
@
@

PPPPPPPPP

�
�
�

�
�
�

a0 a0a1 a1

a3

a2 a3

a7

a4

a6

a5

Figure I.2.5. Enumeration of vertices of tetrahedra
and parallelepipeds (The vertex a2 of the parallelepiped
is hidden.)

consists of the functions

λai [λai − λai+1
− λai+2

] i = 0, . . . , 2

4λaiλai+1
i = 0, . . . , 2,

where the functions λa` are as in Example I.2.12 (1) and where all
indices have to be taken modulo 3. An other basis of S2,0(T)

∣∣
K

, called
hierarchical basis, consists of the functions

λai i = 0, . . . , 2

4λaiλai+1
i = 0, . . . , 2.

(2) Consider a again a parallelogram K with its vertices numbered as
in Example I.2.12 (2). Then the nodal basis of S2,0(T)

∣∣
K

consists of
the functions

λai [λai − λai+1
+ λai+2

− λai+3
] i = 0, . . . , 3

4λai [λai+1
− λai+2

] i = 0, . . . , 3

16λa0λa2

where the functions λa` are as in Example I.2.12 (2) and where all
indices have to be taken modulo 4. The hierarchical basis of S2,0(T)

∣∣
K

consists of the functions

λai i = 0, . . . , 3

4λai [λai+1
− λai+2

] i = 0, . . . , 3

16λa0λa2 .

(3) Consider a again a tetrahedron K with its vertices numbered as in
Example I.2.12 (3). Then the nodal basis of S2,0(T)

∣∣
K

consists of the
functions

λai [λai − λai+1
− λai+2

− λai+3
] i = 0, . . . , 3

I.2. SOBOLEV AND FINITE ELEMENT SPACES 21

4λaiλaj 0 ≤ i < j ≤ 3,

where the functions λa` are as in Example I.2.12 (3) and where all
indices have to be taken modulo 4. The hierarchical basis consists of
the functions

λai i = 0, . . . , 3

4λaiλaj 0 ≤ i < j ≤ 3.

I.2.11. A quasi-interpolation operator. We will frequently use
the quasi-interpolation operator IT : L1(Ω)→ S1,0

D (T) which is defined
by

IT ϕ =
∑

x∈NΩ∪NΓN

λx
1

|ωx|

∫
ωx

ϕ.

Here, |ωx| denotes the area, if d = 2, respectively volume, if d = 3, of
the set ωx.
The operator IT satisfies the following local error estimates for all ϕ ∈
H1
D(Ω) and all elements K ∈ T :

‖ϕ− IT ϕ‖L2(K) ≤ cA1hK‖ϕ‖H1(ω̃K),

‖ϕ− IT ϕ‖L2(∂K) ≤ cA2h
1
2
K‖ϕ‖H1(ω̃K).

Here, ω̃K denotes the set of all elements that share at least a vertex
with K (cf. Figure I.2.6). The constants cA1 and cA2 only depend on
the shape parameter CT of T .

@
@
@

@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@K K

@
@
@

Figure I.2.6. Examples of domains ω̃K

Remark I.2.15. The operator IT is called a quasi-interpolation op-
erator since it does not interpolate a given function ϕ at the vertices
x ∈ N . In fact, point values are not defined for H1-functions. For func-
tions with more regularity which are at least in H2(Ω), the situation
is different. For those functions point values do exist and the classical
nodal interpolation operator JT : H2(Ω) ∩ H1

D(Ω) → S1,0
D (T) can be

defined by the relation (JT (ϕ))(x) = ϕ(x) for all vertices x ∈ N .

22 I. INTRODUCTION

I.2.12. Bubble functions. For any element K ∈ T we define an
element bubble function by

ψK = αK
∏
x∈NK

λx ,

αK =

27 if K is a triangle,
256 if K is a tetrahedron,
16 if K is a parallelogram,
64 if K is a parallelepiped.

It has the following properties:

0 ≤ ψK(x) ≤ 1 for all x ∈ K,
ψK(x) = 0 for all x 6∈ K,

max
x∈K

ψK(x) = 1.

For every polynomial degree k there are constants cI1,k and
cI2,k, which only depend on the degree k and the shape pa-
rameter CT of T , such that the following inverse estimates
hold for all polynomials ϕ of degree k:

cI1,k‖ϕ‖K ≤ ‖ψ
1
2
Kϕ‖K ,

‖∇(ψKϕ)‖K ≤ cI2,kh
−1
K ‖ϕ‖K .

Recall that we denote by E the set of all edges, if d = 2, and of
all faces, if d = 3, of all elements in T and by NE the vertices of any
E ∈ E . With each edge respectively face E ∈ E we associate an edge
respectively face bubble function by

ψE = βE
∏
x∈NE

λx ,

βE =

4 if E is a line segment,

27 if E is a triangle,

16 if E is a parallelogram.

It has the following properties:

0 ≤ ψE(x) ≤ 1 for all x ∈ ωE,
ψE(x) = 0 for all x 6∈ ωE,

max
x∈ωE

ψE(x) = 1.

I.2. SOBOLEV AND FINITE ELEMENT SPACES 23

For every polynomial degree k there are constants cI3,k,
cI4,k, and cI5,k, which only depend on the degree k and the
shape parameter CT of T , such that the following inverse
estimates hold for all polynomials ϕ of degree k:

cI3,k‖ϕ‖E ≤ ‖ψ
1
2
Eϕ‖E,

‖∇(ψEϕ)‖ωE ≤ cI4,kh
− 1

2
E ‖ϕ‖E,

‖ψEϕ‖ωE ≤ cI5,kh
1
2
E‖ϕ‖E.

Here ωE is the union of all elements that share E (cf. Figure I.2.7).
Note that ωE consists of two elements, if E is not contained in the
boundary Γ, and of exactly one element, if E is a subset of Γ.

�
�
�

�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

�
�
�

�
�
�

Figure I.2.7. Examples of domains ωE

With each edge respectively face E ∈ E we finally associate a unit
vector nE orthogonal to E and denote by JE(·) the jump across E in
direction nE, i.e.

JE(ϕ)(x) = lim
t→0+

ϕ(x+ tnE)− lim
t→0+

ϕ(x− tnE).

If E is contained in the boundary Γ the orientation of nE is fixed to be
the one of the exterior normal. Otherwise it is not fixed.

Remark I.2.16. JE(·) depends on the orientation of nE but quan-
tities of the form JE(nE · ϕ) are independent of this orientation.

CHAPTER II

A posteriori error estimates

In this chapter we will describe various possibilities for a posteriori
error estimation. In order to keep the presentation as simple as possible
we will consider in Sections II.1 and II.2 a simple model problem: the
two-dimensional Poisson equation (cf. Equation (II.1.1) (p. 26)) dis-
cretized by continuous linear or bilinear finite elements (cf. Equation
(II.1.3) (p. 26)). We will review several a posteriori error estimators
and show that – in a certain sense – they are all equivalent and yield
lower and upper bounds on the error of the finite element discretization.
The estimators can roughly be classified as follows:

• Residual estimates : Estimate the error of the computed nu-
merical solution by a suitable norm of its residual with respect
to the strong form of the differential equation (Section II.1.9
(p. 34)).
• Solution of auxiliary local problems : On small patches of ele-

ments, solve auxiliary discrete problems similar to, but simpler
than the original problem and use appropriate norms of the lo-
cal solutions for error estimation (Section II.2.1 (p. 36)).
• Hierarchical basis error estimates : Evaluate the residual of the

computed finite element solution with respect to another finite
element space corresponding to higher order elements or to a
refined grid (Section II.2.2 (p. 42)).
• Averaging methods : Use some local extrapolate or average of

the gradient of the computed numerical solution for error es-
timation (Section II.2.3 (p. 47)).
• H(div)-lifting : Sweeping through the elements sharing a given

vertex construct a vector field such that its divergence equals
the residual (Section II.2.4 (p. 49)).

In Section II.2.5 (p. 52), we shortly address the question of asymptotic
exactness, i.e., whether the ratio of the estimated and the exact error
remains bounded or even approaches 1 when the mesh-size converges
to 0. In Section II.2.6 (p. 54) we finally show that an adaptive method
based on a suitable error estimator and a suitable mesh-refinement
strategy converges to the true solution of the differential equation.

25

26 II. A POSTERIORI ERROR ESTIMATES

II.1. A residual error estimator for the model problem

II.1.1. The model problem. As a model problem we consider
the Poisson equation with mixed Dirichlet-Neumann boundary condi-
tions

(II.1.1)

−∆u = f in Ω

u = 0 on ΓD

∂u

∂n
= g on ΓN

in a connected, bounded, polygonal domain Ω ⊂ R2 with boundary Γ
consisting of two disjoint parts ΓD and ΓN . We assume that the Dirich-
let boundary ΓD is closed relative to Γ and has a positive length and
that f and g are square integrable functions on Ω and ΓN , respectively.
The Neumann boundary ΓN may be empty.

II.1.2. Variational formulation. The standard weak formula-
tion of problem (II.1.1) is:

Find u ∈ H1
D(Ω) such that

(II.1.2)

∫
Ω

∇u · ∇v =

∫
Ω

fv +

∫
ΓN

gv

for all v ∈ H1
D(Ω).

It is well-known that problem (II.1.2) admits a unique solution.

II.1.3. Finite element discretization. We choose an affine
equivalent, admissible and shape-regular partition T of Ω as in Section
I.2.7 (p. 14) and consider the following finite element discretization of
problem (II.1.2):

Find uT ∈ S1,0
D (T) such that

(II.1.3)

∫
Ω

∇uT · ∇vT =

∫
Ω

fvT +

∫
ΓN

gvT

for all vT ∈ S1,0
D (T).

Again it is well-known that problem (II.1.3) admits a unique solution.

II.1.4. Equivalence of error and residual. In what follows we
always denote by u ∈ H1

D(Ω) and uT ∈ S1,0
D (T) the exact solutions of

problems (II.1.2) and (II.1.3), respectively. They satisfy the identity

II.1. A RESIDUAL ERROR ESTIMATOR 27

∫
Ω

∇(u− uT) · ∇v =

∫
Ω

fv +

∫
ΓN

gv −
∫

Ω

∇uT · ∇v

for all v ∈ H1
D(Ω). The right-hand side of this equation implicitly

defines the residual of uT as an element of the dual space of H1
D(Ω).

The Friedrichs and Cauchy-Schwarz inequalities imply for all v ∈
H1
D(Ω)

1√
1 + c2

Ω

‖v‖H1(Ω) ≤ sup
w∈H1

D(Ω)
‖w‖H1(Ω)=1

∫
Ω

∇v · ∇w ≤ ‖v‖H1(Ω).

This corresponds to the fact that the bilinear form

H1
D(Ω) 3 v, w 7→

∫
Ω

∇v · ∇w

defines an isomorphism of H1
D(Ω) onto its dual space. The constants

multiplying the first and last term in this inequality are related to the
norm of this isomorphism and of its inverse.

The definition of the residual and the above inequality imply the
estimate

sup
w∈H1

D(Ω)
‖w‖H1(Ω)=1

{∫
Ω

fw +

∫
ΓN

gw −
∫

Ω

∇uT · ∇w
}

≤ ‖u− uT ‖H1(Ω)

≤
√

1 + c2
Ω sup

w∈H1
D(Ω)

‖w‖H1(Ω)=1

{∫
Ω

fw +

∫
ΓN

gw −
∫

Ω

∇uT · ∇w
}
.

Since the sup-term in this inequality is equivalent to the norm of the
residual in the dual space of H1

D(Ω), we have proved:

The norm in H1
D(Ω) of the error is, up to multiplicative

constants, bounded from above and from below by the norm
of the residual in the dual space of H1

D(Ω).

Most a posteriori error estimators try to estimate this dual norm of
the residual by quantities that can more easily be computed from f , g,
and uT .

II.1.5. Galerkin orthogonality. Since S1,0
D (T) ⊂ H1

D(Ω), the

error is orthogonal to S1,0
D (T):

28 II. A POSTERIORI ERROR ESTIMATES

∫
Ω

∇(u− uT) · ∇wT = 0

for all wT ∈ S1,0
D (T). Using the definition of the residual, this can be

written as ∫
Ω

fwT +

∫
ΓN

gwT −
∫

Ω

∇uT · ∇wT = 0

for all wT ∈ S1,0
D (T). This identity reflects the fact that the discretiza-

tion (II.1.3) is consistent and that no additional errors are introduced
by numerical integration or by inexact solution of the discrete problem.
It is often referred to as Galerkin orthogonality .

II.1.6. L2-representation of the residual. Integration by parts
element-wise yields for all w ∈ H1

D(Ω)∫
Ω

fw +

∫
ΓN

gw −
∫

Ω

∇uT · ∇w

=

∫
Ω

fw +

∫
ΓN

gw −
∑
K∈T

∫
K

∇uT · ∇w

=

∫
Ω

fw +

∫
ΓN

gw +
∑
K∈T

{∫
K

∆uT w −
∫
∂K

nK · ∇uT w
}

=
∑
K∈T

∫
K

(f + ∆uT)w +
∑

E∈EΓN

∫
E

(g − nE · ∇uT)w

−
∑
E∈EΩ

∫
E

JE(nE · ∇uT)w.

Here, nK denotes the unit exterior normal to the element K. Note that
∆uT vanishes on all triangles.

For abbreviation, we define element and edge residuals by

RK(uT) = f + ∆uT

and

RE(uT) =

−JE(nE · ∇uT) if E ∈ EΩ,

g − nE · ∇uT if E ∈ EΓN ,

0 if E ∈ EΓD .

Then we obtain the following L2-representation of the residual

II.1. A RESIDUAL ERROR ESTIMATOR 29

∫
Ω

fw +

∫
ΓN

gw −
∫

Ω

∇uT · ∇w

=
∑
K∈T

∫
K

RK(uT)w +
∑
E∈E

∫
E

RE(uT)w.

Together with the Galerkin orthogonality this implies

∫
Ω

fw +

∫
ΓN

gw −
∫

Ω

∇uT · ∇w

=
∑
K∈T

∫
K

RK(uT)(w − wT)

+
∑
E∈E

∫
E

RE(uT)(w − wT)

for all w ∈ H1
D(Ω) and all wT ∈ S1,0

D (T).

II.1.7. Upper error bound. We fix an arbitrary function w ∈
H1
D(Ω) and choose wT = IT w with the quasi-interpolation operator of

Section I.2.11 (p. 21). The Cauchy-Schwarz inequality for integrals and
the properties of IT then yield∫

Ω

fw +

∫
ΓN

gw −
∫

Ω

∇uT · ∇w

=
∑
K∈T

∫
K

RK(uT)(w − IT w) +
∑
E∈E

∫
E

RE(uT)(w − IT w)

≤
∑
K∈T

‖RK(uT)‖K‖w − IT w‖K +
∑
E∈E

‖RE(uT)‖E‖w − IT w‖E

≤
∑
K∈T

‖RK(uT)‖KcA1hK‖w‖H1(ω̃K)

+
∑
E∈E

‖RE(uT)‖EcA2h
1
2
E‖w‖H1(ω̃E).

Invoking the Cauchy-Schwarz inequality for sums this gives∫
Ω

fw +

∫
ΓN

gw −
∫

Ω

∇uT · ∇w

≤ max{cA1, cA2}

{∑
K∈T

h2
K‖RK(uT)‖2

K

30 II. A POSTERIORI ERROR ESTIMATES

+
∑
E∈E

hE‖RE(uT)‖2
E

} 1
2

·

·

{∑
K∈T

‖w‖2
H1(ω̃K) +

∑
E∈E

‖w‖2
H1(ω̃E)

} 1
2

.

In a last step we observe that the shape-regularity of T implies{∑
K∈T

‖w‖2
H1(ω̃K) +

∑
E∈E

‖w‖2
H1(ω̃E)

} 1
2

≤ c‖w‖H1(Ω)

with a constant c which only depends on the shape parameter CT of
T and which takes into account that every element is counted several
times on the left-hand side of this inequality.

Combining these estimates with the equivalence of error and resid-
ual, we obtain the following upper bound on the error

‖u− uT ‖H1(Ω) ≤ c∗

{∑
K∈T

h2
K‖RK(uT)‖2

K

+
∑
E∈E

hE‖RE(uT)‖2
E

} 1
2

with

c∗ =
√

1 + c2
Ω max{cA1, cA2}c.

The right-hand side of this estimate can be used as an a posteri-
ori error estimator since it only involves the known data f and g, the
solution uT of the discrete problem, and the geometrical data of the
partition. The above inequality implies that the a posteriori error es-
timator is reliable in the sense that an inequality of the form ”error
estimator ≤ tolerance” implies that the true error is also less than the
tolerance up to the multiplicative constant c∗. We want to show that
the error estimator is also efficient in the sense that an inequality of
the form ”error estimator ≥ tolerance” implies that the true error is
also greater than the tolerance possibly up to another multiplicative
constant.

For general functions f and g the exact evaluation of the integrals
occurring on the right-hand side of the above estimate may be prohibi-
tively expensive or even impossible. The integrals then must be approx-
imated by suitable quadrature formulae. Alternatively the functions f
and g may be approximated by simpler functions, e.g., piecewise poly-
nomial ones, and the resulting integrals be evaluated exactly. Often,
both approaches are equivalent.

II.1. A RESIDUAL ERROR ESTIMATOR 31

II.1.8. Lower error bound. In order to prove the announced
efficiency, we denote for every element K by fK the mean value of f
on K

fK =
1

|K|

∫
K

fdx

and for every edge E on the Neumann boundary by gE the mean value
of g on E

gE =
1

|E|

∫
E

gdS.

We fix an arbitrary element K and insert the function

wK = (fK + ∆uT)ψK

in the L2-representation of the residual. Taking into account that
suppwK ⊂ K we obtain∫

K

RK(uT)wK =

∫
K

∇(u− uT) · ∇wK .

We add
∫
K

(fK − f)wK on both sides of this equation and obtain∫
K

(fK + ∆uT)2ψK =

∫
K

(fK + ∆uT)wK

=

∫
K

∇(u− uT) · ∇wK −
∫
K

(f − fK)wK .

The results of Section I.2.12 (p. 22) imply for the left hand-side of this
equation∫

K

(fK + ∆uT)2ψK ≥ c2
I1‖fK + ∆uT ‖2

K

and for the two terms on its right-hand side∫
K

∇(u− uT) · ∇wK ≤ ‖∇(u− uT)‖K‖∇wK‖K

≤ ‖∇(u− uT)‖KcI2h−1
K ‖fK + ∆uT ‖K∫

K

(f − fK)wK ≤ ‖f − fK‖K‖wK‖K

≤ ‖f − fK‖K‖fK + ∆uT ‖K .
This proves that

hK‖fK + ∆uT ‖K ≤ c−2
I1 cI2‖∇(u− uT)‖K

+ c−2
I1 hK‖f − fK‖K .

(II.1.4)

32 II. A POSTERIORI ERROR ESTIMATES

Next, we consider an arbitrary interior edge E ∈ EΩ and insert the
function

wE = RE(uT)ψE

in the L2-representation of the residual. This gives∫
E

JE(nE · ∇uT)2ψE =

∫
E

RE(uT)wE

=

∫
ωE

∇(u− uT) · ∇wE

−
∑
K∈T
E∈EK

∫
K

RK(uT)wE

=

∫
ωE

∇(u− uT) · ∇wE

−
∑
K∈T
E∈EK

∫
K

(fK + ∆uT)wE

−
∑
K∈T
E∈EK

∫
K

(f − fK)wE

The results of Section I.2.12 (p. 22) imply for the left-hand side of this
equation∫

E

JE(nE · ∇uT)2ψE ≥ c2
I3‖JE(nE · ∇uT)‖2

E

and for the three terms on its right-hand side∫
ωE

∇(u− uT) · ∇wE ≤ ‖∇(u− uT)‖H1(ωE)‖∇wE‖H1(ωE)

≤ ‖∇(u− uT)‖H1(ωE)

· cI4h
− 1

2
E ‖JE(nE · ∇uT)‖E∑

K∈T
E∈EK

∫
K

(fK + ∆uT)wE ≤
∑
K∈T
E∈EK

‖fK + ∆uT ‖K‖wE‖K

≤
∑
K∈T
E∈EK

‖fK + ∆uT ‖K

· cI5h
1
2
E‖JE(nE · ∇uT)‖E

∑
K∈T
E∈EK

∫
K

(f − fK)wE ≤
∑
K∈T
E∈EK

‖f − fK‖K‖wE‖K

II.1. A RESIDUAL ERROR ESTIMATOR 33

≤
∑
K∈T
E∈EK

‖f − fK‖K

· cI5h
1
2
E‖JE(nE · ∇uT)‖E

and thus yields

c2
I3‖JE(nE · ∇uT)‖E ≤ cI4h

− 1
2

E ‖∇(u− uT)‖H1(ωE)

+
∑
K∈T
E∈EK

cI5h
1
2
E‖fK + ∆uT ‖K

+
∑
K∈T
E∈EK

cI5h
1
2
E‖f − fK‖K .

Combining this estimate with inequality (II.1.4) we obtain

h
1
2
E‖JE(nE · ∇uT)‖E
≤ c−2

I3 cI5
[
cI4 + c−2

I1 cI2
]
‖∇(u− uT)‖H1(ωE)

+ c−2
I3 cI5

[
1 + c−2

I1

]
hE

∑
K∈T
E∈EK

‖f − fK‖K .
(II.1.5)

Finally, we fix an edge E on the Neumann boundary, denote by K the
adjacent element and insert the function

wE = (gE − nE · ∇uT)ψE

in L2-representation of the residual. This gives∫
E

RE(uT)wE =

∫
K

∇(u− uT) · ∇wE −
∫
K

RK(uT)wE.

We add
∫
E

(gE − g)wE on both sides of this equation and obtain∫
E

(gE − nE · ∇uT)2ψE =

∫
E

(gE − nE · ∇uT)wE

=

∫
K

∇(u− uT) · ∇wE

−
∫
K

(fK + ∆uT)wE −
∫
K

(f − fK)wE

−
∫
E

(g − gE)wE.

34 II. A POSTERIORI ERROR ESTIMATES

Invoking once again the results of Section I.2.12 (p. 22) and using the
same arguments as above this implies that

h
1
2
E‖gE − nE · ∇uT ‖E
≤ c−2

I3 cI5
[
cI4 + c−2

I1 cI2
]
‖∇(u− uT)‖K

+ c−2
I3 cI5

[
1 + c−2

I1

]
hK‖f − fK‖K

+ c−2
I3 h

1
2
E‖g − gE‖E.

(II.1.6)

Estimates (II.1.4), (II.1.5), and (II.1.6) prove the announced efficiency
of the a posteriori error estimate:{

h2
K‖fK + ∆uT ‖2

K

+
1

2

∑
E∈EK∩EΩ

hE‖JE(nE · ∇uT)‖2
E

+
∑

E∈EK∩EΓN

hE‖gE − nE · ∇uT ‖2
E

} 1
2

≤ c∗

{
‖u− uT ‖2

H1(ωK)

+
∑
K′∈T

EK′∩EK 6=∅

h2
K′‖f − fK′‖2

H1(K′)

+
∑

E∈EK∩EΓN

hE‖g − gE‖2
E

} 1
2
.

The constant c∗ only depends on the shape parameter CT .

II.1.9. Residual a posteriori error estimate. The results of
the preceding sections can be summarized as follows:

Denote by u ∈ H1
D(Ω) and uT ∈ S1,0

D (T) the unique solu-
tions of problems (II.1.2) (p. 26) and (II.1.3) (p. 26), re-
spectively. For every element K ∈ T define the residual a
posteriori error estimator ηR,K by

ηR,K =
{
h2
K‖fK + ∆uT ‖2

K

+
1

2

∑
E∈EK∩EΩ

hE‖JE(nE · ∇uT)‖2
E

+
∑

E∈EK∩EΓN

hE‖gE − nE · ∇uT ‖2
E

} 1
2
,

II.1. A RESIDUAL ERROR ESTIMATOR 35

where fK and gE are the mean values of f and g on K
and E, respectively. There are two constants c∗ and c∗,
which only depend on the shape parameter CT , such that
the estimates

‖u− uT ‖H1(Ω) ≤ c∗
{∑
K∈T

η2
R,K

+
∑
K∈T

h2
K‖f − fK‖2

K

+
∑

E∈EΓN

hE‖g − gE‖2
E

} 1
2

and

ηR,K ≤ c∗

{
‖u− uT ‖2

H1(ωK)

+
∑
K′∈T

EK′∩EK 6=∅

h2
K′‖f − fK′‖2

H1(K′)

+
∑

E∈EK∩EΓN

hE‖g − gE‖2
E

} 1
2

hold for all K ∈ T .

Remark II.1.1. The factor 1
2

multiplying the second term in ηR,K
takes into account that each interior edge is counted twice when adding
all η2

R,K . Note that ∆uT = 0 on all triangles.

Remark II.1.2. The first term in ηR,K is related to the residual of
uT with respect to the strong form of the differential equation. The
second and third term in ηR,K are related to that boundary operator
which links the strong and weak form of the differential equation. These
boundary terms are crucial when considering low order finite element
discretizations as done here. Consider e.g. problem (II.1.1) (p. 26) in
the unit square (0, 1)2 with Dirichlet boundary conditions on the left
and bottom part and exact solution u(x) = x1x2. When using a trian-
gulation consisting of right angled isosceles triangles and evaluating the
line integrals by the trapezoidal rule, the solution of problem (II.1.3)
(p. 26) satisfies uT (x) = u(x) for all x ∈ N but uT 6= u. The second
and third term in ηR,K reflect the fact that uT /∈ H2(Ω) and that uT
does not exactly satisfy the Neumann boundary condition.

Remark II.1.3. The correction terms

hK‖f − fK‖K and h
1
2
E‖g − gE‖E

36 II. A POSTERIORI ERROR ESTIMATES

in the above a posteriori error estimate are in general higher order per-
turbations of the other terms. In special situations, however, they can
be dominant. To see this, assume that T contains at least one triangle,

choose a triangle K0 ∈ T and a non-zero function %0 ∈ C∞0 (
◦
K0), and

consider problem (II.1.1) (p. 26) with f = −∆%0 and ΓD = Γ. Since∫
K0

f = −
∫
K0

∆%0 = 0

and f = 0 outside K0, we have

fK = 0

for all K ∈ T . Since∫
Ω

fvT = −
∫
K0

∆%0vT = −
∫
K0

%0∆vT = 0

for all vT ∈ S1,0
D (T), the exact solution of problem (II.1.3) (p. 26) is

uT = 0.

Hence, we have

ηR,K = 0

for all K ∈ T , but

‖u− uT ‖H1(Ω) 6= 0.

This effect is not restricted to the particular approximation of f consid-

ered here. Since %0 ∈ C∞0 (
◦
K0) is completely arbitrary, we will always

encounter similar difficulties as long as we do not evaluate ‖f‖K ex-
actly – which in general is impossible. Obviously, this problem is cured
when further refining the mesh.

II.2. A catalogue of error estimators for the model problem

II.2.1. Solution of auxiliary local discrete problems. The
results of Section II.1 show that we must reliably estimate the norm
of the residual as an element of the dual space of H1

D(Ω). This could
be achieved by lifting the residual to a suitable subspace of H1

D(Ω) by
solving auxiliary problems similar to, but simpler than the original dis-
crete problem (II.1.3) (p. 26). Practical considerations and the results
of the Section II.1 suggest that the auxiliary problems should satisfy
the following conditions:

• In order to get an information on the local behaviour of the
error, they should involve only small subdomains of Ω.
• In order to yield an accurate information on the error, they

should be based on finite element spaces which are more ac-
curate than the original one.
• In order to keep the computational work at a minimum, they

should involve as few degrees of freedom as possible.

II.2. A CATALOGUE OF ERROR ESTIMATORS 37

• To each edge and, if need be, to each element there should
correspond at least one degree of freedom in at least one of
the auxiliary problems.
• The solution of all auxiliary problems should not cost more

than the assembly of the stiffness matrix of problem (II.1.3)
(p. 26).

There are many possible ways to satisfy these conditions. Here, we
present three of them. To this end we denote by P1 = span{1, x1, x2}
the space of linear polynomials in two variables.

II.2.1.1. Dirichlet problems associated with vertices. First, we de-
cide to impose Dirichlet boundary conditions on the auxiliary problems.
The fourth condition then implies that the corresponding subdomains
must consist of more than one element. A reasonable choice is to con-
sider all nodes x ∈ NΩ ∪ NΓN and the corresponding domains ωx (cf.
Figures I.2.2 (p. 17) and I.2.3 (p. 17)). The above conditions then lead
to the following definition:
Set for all x ∈ NΩ ∪NΓN

Vx = span{ϕψK , ρψE, σψE′ : K ∈ T , x ∈ NK ,
E ∈ EΩ, x ∈ NE,
E ′ ∈ EΓN , E

′ ⊂ ∂ωx,

ϕ, ρ, σ ∈ P1}

and

ηD,x = ‖∇vx‖ωx

where vx ∈ Vx is the unique solution of

∫
ωx

∇vx · ∇w =
∑
K∈T
x∈NK

∫
K

fKw +
∑

E∈EΓN
E⊂∂ωx

∫
E

gEw

−
∫
ωx

∇uT · ∇w

for all w ∈ Vx.
In order to get a different interpretation of the above problem, set

ux = uT + vx.

Then

ηD,x = ‖∇(ux − uT)‖ωx

38 II. A POSTERIORI ERROR ESTIMATES

and ux ∈ uT + Vx is the unique solution of∫
ωx

∇ux · ∇w =
∑
K∈T
x∈NK

∫
K

fKw +
∑

E∈EΓN
E⊂∂ωx

∫
E

gEw

for all w ∈ Vx. This is a discrete analogue of the following Dirichlet
problem

−∆ϕ = f in ωx

ϕ = uT on ∂ωx\ΓN
∂ϕ

∂n
= g on ∂ωx ∩ ΓN .

Hence, we can interpret the error estimator ηD,x in two ways:

• We solve a local analogue of the residual equation using a
higher order finite element approximation and use a suitable
norm of the solution as error estimator.
• We solve a local discrete analogue of the original problem using

a higher order finite element space and compare the solution
of this problem to the one of problem (II.1.3) (p. 26).

Thus, in a certain sense, ηD,x is based on an extrapolation technique.
It can be proven that it yields upper and lower bounds on the error
u− uT and that it is comparable to the estimator ηR,T .

Denote by u ∈ H1
D(Ω) and uT ∈ S1,0

D (Ω) the unique solu-
tions of problems (II.1.2) (p. 26) and (II.1.3) (p. 26). There
are constants cN ,1, . . . , cN ,4, which only depend on the shape
parameter CT , such that the estimates

ηD,x ≤ cN ,1

{∑
K∈T
x∈NK

η2
R,K

} 1
2
,

ηR,K ≤ cN ,2

{ ∑
x∈NK\NΓD

η2
D,x

} 1
2
,

ηD,x ≤ cN ,3

{
‖u− uT ‖2

H1(ωx)

+
∑
K∈T
x∈NK

h2
K‖f − fK‖2

K

+
∑

E∈EΓN
E⊂∂ωx

hE‖g − gE‖2
E

} 1
2
,

‖u− uT ‖H1(Ω) ≤ cN ,4

{ ∑
x∈NΩ∪NΓN

η2
D,x

+
∑
K∈T

h2
K‖f − fK‖2

K

II.2. A CATALOGUE OF ERROR ESTIMATORS 39

+
∑

E∈EΓN

hE‖g − gE‖2
E

} 1
2

hold for all x ∈ NΩ ∪ NΓN and all K ∈ T . Here, fK , gE,
and ηR,K are as in Sections II.1.8 (p. 31) and II.1.9 (p. 34).

II.2.1.2. Dirichlet problems associated with elements. We now con-
sider an estimator which is a slight variation of the preceding one.
Instead of all x ∈ NΩ ∪ NΓN and the corresponding domains ωx we
consider all K ∈ T and the corresponding sets ωK (cf. Figure I.2.2
(p. 17)). The considerations from the beginning of this section then
lead to the following definition:
Set for all K ∈ T

ṼK = span{ϕψK′ , ρψE, σψE′ : K ′ ∈ T , EK′ ∩ EK 6= ∅,
E ∈ EK ∩ EΩ,

E ′ ∈ EΓN , E
′ ⊂ ∂ωK ,

ϕ, ρ, σ ∈ P1}

and

ηD,K = ‖∇ṽK‖ωK

where ṽK ∈ ṼK is the unique solution of∫
ωK

∇ṽK · ∇w =
∑
K′∈T

EK′∩EK 6=∅

∫
K′
fK′w +

∑
E′∈EΓN
E′⊂∂ωK

∫
E′
gE′w

−
∫
ωK

∇uT · ∇w

for all w ∈ ṼK .
As before we can interpret uT + ṽK as an approximate solution of

the following Dirichlet problem

−∆ϕ = f in ωK

ϕ = uT on ∂ωK\ΓN
∂ϕ

∂n
= g on ∂ωK ∩ ΓN .

It can be proven that ηD,K also yields upper and lower bounds on the
error u− uT and that it is comparable to ηD,x and ηR,K .

40 II. A POSTERIORI ERROR ESTIMATES

Denote by u ∈ H1
D(Ω) and uT ∈ S1,0

D (T) the unique solu-
tions of problem (II.1.2) (p. 26) and (II.1.3) (p. 26). There
are constants cE,1, . . . , cE,4, which only depend on the shape
parameter CT , such that the estimates

ηD,K ≤ cE,1

{ ∑
K′∈T

EK′∩EK 6=∅

η2
R,K′

} 1
2
,

ηR,K ≤ cE,2

{ ∑
K′∈T

EK′∩EK 6=∅

η2
D,K′

} 1
2
,

ηD,K ≤ cE,3

{
‖u− uT ‖2

H1(ωK)

+
∑
K′∈T

EK′∩EK 6=∅

h2
K′‖f − fK′‖2

K′

+
∑

E′∈EΓN
E′⊂∂ωK

hE′‖g − gE′‖2
E′

} 1
2
,

‖u− uT ‖H1(Ω) ≤ cE,4

{∑
K∈T

η2
D,K

+
∑
K∈T

h2
K‖f − fK‖2

K

+
∑

E∈EΓN

hE‖g − gE‖2
E

} 1
2

hold for all K ∈ T . Here, fK , gE, ηR,K are as in Sections
II.1.8 (p. 31) and II.1.9 (p. 34).

II.2.1.3. Neumann problems. For the third estimator we decide to
impose Neumann boundary conditions on the auxiliary problems. Now
it is possible to choose the elements in T as the corresponding subdo-
main. This leads to the definition:
Set for alle K ∈ T

VK = span{ϕψK , ρψE : E ∈ EK\EΓD , ϕ, ρ ∈ P1}

and

ηN,K = ‖∇vK‖K

II.2. A CATALOGUE OF ERROR ESTIMATORS 41

where vK is the unique solution of∫
K

∇vK · ∇w =

∫
K

(fK + ∆uT)w

− 1

2

∑
E∈EK∩EΩ

∫
E

JE(nE · ∇uT)w

+
∑

E∈EK∩EΓN

∫
E

(gE − nE · ∇uT)w

for all w ∈ VK .
Note, that the factor 1

2
multiplying the residuals on interior edges

takes into account that interior edges are counted twice when summing
the contributions of all elements.

The above problem can be interpreted as a discrete analogue of the
following Neumann problem

−∆ϕ = RK(uT) in K

∂ϕ

∂n
=

1

2
RE(uT) on ∂K ∩ Ω

∂ϕ

∂n
= RE(uT) on ∂K ∩ ΓN

ϕ = 0 on ∂K ∩ ΓD.

Again it can be proven that ηN,K also yields upper and lower bounds
on the error and that it is comparable to ηR,K .

Denote by u ∈ H1
D(Ω) and uT ∈ S1,0

D (T) the unique solu-
tions of problem (II.1.2) (p. 26) and (II.1.3) (p. 26). There
are constants cE,5, . . . , cE,8, which only depend on the shape
parameter CT , such that the estimates

ηN,K ≤ cE,5ηR,K ,

ηR,K ≤ cE,6

{ ∑
K′∈T

EK′∩EK 6=∅

η2
N,K′

} 1
2
,

ηN,K ≤ cE,7

{
‖u− uT ‖2

H1(ωK)

+
∑
K′∈T

EK′∩EK 6=∅

h2
K′‖f − fK′‖2

K′

+
∑

E∈EK∩EΓN

hE‖g − gE‖2
E

} 1
2
,

‖u− uT ‖H1(Ω) ≤ cE,8

{∑
K∈T

η2
N,K

42 II. A POSTERIORI ERROR ESTIMATES

+
∑
K∈T

h2
K‖f − fK‖2

K

+
∑

E∈EΓN

hE‖g − gE‖2
E

} 1
2

hold for all K ∈ T . Here, fK , gE, ηR,K are as in Sections
II.1.8 (p. 31) and II.1.9 (p. 34).

Remark II.2.1. When T exclusively consists of triangles ∆uT van-
ishes element-wise and the normal derivatives nE · ∇uT are edge-wise
constant. In this case the functions ϕ, ρ, and σ can be dropped in the

definitions of Vx, ṼK , and VK . This considerably reduces the dimension

of the spaces Vx, ṼK , and VK and thus of the discrete auxiliary prob-
lems. Figures I.2.2 (p. 17) and I.2.3 (p. 17) show typical examples of
domains ωx and ωK . From this it is obvious that in general the above
auxiliary discrete problems have at least the dimensions 12, 7, and 4,
respectively. In any case the computation of ηD,x, ηD,K , and ηN,K is
more expensive than the one of ηR,K . This is sometimes payed off by
an improved accuracy of the error estimate.

II.2.2. Hierarchical error estimates. The key-idea of the hi-
erarchical approach is to solve problem (II.1.2) (p. 26) approximately
using a more accurate finite element space and to compare this solution
with the solution of problem (II.1.3) (p. 26). In order to reduce the
computational cost of the new problem, the new finite element space is
decomposed into the original one and a nearly orthogonal higher order
complement. Then only the contribution corresponding to the com-
plement is computed. To further reduce the computational cost, the
original bilinear form is replaced by an equivalent one which leads to a
diagonal stiffness matrix.

To describe this idea in detail, we consider a finite element space
YT which satisfies S1.0

D (T) ⊂ YT ⊂ H1
D(Ω) and which either consists of

higher order elements or corresponds to a refinement of T . We then
denote by wT ∈ YT the unique solution of

(II.2.1)

∫
Ω

∇wT · ∇vT =

∫
Ω

fvT +

∫
ΓN

gvT

for all vT ∈ YT .
To compare the solutions wT of problem (II.2.1) and uT of problem

(II.1.3) (p. 26) we subtract
∫

Ω
∇uT · ∇vT on both sides of equation

(II.2.1) and take the Galerkin orthogonality into account. We thus

II.2. A CATALOGUE OF ERROR ESTIMATORS 43

obtain∫
Ω

∇(wT − uT) · ∇vT =

∫
Ω

fvT +

∫
ΓN

gvT −
∫

Ω

∇uT · ∇vT

=

∫
Ω

∇(u− uT) · ∇vT

for all vT ∈ YT , where u ∈ H1
D(Ω) is the unique solution of problem

(II.1.2) (p. 26). Since S1.0
D (T) ⊂ YT , we may insert vT = wT − uT

as a test-function in this equation. The Cauchy-Schwarz inequality for
integrals then implies

‖∇(wT − uT)‖ ≤ ‖∇(u− uT)‖.

To prove the converse estimate, we assume that the space YT satis-
fies a saturation assumption, i.e., there is a constant β with 0 ≤ β < 1
such that

(II.2.2) ‖∇(u− wT)‖ ≤ β‖∇(u− uT)‖.

From the saturation assumption (II.2.2) and the triangle inequality we
immediately conclude that

‖∇(u− uT)‖ ≤ ‖∇(u− wT)‖+ ‖∇(wT − uT)‖
≤ β‖∇(u− uT)‖+ ‖∇(wT − uT)‖

and therefore

‖∇(u− uT)‖ ≤ 1

1− β
‖∇(wT − uT)‖.

Thus, we have proven the two-sided error bound

‖∇(wT − uT)‖ ≤ ‖∇(u− uT)‖

≤ 1

1− β
‖∇(wT − uT)‖.

Hence, we may use ‖∇(wT − uT)‖ as an a posteriori error estimator.
This device, however, is not efficient since the computation of wT

is at least as costly as the one of uT . In order to obtain a more efficient
error estimation, we use a hierarchical splitting

YT = S1,0
D (T)⊕ ZT

and assume that the spaces S1,0
D (T) and ZT are nearly orthogonal and

satisfy a strengthened Cauchy-Schwarz inequality , i.e., there is a con-
stant γ with 0 ≤ γ < 1 such that

(II.2.3)

∣∣∣∣∫
Ω

∇vT · ∇zT
∣∣∣∣ ≤ γ‖∇vT ‖‖∇zT ‖

holds for all vT ∈ S1,0
D (T), zT ∈ ZT .

44 II. A POSTERIORI ERROR ESTIMATES

Now, we write wT −uT in the form vT + zT with vT ∈ S1,0
D (T) and

zT ∈ ZT . From the strengthened Cauchy-Schwarz inequality we then
deduce that

(1− γ){‖∇vT ‖2 + ‖∇zT ‖2}
≤ ‖∇(wT − uT)‖2

≤ (1 + γ){‖∇vT ‖2 + ‖∇zT ‖2}

and in particular

‖∇zT ‖ ≤
1√

1− γ
‖∇(wT − uT)‖.(II.2.4)

Denote by zT ∈ ZT the unique solution of

(II.2.5)

∫
Ω

∇zT · ∇ζT =

∫
Ω

fζT +

∫
ΓN

gζT −
∫

Ω

∇uT · ∇ζT

for all ζT ∈ ZT .
From the definitions (II.1.2) (p. 26), (II.1.3) (p. 26), (II.2.1), and

(II.2.5) of u, uT , wT , and zT we infer that∫
Ω

∇zT · ∇ζT =

∫
Ω

∇(u− uT) · ∇ζT(II.2.6)

=

∫
Ω

∇(wT − uT) · ∇ζT

for all ζT ∈ ZT and∫
Ω

∇(wT − uT) · ∇vT = 0(II.2.7)

for all vT ∈ S1,0
D (T). We insert ζT = zT in equation (II.2.6). The

Cauchy-Schwarz inequality for integrals then yields

‖∇zT ‖ ≤ ‖∇(u− uT)‖.

On the other hand, we conclude from inequality (II.2.4) and equations
(II.2.6) and (II.2.7) with ζT = zT that

‖∇(wT − uT)‖2 =

∫
Ω

∇(wT − uT) · ∇(wT − uT)

=

∫
Ω

∇(wT − uT) · ∇(vT + zT)

=

∫
Ω

∇(wT − uT) · ∇zT

=

∫
Ω

∇zT · ∇zT

≤ ‖∇zT ‖‖∇zT ‖

II.2. A CATALOGUE OF ERROR ESTIMATORS 45

≤ 1√
1− γ

‖∇zT ‖‖∇(wT − uT)‖

and hence

‖∇(u− uT)‖ ≤ 1

1− β
‖∇(wT − uT)‖

≤ 1

(1− β)
√

1− γ
‖∇zT ‖.

Thus, we have established the two-sided error bound

‖∇zT ‖ ≤ ‖∇(u− uT)‖

≤ 1

(1− β)
√

1− γ
‖∇zT ‖.

Therefore, ‖∇zT ‖ can be used as an error estimator.
At first sight, its computation seems to be cheaper than the one of

wT since the dimension of ZT is smaller than that of YT . The com-
putation of zT , however, still requires the solution of a global system
and is therefore as expensive as the calculation of uT and wT . Yet, in
most applications the functions in ZT vanish at the vertices of T since
ZT is the hierarchical complement of S1,0

D (T) in YT . This in particu-
lar implies that the stiffness matrix corresponding to ZT is spectrally
equivalent to a suitably scaled lumped mass matrix. Therefore, zT
can be replaced by a quantity z∗T which can be computed by solving a
diagonal linear system of equations.

More precisely, we assume that there is a bilinear form b on ZT ×ZT
which has a diagonal stiffness matrix and which defines an equivalent
norm to ‖∇·‖ on ZT , i.e.,

(II.2.8) λ‖∇ζT ‖2 ≤ b(ζT , ζT) ≤ Λ‖∇ζT ‖2

holds for all ζT ∈ ZT with constants 0 < λ ≤ Λ.
The conditions on b imply that there is a unique function z∗T ∈ ZT

which satisfies

(II.2.9) b(z∗T , ζT) =

∫
Ω

fζT +

∫
ΓN

gζT −
∫

Ω

∇uT · ∇ζT

for all ζT ∈ ZT .
The Galerkin orthogonality and equation (II.2.5) imply

b(z∗T , ζT) =

∫
Ω

∇(u− uT) · ∇ζT

=

∫
Ω

∇zT · ∇ζT

46 II. A POSTERIORI ERROR ESTIMATES

for all ζT ∈ ZT . Inserting ζT = zT and ζT = z∗T in this identity and
using estimate (II.2.8) we infer that

b(z∗T , z
∗
T) =

∫
Ω

∇(u− uT) · ∇z∗T

≤ ‖∇(u− uT)‖‖∇z∗T ‖

≤ ‖∇(u− uT)‖ 1√
λ
b(z∗T , z

∗
T)

1
2

and

‖∇zT ‖2 = b(z∗T , zT)

≤ b(z∗T , z
∗
T)

1
2 b(zT , zT)

1
2

≤ b(z∗T , z
∗
T)

1
2

√
Λ‖∇zT ‖.

This proves the two-sided error bound
√
λb(z∗T , z

∗
T)

1
2 ≤ ‖∇(u− uT)‖

≤
√

Λ

(1− β)
√

1− γ
b(z∗T , z

∗
T)

1
2 .

We may summarize the results of this section as follows:

Denote by u ∈ H1
D(Ω) and uT ∈ S1,0

D (T) the unique solu-
tions of problems (II.1.2) (p. 26) and (II.1.3) (p. 26), re-
spectively. Assume that the space YT = S1,0

D (T)⊕ZT satis-
fies the saturation assumption (II.2.2) and the strengthened
Cauchy-Schwarz inequality (II.2.3) and admits a bilinear
form b on ZT × ZT which has a diagonal stiffness matrix
and which satisfies estimate (II.2.8). Denote by z∗T ∈ ZT
the unique solution of problem (II.2.9) and define the hier-
archical a posteriori error estimator ηH by

ηH = b(z∗T , z
∗
T)

1
2 .

Then the a posteriori error estimates

‖∇(u− uT)‖ ≤
√

Λ

(1− β)
√

1− γ
ηH

and

ηH ≤
1√
λ
‖∇(u− uT)‖

are valid.

Remark II.2.2. When considering families of partitions obtained
by successive refinement, the constants β and γ in the saturation as-
sumption and the strengthened Cauchy-Schwarz inequality should be

II.2. A CATALOGUE OF ERROR ESTIMATORS 47

uniformly less than 1. Similarly, the quotient Λ
λ

should be uniformly
bounded.

Remark II.2.3. The bilinear form b can often be constructed as
follows. The hierarchical complement ZT can be chosen such that its
elements vanish at the element vertices T . Standard scaling argu-
ments then imply that on ZT the H1-semi-norm ‖∇·‖ is equivalent to
a scaled L2-norm. Similarly, one can then prove that the mass-matrix
corresponding to this norm is spectrally equivalent to a lumped mass-
matrix. The lumping process in turn corresponds to a suitable numer-
ical quadrature. The bilinear form b then is given by the inner-product
corresponding to the weighted L2-norm evaluated with the quadrature
rule.

Remark II.2.4. The strengthened Cauchy-Schwarz inequality, e.g.,
holds if YT consists of continuous piecewise quadratic or biquadratic
functions. Often it can be established by transforming to the reference
element and solving a small eigenvalue-problem there.

Remark II.2.5. The saturation assumption (II.2.2) is used to es-
tablish the reliability of the error estimator ηH . One can prove that
the reliability of ηH in turn implies the saturation assumption (II.2.2).
If the space YT contains the functions wK and wE of Section II.1.8
(p. 31) one may repeat the proofs of estimates (II.1.4) (p. 31), (II.1.5)
(p. 33), and (II.1.6) (p. 34) and obtains that – up to perturbation terms

of the form hK‖f − fK‖K and h
1
2
E‖g − gE‖E – the quantity ‖∇z∗T ‖ωK

is bounded from below by ηR,K for every element K. Together with
the results of Section II.1.9 (p. 34) and inequality (II.2.9) this proves
– up to the perturbation terms – the reliability of ηH without resort-
ing to the saturation assumption. In fact, this result may be used to
prove that the saturation assumption holds if the right-hand sides f
and g of problem (II.1.1) (p. 26) are piecewise constant on T and EΓN ,
respectively.

II.2.3. Averaging techniques. To avoid unnecessary technical
difficulties and to simplify the presentation, we consider in this sec-
tion problem (II.1.1) (p. 26) with pure Dirichlet boundary conditions,
i.e. ΓN = ∅, and assume that the partition T exclusively consists of
triangles.

The error estimator of this chapter is based on the following ideas.
Denote by u and uT the unique solutions of problems (II.1.2) (p. 26)
and (II.1.3) (p. 26). Suppose that we dispose of an easily computable
approximation GuT of ∇uT such that

(II.2.10) ‖∇u−GuT ‖ ≤ β‖∇u−∇uT ‖

48 II. A POSTERIORI ERROR ESTIMATES

holds with a constant 0 ≤ β < 1. We then have

1

1 + β
‖GuT −∇uT ‖ ≤ ‖∇u−∇uT ‖

≤ 1

1− β
‖GuT −∇uT ‖

and may therefore choose ‖GuT − ∇uT ‖ as an error estimator. Since
∇uT is a piecewise constant vector-field we may hope that its L2-
projection onto the continuous, piecewise linear vector-fields satisfies
inequality (II.2.10). The computation of this projection, however, is
as expensive as the solution of problem (II.1.3) (p. 26). We therefore
replace the L2-scalar product by an approximation which leads to a
more tractable auxiliary problem.

In order to make these ideas more precise, we denote by WT the
space of all piecewise linear vector-fields and set VT = WT ∩C(Ω,R2).
Note that ∇XT ⊂ WT . We define a mesh-dependent scalar product
(·, ·)T on WT by

(v,w)T =
∑
K∈T

|K|
3

{∑
x∈NK

v|K(x) ·w|K(x)

}
.

Here, |K| denotes the area of K and

ϕ|K(x) = lim
y→x
y∈K

ϕ(y)

for all ϕ ∈ WT , K ∈ T , x ∈ NK .
Since the quadrature formula∫

K

ϕ ≈ |K|
3

∑
x∈NK

ϕ(x)

is exact for all linear functions, we have

(II.2.11) (v,w)T =

∫
Ω

v ·w

if both arguments are elements of WT and at least one of them is
piecewise constant. Moreover, one easily checks that

1

4
‖v‖2 ≤ (v,v)T ≤ ‖v‖2

for all v ∈ WT and

(v,w)T =
1

3

∑
x∈E

|ωx|v(x) ·w(x)(II.2.12)

for all v,w ∈ VT .
Denote by GuT ∈ VT the (·, ·)T -projection of ∇uT onto VT , i.e.,

(GuT ,vT)T = (∇uT ,vT)T

II.2. A CATALOGUE OF ERROR ESTIMATORS 49

for all vT ∈ VT . Equations (II.2.11) and (II.2.12) imply that

GuT (x) =
∑
K∈T
x∈NK

|K|
|ωx|
∇uT |K

for all x ∈ E . Thus, GuT may be computed by a local averaging of
∇uT .

We finally set

ηZ,K = ‖GuT −∇uT ‖K

and

ηZ =

{∑
K∈T

η2
Z,K

} 1
2

.

One can prove that ηZ yields upper and lower bounds for the error
and that it is comparable to the residual error estimator ηR,K of Section
II.1.9 (p. 34).

II.2.4. H(div)-lifting. The basic idea is to construct a piece-wise
linear vector field ρT such that

(II.2.13)

− div ρT = f on every K ∈ T
JE(nE · ρT) = −JE(nE · ∇uT) on every E ∈ EΩ

n · ρT = g − n · ∇uT on every E ∈ EΓN .

Then the vector field ρ = ρT + ∇uT is contained in H(div; Ω) and
satisfies

(II.2.14)
− div ρ = f in Ω

ρ · n = g on ΓN .

since ∆uT vanishes element-wise.
To simplify the presentation we assume for the rest of this section

that

• T exclusively consists of triangles,
• f is piece-wise constant,
• g is piece-wise constant.

Parallelograms could be treated by changing the definition (II.2.15) of
the vector fields γK,E. General functions f and g introduce additional
data errors.

For every triangle K and every edge E thereof we denote by aK,E
the vertex of K which is not contained in E and set

(II.2.15) γK,E(x) =
µ1(E)

2µ2(K)
(x− aK,E),

50 II. A POSTERIORI ERROR ESTIMATES

where µ1(E) is the length of E and µ2(K) the area of K. The vector
fields γK,E are the shape functions of the lowest order Raviart-Thomas
space and have the following properties

(II.2.16)

div γK,E =
µ1(E)

µ2(K)
on K,

nK · γK,E = 0 on ∂K \ E,
nK · γK,E = 1 on E,

‖γK,E‖K ≤ chK ,

where nK denotes the unit exterior normal of K and where the constant
c only depends on the shape parameter of T .

@
@
@
@@

�
�
�
��

�
�
�
�
�
�
�
�
�

K1

K2K3

K4

K5

K6

K7

Figure II.2.1. Enumeration of elements in ωz

Now, we consider an arbitrary interior vertex z ∈ NΩ. We enumer-
ate the triangles in ωz from 1 to n and the edges emanating from z
from 0 to n such that (cf. Figure II.2.1)

• E0 = En,
• Ei−1 and Ei are edges of Ki for every i.

We define

α0 = 0

and recursively for i = 1, . . . , n

αi = − µ2(Ki)

3µ1(Ei)
f +

µ1(Ei−1)

2µ1(Ei)
JEi−1

(nEi−1
· ∇uT) +

µ1(Ei−1)

µ1(Ei)
αi−1.

By induction we obtain

µ1(En)αn = −
n∑
i=1

µ2(Ki)

3
f +

n−1∑
j=0

µ1(Ej)

2
JEj(nEj · ∇uT).

Since ∫
Ki

λz =
µ2(Ki)

3

for every i ∈ {1, . . . , n} and since∫
Ej

λz =
µ1(Ej)

2

II.2. A CATALOGUE OF ERROR ESTIMATORS 51

for every j ∈ {0, . . . , n− 1}, we conclude – using the assumption that
f and g are piece-wise constant – that

−
n∑
i=1

µ2(Ki)

3
f +

n−1∑
j=0

µ1(Ej)

2
JEj(nEj · ∇uT) = −

∫
Ω

rλz −
∫

Σ

jλz

= 0.

Hence we have αn = 0. Therefore we can define a vector field ρz by
setting for every i ∈ {1, . . . , n}

(II.2.17) ρz|Ki = αiγKi,Ei −
(
JEi−1

(nEi−1
· ∇uT) + αi−1

)
γKi,Ei−1

.

Equations (II.2.16) and the definition of the αi imply that

(II.2.18)
− div ρz =

1

3
f on Ki

JEi(ρz · nEi) = −1

2
JE(nEi · ∇uT) on Ei

holds for every i ∈ {1, . . . , n}.
For a vertex on the boundary Γ, the construction of ρz must be

modified as follows:

• For every edge on the Neumann boundary ΓN we must replace
−JE(nE · ∇uT) by g − n · ∇uT .
• If z is a vertex on the Dirichlet boundary, there is at least one

edge emanating from z which is contained in ΓD. We must
choose the enumeration of the edges such that En is one of
these edges.

With these modifications, equations (II.2.17) and (II.2.18) carry over
although in general αn 6= 0 for vertices on the boundary Γ.

In a final step, we extend the vector fields ρz by zero outside ωz and
set

(II.2.19) ρT =
∑
z∈N

ρz.

Since every triangle has three vertices and every edge has two vertices,
we conclude from equations (II.2.18) that ρT has the desired properties
(II.2.13).

The last inequality in (II.2.16), the definition of the αi, and the
observation that ∆uT vanishes element-wise imply that

‖ρz‖ωz ≤ c
{∑
K⊂ωz

h2
K‖f + ∆uT ‖2

K

+
∑

E⊂σz∩Ω

hE‖JE(nE · ∇uT)‖2
E

+
∑

E⊂σz∩ΓN

hE‖g − nE · ∇uT ‖2
E

} 1
2

52 II. A POSTERIORI ERROR ESTIMATES

holds for every vertex z ∈ N with a constant which only depends on
the shape parameter of T .

Combining these results, we arrive at the following a posteriori error
estimates:

‖∇(u− uT)‖ ≤ ‖ρT ‖
‖ρT ‖ ≤ c∗‖∇(u− uT)‖

II.2.5. Asymptotic exactness. The quality of an a posteriori
error estimator is often measured by its efficiency index, i.e., the ratio
of the estimated error and of the true error. An error estimator is called
efficient if its efficiency index together with its inverse remain bounded
for all mesh-sizes. It is called asymptotically exact if its efficiency index
tends to one when the mesh-size converges to zero.

In the generic case we have{∑
K∈T

h2
K‖f − fK‖2

K

} 1
2

= o(h)

and { ∑
E∈EΓN

hE‖g − gE‖2
E

} 1
2

= o(h),

where

h = max
K∈T

hK

denotes the maximal mesh-size. On the other hand, the solutions of
problems (II.1.2) (p. 26) and (II.1.3) (p. 26) satisfy

‖u− uT ‖H1(Ω) ≥ ch

always but in trivial cases. Hence, the results of Sections II.1.9 (p. 34),
II.2.1.1 (p. 37), II.2.1.2 (p. 39), II.2.1.3 (p. 40), II.2.3 (p. 47), and
II.2.3 (p. 47) imply that the corresponding error estimators are efficient.
Their efficiency indices can in principle be estimated explicitly since
the constants in the above sections only depend on the constants in
the quasi-interpolation error estimate of Section I.2.11 (p. 21) and the
inverse inequalities of Section I.2.12 (p. 22) for which sharp bounds can
be derived.

Using super-convergence results one can also prove that on special
meshes the error estimators of Sections II.1.9 (p. 34), II.2.1.1 (p. 37),
II.2.1.2 (p. 39), II.2.1.3 (p. 40), II.2.3 (p. 47), and II.2.3 (p. 47) are
asymptotically exact.

The following example shows that asymptotic exactness may not
hold on general meshes even if they are strongly structured.

II.2. A CATALOGUE OF ERROR ESTIMATORS 53

@
@
@

@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@

@
@
@�

�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

Figure II.2.2. Triangulation of Example II.2.6 corre-
sponding to n = 4

Example II.2.6. Consider problem (II.1.1) (p. 26) on the unit
square

Ω = (0, 1)2

with

ΓN = (0, 1)× {0} ∪ (0, 1)× {1},
g = 0,

and

f = 1.

The exact solution is

u(x, y) =
1

2
x(1− x).

The triangulation T is obtained as follows (cf. Figure II.2.2): Ω is
divided into n2 squares with sides of length h = 1

n
, n ∈ N∗; each

square is cut into four triangles by drawing the two diagonals. This
triangulation is often called a criss-cross grid. Since the solution u
of problem (II.1.1) (p. 26) is quadratic and the Neumann boundary
conditions are homogeneous, one easily checks that the solution uT of
problem (II.1.3) (p. 26) is given by

uT (x) =

{
u(x) if x is a vertex of a square,

u(x)− h2

24
if x is a midpoint of a square.

Using this expression for uT one can explicitly calculate the error and
the error estimator. After some computations one obtains for any
square Q, which is disjoint from ΓN ,{∑

K∈T
K⊂Q

η2
N,K

} 1
2

/
‖∇e‖Q =

√
17

6
≈ 1.68.

Hence, the error estimator cannot be asymptotically exact.

54 II. A POSTERIORI ERROR ESTIMATES

II.2.6. Convergence. Assume that we dispose of an error esti-
mator ηK which yields global upper and local lower bounds for the
error of the solution of problem (II.1.2) (p. 26) and its finite element
discretization (II.1.3) (p. 26) and that we apply the general adaptive
algorithm I.1.1 (p. 8) with one of the refinement strategies of Algo-
rithms III.1.1 (p. 90) and III.1.2 (p. 90). Then one can prove that the
error decreases linearly. More precisely: If u denotes the solution of
problem (II.1.2) and if ui denotes the solution of the discrete problem
(II.1.3) corresponding to the i-th partition Ti, then there is a constant
0 < β < 1, which only depends on the constants c∗ and c∗ in the error
bounds, such that

‖∇(u− ui)‖ ≤ βi‖∇(u− u0)‖.

II.3. Elliptic problems

II.3.1. Scalar linear elliptic equations. In this section we con-
sider scalar linear elliptic partial differential equations in their general
form

− div(A∇u) + a · ∇u+ αu = f in Ω

u = 0 on ΓD

n · A∇u = g on ΓN

where the diffusion A(x) is for every x ∈ Ω a symmetric positive definite
matrix. We assume that the data satisfy the following conditions:

• The diffusion A is continuously differentiable and uniformly
elliptic and uniformly isotropic, i.e.,

ε = inf
x∈Ω

min
z∈Rd\{0}

ztA(x)z

ztz
> 0

and

κ = ε−1 sup
x∈Ω

max
z∈Rd\{0}

ztA(x)z

ztz

is of moderate size.
• The convection a is a continuously differentiable vector field

and scaled such that

sup
x∈Ω
|a(x)| ≤ 1.

• The reaction α is a continuous non-negative scalar function.
• There is a constant β ≥ 0 such that

α− 1

2
div a ≥ β

II.3. ELLIPTIC PROBLEMS 55

for all x ∈ Ω. Moreover there is a constant cb ≥ 0 of moderate
size such that

sup
x∈Ω

α(x) ≤ cbβ.

• The Dirichlet boundary ΓD has positive (d − 1)-dimensional
measure and includes the inflow boundary {x ∈ Γ : a(x) ·
n(x) < 0}.

With these assumptions we can distinguish different regimes:

• dominant diffusion: supx∈Ω|a(x)| ≤ ccε and β ≤ c′bε with
constants of moderate size;
• dominant reaction: supx∈Ω|a(x)| ≤ ccε and β � ε with a

constant cc of moderate size;
• dominant convection: β � ε.

II.3.1.1. Variational formulation. The variational formulation of
the above differential equation is given by:

Find u ∈ H1
D(Ω) such that∫

Ω

{∇u · A∇v + a · ∇uv + αuv} =

∫
Ω

fv +

∫
ΓN

gv

holds for all v ∈ H1
D(Ω).

The above assumptions on the differential equation imply that this
variational problem admits a unique solution and that the correspond-
ing natural energy norm is given by

‖|v‖| =
{
ε‖∇v‖2 + β‖v‖2

} 1
2
.

The corresponding dual norm is denoted by ‖|·‖|∗ and is given by

‖|w‖|∗ = sup
v∈H1

D(Ω)\{0}

1

‖|v‖|

∫
Ω

{ε∇v · ∇w + βvw}.

II.3.1.2. Finite element discretization. The finite element discreti-
zation of the above differential equation is given by:

Find uT ∈ Sk,0D (T) such that∫
Ω

{∇uT · A∇vT + a · ∇uT vT + αuT vT }

+
∑
K∈T

δK

∫
K

{− div(A∇uT) + a · ∇uT + αuT }a · ∇vT

=

∫
Ω

fvT +

∫
ΓN

gvT

56 II. A POSTERIORI ERROR ESTIMATES

+
∑
K∈T

δK

∫
K

fa · ∇vT

holds for all vT ∈ Sk,0D (T).

The δK are non-negative stabilization parameters. The case δK = 0
for all elements K corresponds to the standard finite element scheme.
This choice is appropriate for the diffusion dominated and reaction
dominated regimes. In the case of a dominant convection, however, the
δK should be chosen strictly positive in order to stabilize the discretiza-
tion. In this case the discretization is often referred to as streamline
upwind Petrov-Galerkin discretization or in short SUPG discretization.

With an appropriate choice of the stabilization parameters δK one
can prove that the above discrete problem admits a unique solution for
all regimes described above.

II.3.1.3. Residual error estimates. Denote by u and uT the solu-
tions of the variational problem and of its discretization. As in Section
II.1.6 (p. 28) we define element and edge or face residuals by

RK(uT) = fK + div(A∇uT)− a · ∇uT − αuT

RE(uT) =

−JE(nE · A∇uT) if E ∈ EΩ,

g − nE · A∇uT if E ∈ EΓN ,

0 if E ∈ EΓD .

Here, as in Section I.2.8 (p. 16), fK and gE denote the average of f on
K and the average of g on E, respectively. The residual error estimator
is then given by

ηR,K =
{
α2
K‖RK(uT)‖2

K +
∑
E∈EK

ε−
1
2αE‖RE(uT)‖2

E

} 1
2

with

αS = min{ε−
1
2hS, β

− 1
2} for S ∈ T ∪ ET .

One can prove that ηR,K yields global upper and lower bounds for the
error measured in the norm ‖|e‖|+ ‖|a · ∇e‖|∗. In the case of dominant
diffusion or dominant reaction, the dual norm ‖|·‖|∗ can be dropped.
In this case, also lower error bounds can be established.

II.3.1.4. Other error estimators. The error estimators of Sections
II.2.1.1 (p. 37), II.2.1.2 (p. 39) and II.2.1.3 (p. 40) which are based

II.3. ELLIPTIC PROBLEMS 57

on the solution of auxiliary local discrete problems can easily be ex-
tended to the present situation. One only has to replace the dif-
ferential operator u 7→ −∆u by the the actual differential operator
u 7→ − div(A∇u) + a · ∇u+ αu and to use the above definition of the
element and edge or face residuals.

In the cases of dominant diffusion or of dominant reaction, the same
remark applies to the hierarchical estimator of Section II.2.2 (p. 42). It
has difficulties in the case of dominant convection, due to the lacking
symmetry of the bilinear form associated with the variational problem.

In the case of dominant diffusion, the averaging technique of Section
II.2.3 (p. 47) can easily be extended to the present situation. One only
has to replace the gradient ∇u by the oblique derivative A∇u. In the
cases of dominant reaction or of dominant convection, however, the
averaging technique is not appropriate since it is based on the diffusive
part of the differential operator which is no longer dominant.

II.3.2. Mixed formulation of the Poisson equation. In this
section we once again consider the model problem. But now we impose
pure homogeneous Dirichlet boundary conditions and – most important
– write the problem as a first order system by introducing ∇u as an
additional unknown:

div σ = −f in Ω

σ = ∇u in Ω

u = 0 on Γ.

Our interest in this problem is twofold:

• Its finite element discretization introduced below allows the
direct approximation of ∇u without resorting to a differen-
tiation of the finite element approximation uT considered so
far.
• Its analysis prepares the a posteriori error analysis of the equa-

tions of linear elasticity considered in the next two sections
where mixed methods are mandatory to avoid locking phe-
nomena.

For the variational formulation, we introduce the space

H(div; Ω) =
{
σ ∈ L2(Ω)d : div σ ∈ L2(Ω)

}
and its norm

‖σ‖H =
{
‖σ‖2 + ‖div σ‖2

} 1
2
.

Next, we multiply the first equation of the above differential equation
by a function v ∈ L2(Ω) and the second equation by a vector field

58 II. A POSTERIORI ERROR ESTIMATES

τ ∈ H(div; Ω), integrate both expressions over Ω and use integration
by parts for the integral involving ∇u. We thus arrive at the problem:

Find σ ∈ H(div; Ω) and u ∈ L2(Ω) such that∫
Ω

σ · τ +

∫
Ω

u div τ = 0∫
Ω

div σv = −
∫

Ω

fv

holds for all τ ∈ H(div; Ω) and v ∈ L2(Ω).

The differential equation and its variational formulation are equivalent
in the usual weak sense: Every classical solution of the differential
equation is a solution of the variational problem and every solution
of the variational problem which is sufficiently regular is a classical
solution of the differential equation.

To keep the exposition as simple as possible, we only consider
the simplest discretization which is given by the lowest order Raviart-
Thomas spaces. For every element K ∈ T we set

RT0(K) = R0(K)d +R0(K)

x1
...
xd

and

RT0(T) =
{
σT : σ

T
∣∣K ∈ RT0(K) for all K ∈ T ,∫

E

JE(nE · σT) = 0 for all E ∈ EΩ

}
.

The degrees of freedom associated with RT0(T) are the values of the
normal components of the σT evaluated at the midpoints of edges,
if d = 2, or the barycentres of faces, if d = 3. Since the normal
components nE · σT are constant on the edges respective faces, the
condition ∫

E

JE(nE · σT) = 0 for all E ∈ EΩ

ensures that the space RT0(T) is contained in H(div; Ω). The mixed
finite element approximation of the model problem is then given by:

Find σT ∈ RT0(T) and uT ∈ S0,−1(T) such that∫
Ω

σT · τT +

∫
Ω

uT div τT = 0∫
Ω

div σT vT = −
∫

Ω

fvT

II.3. ELLIPTIC PROBLEMS 59

holds for all τT ∈ RT0(T) and vT ∈ S0,−1(T).

The a posteriori error analysis of the mixed formulation of the model
problem relies on the Helmholtz decomposition of vector fields. For its
description we define the so-called curl operator curl by

curl τ = ∇× τ

=

∂τ3

∂x2

− ∂τ2

∂x3

∂τ1

∂x3

− ∂τ3

∂x1

∂τ2

∂x1

− ∂τ1

∂x2

 if τ : Ω→ R3,

curl τ =
∂τ2

∂x1

− ∂τ1

∂x2

if τ : Ω→ R2,

curl v =

∂v

∂x2

− ∂v

∂x1

 if v : Ω→ R and d = 2.

The Helmholtz decomposition then states that every vector field can be
split into a gradient and a rotational component. More precisely, there
are two continuous linear operators R and G such that every vector
field τ can be split in the form

τ = ∇(Gτ) + curl(Rτ).

Using the Helmholtz decomposition one can prove the following a
posteriori error estimate:

{
‖σ − σT ‖2

H + ‖u− uT ‖2
} 1

2

≤ c∗
{∑
K∈T

η2
R,K

} 1
2

ηR,K ≤ c∗

{
‖σ − σT ‖2

H(div;ωK) + ‖u− uT ‖2
ωK

} 1
2

with

ηR,K =
{
h2
K‖curlσT ‖2

K + h2
K‖σT ‖2

K

+ ‖f + div σT ‖2
K

60 II. A POSTERIORI ERROR ESTIMATES

+
1

2

∑
E∈EK∩EΩ

hE‖JE(σT − (σT · nE)nE)‖2
E

+
∑

E∈EK∩EΓ

hE‖σT − (σT · nE)nE‖2
E

} 1
2
.

Remark II.3.1. The terms

‖curlσT ‖K with K ∈ T ,
‖JE(σT − (σT · nE)nE)‖E with E ∈ EΩ,

‖σT − (σT · nE)nE‖E with E ∈ EΓ

in ηR,K are the residuals of σT corresponding to the equation curlσ = 0.
Due to the condition σ = ∇u, this equation is a redundant one for the
analytical problem. For the discrete problem, however, it is an extra
condition which is not incorporated.

II.3.3. Displacement form of the equations of linearized
elasticity. The equations of linearized elasticity are given by the
boundary value problem

ε = Du in Ω

ε = C−1σ in Ω

− div σ = f in Ω

asσ = 0 in Ω

u = 0 on ΓD

σ · n = 0 on ΓN

where the various quantities are

• u : Ω→ Rd the displacement ,
• Du = 1

2
(∇u + ∇ut) = 1

2
(∂ui
∂xj

+
∂uj
∂xi

)1≤i,j≤d the deformation

tensor or symmetric gradient ,
• ε : Ω→ Rd×d the strain tensor ,
• σ : Ω→ Rd×d the stress tensor ,
• C the elasticity tensor ,
• f : Ω→ Rd the given body load , and
• as τ = τ − τ t the skew symmetric part of a given tensor.

The most important example of an elasticity tensor is given by

Cε = λ tr(ε)I + 2µε

where I ∈ Rd×d is the unit tensor, tr(ε) denotes the trace of ε, and
λ, µ > 0 are the Lamé parameters . To simplify the presentation we

II.3. ELLIPTIC PROBLEMS 61

assume throughout this section that C takes the above form. We are
mainly interested in estimates which are uniform with respect to the
Lamé parameters.

II.3.3.1. Displacement formulation. The simplest discretization of
the equations of linearized elasticity is based on its displacement for-
mulation:

− div(CDu) = f in Ω

u = 0 on ΓD

n · CDu = 0 on ΓN .

The corresponding variational problem is given by:

Find u ∈ H1
D(Ω)d such that∫

Ω

Du : CDv =

∫
Ω

f · v

holds for all v ∈ H1
D(Ω)d.

Here, σ : τ denotes the inner product of two tensors, i.e.,

σ : τ =
∑

1≤i,j≤d

σijτij.

The variational problem is the Euler-Lagrange equation corresponding
to the problem of minimizing the total energy

J(u) =
1

2

∫
Ω

Du : CDu−
∫

Ω

f · u.

II.3.3.2. Finite element discretization. The finite element discreti-
zation of the displacement formulation of the equations of linearized
elasticity is given by:

Find uT ∈ Sk,0D (T)d such that∫
Ω

DuT : CDvT =

∫
Ω

f · vT

holds for all vT ∈ Sk,0D (T)d.

It is well known that this problem admits a unique solution.
II.3.3.3. Residual error estimates. The methods of Sections II.1

(p. 26) and II.3.1 (p. 54) directly carry over to this situation. They
yield the residual a posteriori error estimator

62 II. A POSTERIORI ERROR ESTIMATES

ηR,K =
{
h2
K‖fT + div(CDuT)‖2

K

+
1

2

∑
E∈EK∩EΩ

hE‖JE(nE · CDuT)‖2
E

+
∑

E∈EK∩EΓN

hE‖nE · CDuT ‖2
E

} 1
2

which gives global upper and local lower bounds on the H1-norm of
the error in the displacements.

II.3.3.4. Other error estimators. Similarly the methods of Sections
II.2.1.1 (p. 37), II.2.1.2 (p. 39), II.2.1.3 (p. 40), II.2.2 (p. 42), and II.2.3
(p. 47) can be extended to the displacement formulation of the equa-
tions of linearized elasticity. Now, of course, the auxiliary problems are
elasticity problems in displacement form and terms of the form ∇uT
must be replaced by the stress tensor σ(uT).

II.3.4. Mixed formulation of the equations of linearized
elasticity. Though appealing by its simplicity the displacement for-
mulation of the equations of linearized elasticity and the corresponding
finite element discretizations suffer from serious drawbacks:

• The displacement formulation and its discretization break
down for nearly incompressible materials which is reflected by
the so-called locking phenomenon.
• The quality of the a posteriori error estimates deteriorates in

the incompressible limit. More precisely, the constants in the
upper and lower error bounds depend on the Lamé parameter
λ and tend to infinity for large values of λ.
• Often, the displacement field is not of primary interest but the

stress tensor is of physical interest. This quantity, however, is
not directly discretized in displacement methods and must a
posteriori be extracted from the displacement field which often
leads to unsatisfactory results.

These drawbacks can be overcome by suitable mixed formulations of
the equations of linearized elasticity and appropriate mixed finite el-
ement discretizations. Correspondingly these are in the focus of the
following subsections. We are primarily interested in discretizations
and a posteriori error estimates which are robust in the sense that
their quality does not deteriorate in the incompressible limit. This is
reflected by the need for estimates which are uniform with respect to
the Lamé parameter λ.

II.3. ELLIPTIC PROBLEMS 63

II.3.4.1. The Hellinger-Reissner principle. To simplify the notation
we introduce the spaces

H = H(div; Ω)d

= {σ ∈ L2(Ω)d×d | div σ ∈ L2(Ω)d},
V = L2(Ω)d,

W = {γ ∈ L2(Ω)d×d | γ + γt = 0}

and equip them with their natural norms

‖σ‖H =
{
‖σ‖2 + ‖div σ‖2

} 1
2 ,

‖u‖V = ‖u‖,
‖γ‖W = ‖γ‖.

Here, the divergence of a tensor σ is taken row by row, i.e.,

(div σ)i =
∑

1≤j≤n

∂σij
∂xj

.

The Hellinger-Reissner principle is a mixed variational formulation
of the equations of linearized elasticity, in which the strain ε is elimi-
nated. It is given by:

Find σ ∈ H, u ∈ V , γ ∈ W such that∫
Ω

C−1σ : τ +

∫
Ω

div τ · u +

∫
Ω

τ : γ = 0∫
Ω

div σ · v = −
∫

Ω

f · v∫
Ω

σ : η = 0

holds for all τ ∈ H, v ∈ V , η ∈ W .

It can be proven that the bilinear form corresponding to the left hand-
sides of the above problem is uniformly continuous and coercive with
respect to the Lamé parameter λ. Thanks to this stability result, all
forthcoming constants are independent of λ. Hence, the corresponding
estimates are robust for nearly incompressible materials.

II.3.4.2. PEERS and BDMS elements. We consider two types of
mixed finite element discretizations of the Hellinger-Reissner principle:

• the PEERS element and
• the BDMS elements.

Both families have proven to be particularly well suited to avoid locking
phenomena. They are based on the curl operators of Section II.3.2
(p. 57) and the Raviart-Thomas space

64 II. A POSTERIORI ERROR ESTIMATES

RT0(K) = R0(K)d +R0(K)

x1
...
xd

 .

For any integer k ∈ N and any element K ∈ T we then set

Bk(K) = {σ ∈ Rd×d : (σi1, . . . , σid) = curl(ψKwi),

wi ∈ Rk(K)2d−3, 1 ≤ i ≤ d},
BDMk(K) = Rk(K)d.

Both types of discretizations are obtained by replacing the spaces H,
V and W in the variational problem corresponding to the Hellinger-
Reissner principle by discrete counterparts HT , VT and WT , respec-
tively. They differ by choice of these spaces HT , VT and WT which are
given by

HT = {σT ∈ H : σT |K ∈ RT0(K)d ⊕B0(K), K ∈ T ,
σT · n = 0 on ΓN},

VT = {vT ∈ V : vT |K ∈ R0(K)d, K ∈ CT},
WT = {ηT ∈ W ∩ C(Ω)d×d : ηT |K ∈ R1(K)d×d, K ∈ T },

for the PEERS element and

HT = {σT ∈ H : σT |K ∈ BDMk(K)d ⊕Bk−1(K), K ∈ T ,
σT · n = 0 on ΓN},

VT = {vT ∈ V : vT |K ∈ Rk−1(K)d, K ∈ CT},
WT = {ηT ∈ W ∩ C(Ω)d×d : ηT |K ∈ Rk(K)d×d, K ∈ T }

for the BDMS elements .

For both discretizations it can be proven that they admit a unique
solution.

II.3.4.3. Residual a posteriori error estimates. In what follows we
always denote by (σ,u, γ) ∈ H × V × W the unique solution of the
variational problem corresponding to the Hellinger-Reissner principle
and by (σT ,uT , γT) ∈ HT × VT ×WT its finite element approximation
using the PEERS or BDMS elements.

For every edge of face E and every tensor field τ : Ω → Rd×d we
denote by

γE(τ) = τ − (n · τ · n)n⊗ n

the tangential component of τ .

II.3. ELLIPTIC PROBLEMS 65

With these notations we define for every elementK ∈ T the residual
a posteriori error estimator ηR,K by

ηR,K =
{
h2
K‖C−1σT + γT −∇uT ‖2

K

+
1

µ2
‖f + div σT ‖2

K +
1

µ2
‖as(σT)‖2

K

+ h2
K‖curl(C−1σT + γT)‖2

K

+
∑

E∈EK∩EΩ

hE‖JE(γE(C−1σT + γT))‖2
E

+
∑

E∈EK∩EΓ

hE‖γE(C−1σT + γT)‖2
E

} 1
2
.

It can be proven that this estimator yields upper and lower bounds on
the error { 1

µ2
‖σ − σT ‖2

H + ‖u− uT ‖2 + ‖γ − γT ‖2
} 1

2

up to multiplicative constants which are independent of the Lamé pa-
rameters λ and µ.

II.3.4.4. Local Neumann problems. We want to treat local auxiliary
problems, which are based on a single element K ∈ T . Furthermore
we want to impose pure Neumann boundary conditions. Since the dis-
placement of a linear elasticity problem with pure Neumann boundary
conditions is unique only up to rigid body motions , we must factor out
the rigid body motions RK of the element K. These are given by

RK =

{
{v = (a, b) + c(−x2, x1) : a, b, c ∈ R} if d = 2,

{v = a+ b× x : a, b ∈ R3} if d = 3.

We set

HK = BDMm(K)d ⊕Bm−1(K),

VK = Rm−1(K)d/RK

WK = {ηK ∈ Rm(K)d×d : ηK + ηtK = 0}

and

XK = HK × VK ×WK ,

where m ≥ k+ 2d. With this definition of spaces it can be proven that
the following auxiliary local discrete problem admits a unique solution:

66 II. A POSTERIORI ERROR ESTIMATES

Find (σK ,uK , γK) ∈ XK such that∫
K

C−1σK : τK +

∫
K

div τK · uK +

∫
K

τK : γK

= −
∫
K

C−1σT : τK −
∫
K

div τK · uT

−
∫
K

τK : γT∫
K

div σK · vK = −
∫
K

f · vK −
∫
K

div σT · vK∫
K

σK : ηK = −
∫
K

σT : ηK

holds for all (τK ,vK , ηK) ∈ XK .

With the solution of this problem we define the error estimator ηN,K
by

ηN,K =
{ 1

µ2
‖σK‖2

H(div;K) + ‖vK‖2
K + ‖γK‖2

K

} 1
2
.

It yields upper and lower bounds on the error up to multiplicative
constants which are independent of the Lamé parameters λ and µ.

Remark II.3.2. The above auxiliary problem is a discrete linear
elasticity problem with pure Neumann boundary conditions on the sin-
gle element K. In order to implement the error estimator ηN,K one has
to construct a basis for the space VK . This can be done by taking
the standard basis of Rm(K)d and dropping those degrees of freedom
that belong to the rigid body motions. Afterwards one has to compute
the stiffness matrix for each element K and solve the associated local
auxiliary problem.

II.3.4.5. Local Dirichlet problems. Now we want to construct an
error estimator which is similar to the estimator ηD,K of Section II.2.1.2
(p. 39) and which is based on the solution of discrete linear elasticity
problems with Dirichlet boundary conditions on the patches ωK . To
this end we associate with every element K the spaces

H̃K = {σK ∈ H(div;ωK)d : σT |K′ ∈ BDMm(K ′)d ⊕Bm−1(K ′),

K ′ ∈ T , EK′ ∩ EK 6= ∅},

ṼK = {vT ∈ L2(ωK)d : vT |K′ ∈ Rm−1(K ′)d,

K ′ ∈ T , EK′ ∩ EK 6= ∅},

W̃K = {ηT ∈ L2(ωK)d×d ∩ C(ωK)d×d : ηT + ηtT = 0,

II.3. ELLIPTIC PROBLEMS 67

ηT |K′ ∈ Rm(K ′)d×d,

K ′ ∈ T , EK′ ∩ EK 6= ∅}

and

X̃K = H̃K × ṼK × W̃K

and consider the following auxiliary local problem

Find (σ̃K , ũK , γ̃K) ∈ XK such that∫
ωK

C−1σ̃K : τK +

∫
ωK

div τK · ũK

+

∫
ωK

τK : γ̃K = −
∫
ωK

C−1σT : τK

−
∫
ωK

div τK · uT

−
∫
ωK

τK : γT∫
ωK

div σ̃K · vK = −
∫
ωK

f · vK

−
∫
ωK

div σ̃T · vK∫
ωK

σ̃K : ηK = −
∫
ωK

σT : ηK

holds for all (τK ,vK , ηK) ∈ XK .

Again it can be proven that this problem admits a unique solution.
With it we define the error estimator ηD,K by

ηD,K =
{ 1

µ2
‖σ̃K‖2

H(div;K) + ‖ṽK‖2
K + ‖γ̃K‖2

K

} 1
2
.

It yields upper and lower bounds on the error up to multiplicative
constants which are independent of the Lamé parameters λ and µ.

II.3.5. Non-linear problems. For non-linear elliptic problems,
residual a posteriori error estimators are constructed in the same way
as for linear problems. The estimators consist of two ingredients:

• element residuals which consist of the element-wise residual of
the actual discrete solution with respect to the strong form of
the differential equation,
• edge or face residuals which consist of the inter-element jump

of that trace operator which links the strong and weak form

68 II. A POSTERIORI ERROR ESTIMATES

of the differential equation where all differential operators are
evaluated at the current discrete solution.

Example II.3.3. If the differential equation takes the form

− div a(x, u,∇u) + b(x, u,∇u) = 0 in Ω

u = 0 on ΓD

n · a(x, u,∇u) = g on ΓN

with a suitable differentiable vector-field a : Ω × R × Rd → Rd and a
suitable continuous function b : Ω×R×Rd → R, the element and edge
or face residuals are given by

RK(uT) = − div a(x, uT ,∇uT) + b(x, uT ,∇uT)

and

RE(uT) =

JE(nE · a(x, uT ,∇uT)) if E ∈ EΩ

gE − nE · a(x, uT ,∇uT) if E ∈ EΓN

0 if E ∈ EΓD

respectively, where gE denotes the mean value of g on E.

Some peculiarities arise from the non-linearity and must be taken
into account:

• The error estimation only makes sense if the discrete problem
is based on a well-posed variational formulation of the differen-
tial equation. Here, well-posedness means that the non-linear
mapping associated with the variational problem must at least
be continuous. In order to fulfil this requirement one often has
to leave the Hilbert setting and to replace H1(Ω) by general
Sobolev spaces W 1,p(Ω) with a Lebesgue exponent p 6= 2, typ-
ically p > d. The choice of the Lebesgue exponent p is not at
the disposal of the user, it is dictated by the nature of the non-
linearity such as, e.g., its growth. When leaving the Hilbert
setting, the L2-norms used in the error estimators must be re-
placed by corresponding Lp-norms and the weighting factors
must be adapted too. Thus, in a general Lp-setting, a typical
residual error estimator takes the form

ηR,K =
{
hpK‖RK(uT)‖pp;K

+
1

2

∑
E∈EK

hE‖RE(uT)‖pp;E
} 1
p
.

• Non-linear problems in general have multiple solutions. There-
fore any error estimator can at best control the error of the
actual discrete solution with respect to a near-by solution of
the variational problem. Moreover, an error control often is
possible only if the actual grid is fine enough. Unfortunately,

II.4. PARABOLIC PROBLEMS 69

the notions ”near-by” and ”fine enough” can in general not be
quantified.
• Non-linear problems often inhibit bifurcation or turning points.

Of course, one would like to keep track of these phenomena
with the help of the error estimator. Unfortunately, this is of-
ten possible only on a heuristic bases. Rigourous arguments in
general require additional a priori information on the structure
of the solution manifold which often is not available.

For non-linear problems, error estimators based on the solution of
auxiliary discrete problems can be devised as in Section II.2.1 (p. 36)
for the model problem. Their solution is considerably simplified by the
following observations:

• The non-linearity only enters on the right-hand side of the
auxiliary problems via the element and edge or face residuals
described above.
• The left-hand sides of the auxiliary problems correspond to

linear differential operators which are obtained by linearizing
the non-linear problem at the current discrete solution.
• Variable coefficients can be frozen at the current discrete so-

lution and suitable points of the local patch such as, e.g., the
barycentres of the elements and edges or faces.

The error estimators of Sections II.2.2 (p. 42) and II.2.3 (p. 47)
can in general be applied to non-linear problems only on a heuristic
bases; rigourous results are at present only available for some of these
estimators applied to particular model problems.

II.4. Parabolic problems

II.4.1. Scalar linear parabolic equations. In this section we
extend the results of Section II.3 (p. 54) to general linear parabolic
equations of second order:

∂tu− div(A∇u) + a · ∇u+ αu = f in Ω× (0, T]

u = 0 on ΓD × (0, T]

n · A∇u = g on ΓN × (0, T]

u = u0 in Ω.

Here, Ω ⊂ Rd, d ≥ 2, is a bounded polygonal cross-section with a
Lipschitz boundary Γ consisting of two disjoint parts ΓD and ΓN . The
final time T is arbitrary, but kept fixed in what follows.

We assume that the data satisfy the following conditions:

70 II. A POSTERIORI ERROR ESTIMATES

• The diffusion A is a continuously differentiable matrix-valued
function and symmetric, uniformly positive definite and uni-
formly isotropic, i.e.,

ε = inf
0<t≤T,x∈Ω

min
z∈Rd\{0}

zTA(x, t)z

zT z
> 0

and

κ = ε−1 sup
0<t≤T,x∈Ω

max
z∈Rd\{0}

zTA(x, t)z

zT z

is of moderate size.
• The convection a is a continuously differentiable vector-field

and scaled such that

sup
0<t≤T,x∈Ω

|a(x, t)| ≤ 1.

• The reaction α is a continuos non-negative scalar function.
• There is a constant β ≥ 0 such that

α− 1

2
div a ≥ β

for almost all x ∈ Ω and 0 < t ≤ T . Moreover there is a
constant cb ≥ 0 of moderate size such that

sup
0<t≤T,x∈Ω

|α(x, t)| ≤ cbβ.

• The Dirichlet boundary ΓD has positive (d − 1)-dimensional
measure and includes the inflow boundary⋃

0<t≤T

{x ∈ Γ : a(x, t) · n(x) < 0}.

With these assumptions we can distinguish different regimes:

• dominant diffusion: sup0<t≤T,x∈Ω|a(x, t)| ≤ ccε and β ≤ c′bε
with constants of moderate size;
• dominant reaction: sup0<t≤T,x∈Ω|a(x, t)| ≤ ccε and β � ε with

a constant cc of moderate size;
• dominant convection: β � ε.

II.4.2. Variational formulation. The variational formulation of
the above parabolic differential equation is given by:

Find u : (0, T)→ H1
D(Ω) such that∫ T

0

‖∇u(x, t)‖2dt <∞,∫ T

0

{
sup

v∈H1
d(Ω)\{0}
‖∇v‖=1

∫
Ω

∂tu(x, t)v(x)dx
}2

dt <∞,

II.4. PARABOLIC PROBLEMS 71

u(·, 0) = u0

and for almost every t ∈ (0, T) and all v ∈ H1
D(Ω)∫

Ω

∂tuv+

∫
Ω

∇u·A∇v+

∫
Ω

a·∇uv+

∫
Ω

αuv =

∫
Ω

fv+

∫
ΓN

gv.

The assumptions of Section II.4.1 imply that this problem admits a
unique solution.

The error estimation of the following sections is based on the energy
norm associated with this variational problem

‖|v‖| =
{
ε‖∇v‖2 + β‖v‖2

} 1
2

and the corresponding dual norm

‖|ϕ‖|∗ = sup
v∈H1

D(Ω)\{0}

1

‖|v‖|

∫
Ω

∇ϕ · ∇v.

II.4.3. An overview of discretization methods for parabolic
equations. Within the finite element framework, there are three main
approaches to discretize parabolic equations:

• Method of lines : One chooses a fixed spatial mesh and ap-
plies a standard finite element scheme to the spatial part of
the differential equation. This gives rise to a large system
of ordinary differential equations. The size of this system is
given by the number of degrees of freedom of the finite ele-
ment space, the unknowns are the (now time-dependent) coef-
ficients of the finite element functions. The system of ordinary
differential equations is then solved by a standard ODE-solver
such as, e.g., the Crank-Nicolson scheme or some Runge-Kutta
method.
• Rothe’s method : In this approach the order of temporal and

spatial discretization is interchanged. The parabolic partial
differential equation is interpreted as an ordinary differential
equation with respect to time with functions having their tem-
poral values in suitable infinite dimensional function spaces
such as, e.g., H1(Ω). One applies a standard ODE-solver to
this system of ordinary differential equations. At each time-
step this gives rise to a stationary elliptic partial differential
equation. These elliptic equations are then discretized by a
standard finite element scheme.

72 II. A POSTERIORI ERROR ESTIMATES

• Space-time finite elements : In this approach space and time
are discretized simultaneously.

All three approaches often lead to the same discrete problem. Yet,
they considerably differ in their analysis and – most important in our
context – their potential for adaptivity. With respect to the latter, the
space-time elements are clearly superior.

II.4.4. Space-time finite elements. In what follows we consider
partitions

I = {[tn−1, tn] : 1 ≤ n ≤ NI}
of the time-interval [0, T] into subintervals satisfying

0 = t0 < . . . < tNI = T.

For every n with 1 ≤ n ≤ NI we denote by

In = [tn−1, tn]

the n-th subinterval and by

τn = tn − tn−1

its length.

-

6

t0

t1

t2

...

tNI−1

tNI

T0

TNI

Figure II.4.1. Space-time partition

With every intermediate time tn, 0 ≤ n ≤ NI , we associate an
admissible, affine equivalent, shape regular partition Tn of Ω (cf. Figure
II.4.1) and a corresponding finite element space Xn. In addition to the
conditions of Sections I.2.7 (p. 14) and I.2.8 (p. 16) the partitions I
and Tn and the spaces Xn must satisfy the following assumptions:

• Non-degeneracy : Every time-interval has a positive length,
i.e., τn > 0 for all 1 ≤ n ≤ NI and all I.

II.4. PARABOLIC PROBLEMS 73

• Transition condition: For every n with 1 ≤ n ≤ NI there is
an affine equivalent, admissible, and shape-regular partition

T̃n such that it is a refinement of both Tn and Tn−1 and such
that

sup
1≤n≤NI

sup
K∈T̃n

sup
K′∈Tn
K⊂K′

hK′

hK
<∞

uniformly with respect to all partitions I which are obtained
by adaptive or uniform refinement of any initial partition of
[0, T].
• Degree condition: Each Xn consists of continuous functions

which are piecewise polynomials, the degrees being at least one
and being bounded uniformly with respect to all partitions Tn
and I.

The non-degeneracy is an obvious requirement to exclude pathological
situations.
The transition condition is due to the simultaneous presence of finite
element functions defined on different grids. Usually the partition Tn is
obtained from Tn−1 by a combination of refinement and of coarsening.
In this case the transition condition only restricts the coarsening: it
must not be too abrupt nor too strong.
The lower bound on the polynomial degrees is needed for the construc-
tion of suitable quasi-interpolation operators. The upper bound ensures
that the constants in inverse estimates similar to those of Section I.2.12
(p. 22) are uniformly bounded.

For every n with 0 ≤ n ≤ NI we finally denote by πn the L2-
projection of L2(Ω) onto Xn.

II.4.5. Finite element discretization. For the finite element
discretization we choose a partition I of [0, T], corresponding parti-
tions Tn of Ω and associated finite element spaces Xn as above and a
parameter θ ∈ [1

2
, 1]. With the abbreviation

An = A(·, tn),

an = a(·, tn),

αn = α(·, tn),

fn = f(·, tn),

gn = g(·, tn),

the finite element discretization is then given by:

Find unTn ∈ Xn, 0 ≤ n ≤ NI , such that

u0
T0 = π0u0

74 II. A POSTERIORI ERROR ESTIMATES

and, for n = 1, . . . , NI ,∫
Ω

1

τn

(
unTn − u

n−1
Tn−1

)
vTn +

∫
Ω

(
θ∇unTn + (1− θ)∇un−1

Tn−1

)
· An∇vTn

+

∫
Ω

an · ∇
(
θunTn + (1− θ)un−1

Tn−1

)
vTn

+

∫
Ω

αn
(
θunTn + (1− θ)un−1

Tn−1

)
vTn

=

∫
Ω

(
θfn + (1− θ)fn−1

)
vTn

+

∫
ΓN

(
θgn + (1− θ)gn−1

)
vTn

for all vTn ∈ Xn.

This is the popular A-stable θ-scheme which in particular yields the
Crank-Nicolson scheme if θ = 1

2
and the implicit Euler scheme if θ = 1.

The assumptions of Section II.4.1 imply that the discrete problem
admits a unique solution (unTn)0≤n≤NI . With this sequence we associate
the function uI which is piecewise affine on the time-intervals [tn−1, tn],
1 ≤ n ≤ NI , and which equals unTn at time tn, 0 ≤ n ≤ NI , i.e.,

uI(·, t) =
1

τn

(
(tn − t)un−1

Tn−1
+ (t− tn−1)unTn

)
on [tn−1, tn].

Note that

∂tuI =
1

τn
(unTn − u

n−1
Tn−1

) on [tn−1, tn].

Similarly we denote by fI and gI the functions which are piecewise
constant on the time-intervals and which, on each interval (tn−1, tn], are
equal to the L2-projection of θfn + (1− θ)fn−1 and θgn + (1− θ)gn−1,
respectively onto the finite element space Xn, i.e.,

fI(·, t) = πn
(
θf(·, tn) + (1− θ)f(·, tn−1)

)
gI(·, t) = πn

(
θg(·, tn) + (1− θ)g(·, tn−1)

)
on [tn−1, tn].

II.4.6. A preliminary residual error estimator. Similarly to
elliptic problems we define element residuals by

RK = fI −
1

τn
(unTn − u

n−1
Tn−1

) + div(An(θunTn + (1− θ)un−1
Tn−1

))

− an · ∇(θunTn + (1− θ)un−1
Tn−1

)− αn(θunTn + (1− θ)un−1
Tn−1

),

and edge or face residuals by

II.4. PARABOLIC PROBLEMS 75

RE =

−JE(nE · An∇(θunTn + (1− θ)un−1

Tn−1
) if E ∈ Ẽn,Ω,

gI − nE · An∇(θunTn + (1− θ)un−1
Tn−1

) if E ∈ Ẽn,ΓN ,
0 if E ∈ Ẽn,ΓD

with Ẽn denoting the collection of all edges or faces of T̃n and weighting
factors by

αS = min{hSε−
1
2 , β−

1
2}

for all elements, edges or faces S ∈ T ∪ E . Here we use the convention
that β−

1
2 =∞ if β = 0.

With these notations a preliminary residual space-time error esti-
mator for the parabolic equation is given by

η̂I =

{
‖u0 − π0u0‖2

+

NI∑
n=1

τn

[(
ηnTn

)2

+ ‖|unTn − u
n−1
Tn−1
‖|2

+ ‖|an · ∇(unTn − u
n−1
Tn−1

)‖|2∗
]} 1

2

with

ηnTn =
{∑
K∈T̃n

α2
K‖RK‖2

K +
∑
E∈Ẽn

ε−
1
2αE‖RE‖2

E

} 1
2
.

One can prove that η̂I yields upper and lower bounds for the error
measured in the norm

{
sup

0≤t≤T
‖u− uI‖2

+

∫ T

0

‖|u− uI‖|2

+

∫ T

0

‖| ∂
∂t

(u− uI) + a · ∇(u− uI)‖|2∗
} 1

2
.

We call η̂I a preliminary error estimator since it is not suited for
practical computations due to the presence of the dual norm ‖|·‖|∗ which
is not computable. To obtain the final computable error estimator we

76 II. A POSTERIORI ERROR ESTIMATES

must replace this dual norm be a computable quantity. For achieving
this goal we must distinguish two cases:

• small convection: sup0≤t≤T‖a(·, t)‖ / ε
1
2 max{ε, β} 1

2 ;

• large convection: sup0≤t≤T‖a(·, t)‖ � ε
1
2 max{ε, β} 1

2 .

II.4.7. A residual error estimator for the case of small con-
vection. In this case, we use an inverse estimate to bound the critical
term

‖|an · ∇(unTn − u
n−1
Tn−1

)‖|∗

by

‖|unTn − u
n−1
Tn−1
‖|

times a constant of moderate size. We thus obtain the residual error
estimator

ηI =

{
‖u0 − π0u0‖2

+

NI∑
n=1

τn

[(
ηnTn

)2

+ ‖|unTn − u
n−1
Tn−1
‖|2
]} 1

2

with

ηnTn =
{∑
K∈T̃n

α2
K‖RK‖2

K +
∑
E∈Ẽn

ε−
1
2αE‖RE‖2

E

} 1
2
.

It is easy to compute and yields upper and lower bounds for the error
measured in the norm of Section II.4.6.

II.4.8. A residual error estimator for the case of large con-
vection. In this case we cannot bound the dual norm by an inverse
estimate. If we would do so, we would lose a factor ε−

1
2 in the error

estimates. To avoid this undesirable phenomenon we must invest some
additional work. The basic idea is as follows:

Due to the definition of the dual norm, its contribution
equals the energy norm of the weak solution of a suitable
stationary reaction-diffusion equation. This solution is
approximated by a suitable finite element function. The
error of this approximation is estimated by an error es-
timator for stationary reaction-diffusion equations.

To make these ideas precise, we denote for every integer n between
1 and NI by

X̃n = S1,0
D (T̃n)

II.4. PARABOLIC PROBLEMS 77

the space of continuous piecewise linear functions corresponding to T̃n
and vanishing on ΓD and by ũnTn ∈ X̃n the unique solution of the
discrete reaction-diffusion problem

ε

∫
Ω

∇ũnTn · ∇vTn + β

∫
Ω

ũnTnvTn =

∫
Ω

an · ∇(unTn − u
n−1
Tn−1

)vTn

for all vTn ∈ X̃n. Further we define an error estimator η̃nTn by

η̃nTn =
{∑
K∈T̃n

α2
K‖an · ∇(unTn − u

n−1
Tn−1

) + ε∆ũnTn − βũ
n
Tn‖

2
K

+
∑

E∈Ẽn,Ω∪Ẽn,ΓN

ε−
1
2αE‖JE(nE · ∇ũnTn)‖2

E

} 1
2
.

With these notations the error estimator for the parabolic equation
is the given by

ηI =

{
‖u0 − π0u0‖2

+

NI∑
n=1

τn

[(
ηnTn

)2

+ ‖|unTn − u
n−1
Tn−1
‖|2

+
(
η̃nT̃n

)2

+ ‖|ũnTn‖|
2
]} 1

2

with

ηnTn =
{∑
K∈T̃n

α2
K‖RK‖2

K +
∑
E∈ET̃n

ε−
1
2αE‖RE‖2

E

} 1
2
.

Compared to the case of small convection we must solve on each time-
level an additional discrete problem to compute ũnTn . The computa-
tional work associated with these additional problems corresponds to
doubling the number of time-steps for the discrete parabolic problem.

II.4.9. Space-time adaptivity. When considering the error es-
timators ηI of the preceding two sections, the term

τ
1
2
n η

n
Tn

78 II. A POSTERIORI ERROR ESTIMATES

can be interpreted as a spatial error indicator, whereas the other terms
can be interpreted as temporal error indicators. These different con-
tributions can be used to control the adaptive process in space and
time.

To make things precise and to simplify the notation we set

ηnh = ηnTn

and

ηnτ = ‖|unTn − u
n−1
Tn−1
‖|

in the case of small convection and

ηnτ =
{
‖|unTn − u

n−1
Tn−1
‖|2 +

(
η̃nT̃n

)2

+ ‖|ũnTn‖|
2
} 1

2

in the case of large convection. Thus, ηnh is our measure for the spatial
error and ηnτ does the corresponding job for the temporal error.

II.4.9.1. Time adaptivity. Assume that we have solved the discrete
problem up to time-level n − 1 and that we have computed the error
estimators ηn−1

h and ηn−1
τ . Then we set

tn =

{
min{T, tn−1 + τn−1} if ηn−1

τ ≈ ηn−1
h ,

min{T, tn−1 + 2τn−1} if ηn−1
τ ≤ 1

2
ηn−1
h .

In the first case we retain the previous time-step; in the second case
we try a larger time step.

Next, we solve the discrete problem on time-level n with the current
value of tn and compute the error estimators ηnh and ηnτ .

If ηnτ ≈ ηnh , we accept the current time-step and continue with the
space adaptivity, which is described in the next sub-section.

If ηnτ ≥ 2ηnh , we reject the current time-step. We replace tn by
1
2
(tn−1 + tn) and repeat the solution of the discrete problem on time-

level n and the computation of the error estimators.
The described strategy obviously aims at balancing the two contri-

butions ηnh and ηnτ of the error estimator.
II.4.9.2. Space adaptivity. For time-dependent problems the spa-

tial adaptivity must also allow for a local mesh coarsening. Hence, the
marking strategies of Section III.1.1 (p. 89) must be modified accord-
ingly, cf. Algorithm III.1.3 (p. 95).

Assume that we have solved the discrete problem on time-level n
with an actual time-step τn and an actual partition Tn of the spatial
domain Ω and that we have computed the estimators ηnh and ηnτ . More-
over, suppose that we have accepted the current time-step and want to
optimize the partition Tn.

We may assume that Tn currently is the finest partition in a hier-
archy T 0

n , . . . , T `n of nested, successively refined partitions, i.e. Tn = T `n
and T jn is a (local) refinement of T j−1

n , 1 ≤ j ≤ `.

II.4. PARABOLIC PROBLEMS 79

Now, we go backm generations in the grid-hierarchy to the partition
T `−mn . Due to the nestedness of the partitions, each element K ∈ T `−mn

is the union of several elements K ′ ∈ Tn. Each K ′ gives a contribution
to ηnh . We add these contributions and thus obtain for every K ∈ T `−mn

an error estimator ηK . With these estimators we then perform M steps
of one of the marking strategies of Section III.1.1 (p. 89). This yields a
new partition T `−m+M

n which usually is different from Tn. We replace
Tn by this partition, solve the corresponding discrete problem on time-
level n and compute the new error estimators ηnh and ηnτ .

If the newly calculated error estimators satisfy ηnh ≈ ηnτ , we accept
the current partition Tn and proceed with the next time-level.

If ηnh ≥ 2ηnτ , we successively refine the partition Tn as described in
Section III.1 (p. 89) with the ηnh as error estimators until we arrive at a
partition which satisfies ηnh ≈ ηnτ . When this goal is achieved we accept
the spatial discretization and proceed with the next time-level.

Typical values for the parameters m and M are 1 ≤ m ≤ 3 and
m ≤M ≤ m+ 2.

II.4.10. The method of characteristics. The method of char-
acteristics can be interpreted as a modification of space-time finite el-
ements designed for problems with a large convection term. The main
idea is to split the discretization of the material derivative consisting
of the time derivative and the convective derivative from the remaining
terms.

To simplify the description of the method of characteristics we as-
sume that we use linear finite elements, have pure Dirichlet boundary
conditions, i.e. ΓD = Γ, and that the convection satisfies the slightly
more restrictive condition

div a = 0 in Ω× (0, T],

a = 0 on Γ× (0, T].

Since the function a is Lipschitz continuous with respect to the spatial
variable and vanishes on the boundary Γ, for every (x∗, t∗) ∈ Ω×(0, T],
standard global existence results for the flows of ordinary differential
equations imply that the characteristic equation

d

dt
x(t;x∗, t∗) = a(x(t;x∗, t∗), t), t ∈ (0, t∗),

x(t∗;x∗, t∗) = x∗

has a unique solution x(·;x∗, t∗) which exists for all t ∈ [0, t∗] and stays
within Ω∪ Γ. Hence, we may set U(x∗, t) = u(x(t;x∗, t∗), t). The total
derivative dtU satisfies

dtU = ∂tu+ a · ∇u.

80 II. A POSTERIORI ERROR ESTIMATES

Therefore, the parabolic equation can equivalently be written as

dtU − div(D∇u) + bu = f in Ω× (0, T).

The discretization by the method of characteristics relies on a separate
treatment of these two equations.

z•

•
xn−1
z

z•

•
xn−1
z

Figure II.4.2. Computation of xn−1
z in the method of characteristics

For every intermediate time tn, 1 ≤ n ≤ NI , and every node
z ∈ Nn,Ω we compute an approximation xn−1

z to x(tn−1; z, tn) (cf.
Figure II.4.2) by applying an arbitrary but fixed ODE-solver such
as e.g. the explicit Euler scheme to the characteristic equation with
(x∗, t∗) = (z, tn). We assume that the time-step τn and the ODE-solver
are chosen such that xn−1

z lies within Ω ∪ Γ for every n ∈ {1, . . . , NI}
and every z ∈ Nn,Ω. The assumptions on the convection a in particu-
lar imply that this condition is satisfied for a single explicit Euler step
if τn < 1/‖a(·, tn)‖L1,∞(Ω). Denote by πn : L2(Ω) → Xn a suitable
quasi-interpolation operator, e.g. the L2-projection. Then the method
of characteristics takes the form:

Set
u0
T0 = π0u0.

For n = 1, . . . , NI successively compute ũn−1
Tn ∈ Xn such

that

ũn−1
Tn (z) =

{
un−1
Tn−1

(xn−1
z) if z ∈ Nn,Ω,

0 if z ∈ Nn,Γ,
and find unTn ∈ Xn such that∫

Ω

1

τn

(
unTn − ũ

n−1
Tn

)
vTn +

∫
Ω

∇unTn · A
n · ∇vTn

+

∫
Ω

αnunTnvTn =

∫
Ω

fnvTn

holds for all vTn ∈ Xn.

II.4. PARABOLIC PROBLEMS 81

II.4.11. Finite volume methods. Finite volume methods are a
different popular approach for solving parabolic problems in particular
those with large convection. For this type of discretizations, the theory
of a posteriori error estimation and adaptivity is much less developed
than for finite element methods. Yet, there is an important particular
case where finite volume methods can easily profit from finite element
techniques. This is the case of so-called dual finite volume meshes .

II.4.11.1. Systems in divergence form. Finite volume methods are
tailored for systems in divergence form where we are looking for a
vector field U defined on a subset Ω of Rd having values in Rm which
satisfies the differential equation

∂M(U)

∂t
+ div F(U) = g(U, x, t) in Ω× (0,∞)

U(·, 0) = U0 in Ω.

Here, g, the source, is a vector field on Rm × Ω × (0,∞) with values
in Rm, M, the mass, is a vector field on Rm with values in Rm, F the
flux is a matrix valued function on Rm with values in Rm×d and U0,
the initial value, is a vector field on Ω with values in Rm. The differ-
ential equation of course has to be completed with suitable boundary
conditions. These, however, will be ignored in what follows.

Notice that the divergence has to be taken row-wise

div F(U) =
(d∑
j=1

∂F(U)i,j
∂xj

)
1≤i≤m

.

The flux F can be slit into two contributions

F = Fadv + Fvisc.

Fadvis called advective flux and does not contain any derivatives. Fvisc

is called viscous flux and contains spatial derivatives. The advective
flux models transport or convection phenomena while the viscous flux
is responsible for diffusion phenomena.

Example II.4.1. A linear parabolic equation of 2nd order

∂u

∂t
− div(A∇u) + a · ∇u+ αu = f,

is a system in divergence form with

m = 1, U = u, M(U) = u,

Fadv(U) = au, Fvisc(U) = −A∇u, g(U) = f − αu+ (div a)u.

Example II.4.2. Burger’s equation

∂u

∂t
+ u

∂u

∂x
= 0

82 II. A POSTERIORI ERROR ESTIMATES

is a system in divergence form with

m = d = 1, u = u, M(U) = u,

Fadv(u) =
1

2
u2, Fvisc(U) = 0, g(U) = 0.

Other important examples of systems in divergence form are the
Euler equations and Navier-Stokes equations for non-viscous respective
viscous fluids. Here we have d = 2 or d = 3 and m = d+ 2. The vector
U consists of the density, velocity and the internal energy of the fluid.

II.4.11.2. Basic idea of the finite volume method. Choose a time
step τ > 0 and a partition T of Ω consisting of arbitrary non-over-
lapping polyhedra. Here, the elements may have more complicated
shapes than in the finite element method (cf. Figures II.4.3 (p. 84) and
II.4.4 (p. 84)). Moreover, hanging nodes are allowed.

Now we choose an integer n ≥ 1 and an element K ∈ T and keep
both fixed in what follows. First we integrate the differential equation
on K × [(n− 1)τ, nτ]∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
dxdt+

∫ nτ

(n−1)τ

∫
K

div F(U)dxdt

=

∫ nτ

(n−1)τ

∫
K

g(U, x, t)dxdt.

Next we use integration by parts for the terms on the left-hand side∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
dxdt =

∫
K

M(U(x, nτ))dx

−
∫
K

M(U(x, (n− 1)τ))dx,∫ nτ

(n−1)τ

∫
K

div F(U)dxdt =

∫ nτ

(n−1)τ

∫
∂K

F(U) · nKdSdt.

For the following steps we assume that U is piecewise constant with
respect to space and time. We denote by Un

K and Un−1
K the value of U

on K at times nτ und (n− 1)τ , respectively. Then we have∫
K

M(U(x, nτ))dx ≈ |K|M(Un
K)∫

K

M(U(x, (n− 1)τ))dx ≈ |K|M(Un−1
K)∫ nτ

(n−1)τ

∫
∂K

F(U) · nKdSdt ≈ τ

∫
∂K

F(Un−1
K) · nKdS∫ nτ

(n−1)τ

∫
K

g(U, x, t)dxdt ≈ τ |K|g(Un−1
K , xK , (n− 1)τ).

Here, |K| denotes the area of K, if d = 2, or the volume of K, if d = 3,
respectively.

II.4. PARABOLIC PROBLEMS 83

In a last step we approximate the boundary integral for the flux by a
numerical flux

τ

∫
∂K

F(Un−1
K) · nKdS

≈ τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|FT (Un−1
K ,Un−1

K′).

All together we obtain the following finite volume method

For every element K ∈ T compute

U0
K =

1

|K|

∫
K

U0(x).

For n = 1, 2, . . . successively compute for every element K ∈
T

M(Un
K) = M(Un−1

K)

− τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|
|K|

FT (Un−1
K ,Un−1

K′)

+ τg(Un−1
K , xK , (n− 1)τ).

Here, |∂K ∩ ∂K ′| denotes the length respective area of the common
boundary of K ∩K ′.

This method may easily be modified as follows:

• The time step may be variable.
• The partition of Ω may change from one time step to the other.
• The approximation Un

K must not be piecewise constant.

In order to obtain an operating discretization, we still have to make
precise the following points:

• construction of T ,
• choice of FT .

Moreover we have to take into account boundary conditions. This item,
however, will not be addressed in what follows.

II.4.11.3. Construction of dual finite volume meshes. For construct-
ing the finite volume mesh T , we start from a standard finite element

partition T̃ which satisfies the conditions of Section I.2.7 (p. 14). Then

we subdivide each element K̃ ∈ T̃ into smaller elements by either

• drawing the perpendicular bisectors at the midpoints of edges

of K̃ (cf. Figure II.4.3) or by

• connecting the barycentre of K̃ with its midpoints of edges (cf.
Figure II.4.4).

84 II. A POSTERIORI ERROR ESTIMATES

Then the elements in T consist of the unions of all small elements that
share a common vertex in the partition T̃ .

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

Figure II.4.3. Dual mesh (red) via perpendicular bi-
sectors of primal mesh (blue)

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

@
@
@
@@

AA AA AA AA

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

AA AA AA AA

HH

HH

HH

HH

HHH

HHH

H
HH

HHH

HHH

HHH

H
HH

HHH

HHH

HHH

H
HH

HHH

HH

HH

HH

HH

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

Figure II.4.4. Dual mesh (red) via barycentres of pri-
mal mesh (blue)

Thus the elements in T can be associated with the vertices in Ñ .
Moreover, we may associate with each edge or face in E exactly two

vertices in Ñ such that the line connecting these vertices intersects the
given edge or face, respectively.

The first construction has the advantage that this intersection is
orthogonal. But this construction also has some disadvantages which
are not present with the second construction:

• The perpendicular bisectors of a triangle may intersect in a
point outside the triangle. The intersection point is within
the triangle only if its largest angle is at most a right one.

II.4. PARABOLIC PROBLEMS 85

• The perpendicular bisectors of a quadrilateral may not inter-
sect at all. They intersect in a common point inside the quadri-
lateral only if it is a rectangle.
• The first construction has no three dimensional analogue.

II.4.11.4. Construction of numerical fluxes. For the construction of
numerical fluxes we assume that T is a dual mesh corresponding to a

primal finite element partition T̃ . With every edge or face E of T we
denote by K1 and K2 the adjacent volumes, by U1 and U2 the values

Un−1
K1

and Un−1
K2

, respectively and by x1, x2 vertices of T̃ such that the
segment x1 x2 intersects E.

As in the analytical case, we split the numerical flux FT (U1,U2)
into a viscous numerical flux FT ,visc(U1,U2) and an advective numer-
ical flux FT ,adv(U1,U2) which are constructed separately.

We first construct the numerical viscous fluxes. To this end we
introduce a local co-ordinate system η1, . . . , ηd such that η1 is parallel
to x1 x2 and such that the remaining co-ordinates are tangential to E
(cf. Figure II.4.5). Next we express all derivatives in Fvisc in terms of
partial derivatives corresponding to the new co-ordinates and suppress
all derivatives which do not pertain to η1. Finally we approximate
derivatives corresponding to η1 by differences of the form ϕ1−ϕ2

|x1−x2| .

�
�
�
�
�
�
�
�
�

•

•
η1

η2

�
���

6

Figure II.4.5. Local co-ordinate system for the approx-
imation of viscous fluxes

We now construct the numerical advective fluxes. To this end we
denote by

C(V) = D(Fadv(V) · nK1) ∈ Rm×m

the derivative of Fadv(V) ·nK1 with respect to V and suppose that this
matrix can be diagonalized, i.e., there is an invertible matrix Q(V) ∈
Rm×m and a diagonal matrix ∆(V) ∈ Rm×m such that

Q(V)−1C(V)Q(V) = ∆(V).

This assumption is, e.g., satisfied for the Euler and Navier-Stokes equa-
tions. With any real number z we then associate its positive and neg-
ative part

z+ = max{z, 0}, z− = min{z, 0}

86 II. A POSTERIORI ERROR ESTIMATES

and set

∆(V)± = diag
(
∆(V)±11, . . . ,∆(V)±mm

)
,

C(V)± = Q(V)∆(V)±Q(V)−1.

With these notations the Steger-Warming scheme for the approxima-
tion of advective fluxes is given by

FT ,adv(U1,U2) = C(U1)+U1 + C(U2)−U2.

A better approximation is the van Leer scheme

FT ,adv(U1,U2)

=
[1

2
C(U1) + C(

1

2
(U1 + U2))+ − C(

1

2
(U1 + U2))−

]
U1

+
[1

2
C(U2)− C(

1

2
(U1 + U2))+ + C(

1

2
(U1 + U2))−

]
U2.

Both approaches require the computation of DFadv(V) · nK1 to-
gether with its eigenvalues and eigenvectors for suitable values of V.
In general the van Leer scheme is more costly than the Steger-Warming
scheme since it requires three evaluations of C(V) instead of two. For
the Euler and Navier-Stokes equations, however, this extra cost can be
avoided profiting from the particular structure Fadv(V) ·nK1 = C(V)V
of these equations.

Example II.4.3. When applied to Burger’s equation of Example
II.4.2 (p. 81) the Steger-Warming scheme takes the form

FT ,adv(u1, u2) =

u2

1 if u1 ≥ 0, u2 ≥ 0

u2
1 + u2

2 if u1 ≥ 0, u2 ≤ 0

u2
2 if u1 ≤ 0, u2 ≤ 0

0 if u1 ≤ 0, u2 ≥ 0

while the van Leer scheme reads

FT ,adv(u1, u2) =

{
u2

1 if u1 ≥ −u2

u2
2 if u1 ≤ −u2.

II.4.11.5. Relation to finite element methods. The fact that the el-
ements of a dual mesh can be associated with the vertices of a finite
element partition gives a link between finite volume and finite element
methods:

Consider a function ϕ that is piecewise constant on the
dual mesh T , i.e. ϕ ∈ S0,−1(T). With ϕ we associate

a continuous piecewise linear function Φ ∈ S1,0(T̃) cor-

responding to the finite element partition T̃ such that

II.4. PARABOLIC PROBLEMS 87

Φ(xK) = ϕK for the vertex xK ∈ NT̃ corresponding to
K ∈ T .

This link considerably simplifies the analysis of finite volume meth-
ods and suggests a very simple and natural approach to a posteriori
error estimation and mesh adaptivity for finite volume methods:

• Given the solution ϕ of the finite volume scheme compute the
corresponding finite element function Φ.
• Apply a standard a posteriori error estimator to Φ.
• Given the error estimator apply a standard mesh refinement

strategy to the finite element mesh T̃ and thus construct a

new, locally refined partition T̂ .

• Use T̂ to construct a new dual mesh T ′. This is the refinement
of T .

II.4.12. Discontinuous Galerkin methods. These methods
can be interpreted as a mixture of finite element and finite volume
methods. The basic idea of discontinuous Galerkin methods can be
described as follows:

• Approximate U by discontinuous functions which are poly-
nomials with respect to space and time on small space-time
cylinders of the form K × [(n− 1)τ, nτ] with K ∈ T .
• For every such cylinder multiply the differential equation by

a corresponding test-polynomial and integrate the result over
the cylinder.
• Use integration by parts for the flux term.
• Accumulate the contributions of all elements in T .
• Compensate for the illegal integration by parts by adding ap-

propriate jump-terms across the element boundaries.
• Stabilize the scheme in a Petrov-Galerkin way by adding suit-

able element residuals.

In their simplest form these ideas lead to the following discrete problem:

Compute U0
T , the L2-projection of U0 onto Sk,−1(T).

For n ≥ 1 successively find Un
T ∈ Sk,−1(T) such that∑

K∈T

1

τ

∫
K

M(Un
T) ·VT −

∑
K∈T

∫
K

F(Un
T) : ∇VT

+
∑
E∈E

δEhE

∫
E

JE(nE · F(Un
T)VT)

+
∑
K∈T

δKh
2
K

∫
K

div F(Un
T) · div F(VT)

=
∑
K∈T

1

τ

∫
K

M(Un−1
T) ·VT +

∑
K∈T

∫
K

g(·, nτ) ·VT

88 II. A POSTERIORI ERROR ESTIMATES

+
∑
K∈T

δKh
2
K

∫
K

g(·, nτ) · div F(VT)

holds for all VT .

This discretization can easily be generalized as follows:

• The jump and stabilization terms can be chosen more judi-
ciously.
• The time-step may not be constant.
• The spatial mesh may depend on time.
• The functions UT and VT may be piecewise polynomials of

higher order with respect to to time. Then the term∑
K∈T

∫ nτ

(n−1)τ

∫
K

∂M(UT)

∂t
·VT

must be added on the left-hand side and terms of the form
∂M(UT)

∂t
·VT

must be added to the element residuals.

CHAPTER III

Implementation

III.1. Mesh-refinement techniques

For step (4) of the adaptive algorithm I.1.1 (p. 8) we must provide
a device that constructs the next mesh Tk+1 from the current mesh
Tk disposing of an error estimate ηK for every element K ∈ Tk. This
requires two key-ingredients:

• a marking strategy that decides which elements should be re-
fined and
• refinement rules which determine the actual subdivision of a

single element.

Since we want to ensure the admissibility of the next partition, we have
to avoid hanging nodes (cf. Figure III.1.1). Therefore, the refinement
process will proceed in two stages:

• In the first stage we determine a subset T̃k of Tk consisting
of all those elements that must be refined due to a too large
value of ηK . The refinement of these elements usually is called
regular .
• In the second stage additional elements are refined in order

to eliminate the hanging nodes which may be created during
the first stage. The refinement of these additional elements is
sometimes referred to as irregular .

�
��

�
��

��
��

��HH
HHHH

HHH
HHH•

Figure III.1.1. Hanging node •

III.1.1. Marking strategies. There are two popular marking

strategies for determining the set T̃k: the maximum strategy, Algorithm
III.1.1 and the equilibration strategy, Algorithm III.1.2.

At the end of Algorithm III.1.2 the set T̃ satisfies∑
K∈T̃

η2
K ≥ θ

∑
K∈T

η2
K .

89

90 III. IMPLEMENTATION

Algorithm III.1.1 Maximum strategy

Require: partition T , error estimates (ηK)K∈T , threshold θ ∈ (0, 1).

Provide: subset T̃ of marked elements that should be refined.
1: T̃ ← ∅
2: η ← maxK∈T ηK
3: for K ∈ T do
4: if ηK ≥ θη then

5: T̃ ← T̃ ∪ {K}
6: end if
7: end for

Algorithm III.1.2 Equilibration strategy

Require: partition T , error estimates (ηK)K∈T , threshold θ ∈ (0, 1).

Provide: subset T̃ of marked elements that should be refined.
1: T̃ ← ∅, Σ← 0, Θ←

∑
K∈T η

2
K

2: while Σ < θΘ do
3: η ← maxK∈T \T̃ ηK

4: for K ∈ T \ T̃ do
5: if ηK = η then

6: T̃ ← T̃ ∪ {K}, Σ← Σ + η2
K

7: end if
8: end for
9: end while

Both marking strategies yield comparable results. The maximum
strategy obviously is cheaper than the equilibration strategy. In the

maximum strategy, a large value of θ leads to small sets T̃ , i.e. very

few elements are marked and a small value of θ leads to large sets T̃ ,
i.e. nearly all elements are marked. In the equilibration strategy on the

contrary, a small value of θ leads to small sets T̃ , i.e. very few elements

are marked and a large value of θ leads to large sets T̃ , i.e. nearly all
elements are marked. A popular and well established choice for both
strategies is θ ≈ 0.5.

In many applications, one encounters the difficulty that very few
elements have an extremely large estimated error, whereas the remain-
ing ones split into the vast majority with an extremely small estimated
error and a third group of medium size consisting of elements which
have an estimated error much less than the error of the elements in the
first group and much larger than the error of the elements in the second
group. In this situation Algorithms III.1.1 and III.1.2 will only refine
the elements of the first group. This deteriorates the performance of
the adaptive algorithm. It can substantially be enhanced by a simple
modification:

III.1. MESH-REFINEMENT TECHNIQUES 91

Given a small percentage ε, we first mark the ε% ele-
ments with largest estimated error for refinement and
then apply Algorithms III.1.1 and III.1.2 only to the re-
maining elements.

III.1.2. Regular refinement. Elements that are marked for re-
finement often are refined by connecting their midpoints of edges. The
resulting elements are called red.

Triangles and quadrilaterals are thus subdivided into four smaller
triangles and quadrilaterals that are similar to the parent element and
have the same angles. Thus the shape parameter hK

ρK
of the elements

does not change.

�
�
�
�
�
�

@
@

@
@

@
@

i+1 i+2

i

i

i+1i+2

�
�
�
�
�
�

@
@
@

@
@
@

i+1 i+2

i

i

i+1i+2

�
�
�
�
�
�

@
@

@
@

@
@

i+1 i+2

i

i

i+1i+2

�
�
�
�
�
�

@
@
@

@
@
@

i+1 i+2

i

i

i+1i+2

@
@
@

�
�
�0 00 0

0

i

+(i+1) +(i+2)

+(i)

+(3) +0 +1

@
@
@

�
�
�

0 00 0

0 0

+0 +0

+1

+2 +1

+2

Figure III.1.2. Refinement of triangles

This refinement is illustrated by the top-left triangle of Figure
III.1.2 and by the top square of Figure III.1.3. The numbers outside
the elements indicate the local enumeration of edges and vertices of the
parent element. The numbers inside the elements close to the vertices
indicate the local enumeration of the vertices of the child elements.
The numbers +0, +1 etc. inside the elements give the enumeration of
the children.

Note that the enumeration of new elements and new vertices is
chosen in such a way that triangles and quadrilaterals may be treated
simultaneously without case selections.

Parallelepipeds are also subdivided into eight smaller similar par-
allelepipeds by joining the midpoints of edges.

For tetrahedrons, the situation is more complicated. Joining the
midpoints of edges introduces four smaller similar tetrahedrons at the
vertices of the parent tetrahedron plus a double pyramid in its interior.
The latter one is subdivided into four small tetrahedrons by cutting
it along two orthogonal planes. These tetrahedrons, however, are not

92 III. IMPLEMENTATION

i+3 i

i+1i+2

i+2

i+3

i

i+1

i+3 i

i+1i+2

i+2

i+3

i

i+1

i+3 i

i+1i+2

i+2

i+3

i

i+1

i+3 i

i+1i+2

i+2

i+3

i

i+1

i+3 i

i+1i+2

i+2

i+3

i

i+1

0 0

0 0

+(i+3) +(i)

+(i+1)+(i+2)

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

0 0
0

+0+1

+2

0

0

+0+1

�
�
�
�
�
�
�
�
�
�
��

@
@

@
@

@
@

0 0

0

0
0

+0

+1
+2

+3

+4

�
�
�
�
�
�

@
@
@
@
@
@

0

0 0
0

0

+0

+1

+2

+3

+4

Figure III.1.3. Refinement of quadrilaterals

similar to the parent tetrahedron. Still there are rules which determine
the cutting planes such that a repeated refinement according to these
rules leads to at most four similarity classes of elements originating
from a parent element. Thus these rules guarantee that the shape pa-
rameter of the partition does not deteriorate during a repeated adaptive
refinement procedure.

III.1.3. Additional refinement. Since not all elements are re-
fined regularly, we need additional refinement rules in order to avoid
hanging nodes (cf. Figure III.1.1) and to ensure the admissibility of

III.1. MESH-REFINEMENT TECHNIQUES 93

the refined partition. These rules are illustrated in Figures III.1.2 and
III.1.3.

For abbreviation we call the resulting elements green, blue, and
purple. They are obtained as follows:

• a green element by bisecting exactly one edge,
• a blue element by bisecting exactly two edges,
• a purple quadrilateral by bisecting exactly three edges.

In order to avoid too acute or too abstuse triangles, the blue and
green refinement of triangles obey to the following two rules:

• In a blue refinement of a triangle, the longest one of the re-
finement edges is bisected first.
• Before performing a green refinement of a triangle it is checked

whether the refinement edge is part of an edge which has been
bisected during the last ng generations. If this is the case, a
blue refinement is performed instead.

The second rule is illustrated in Figure III.1.4. The cross in the left part
represents a hanging node which should be eliminated by a green re-
finement. The right part shows the blue refinement which is performed
instead. Here the cross represents the new hanging node which is cre-
ated by the blue refinement. Numerical experiments indicate that the
optimal value of ng is 1. Larger values result in an excessive blow-up
of the refinement zone.

�
�
�
�
�
�

�
�
�
�
�
�

@
@
@

@
@
@

@
@

@
@
@
@

×

@
@
@

×

Figure III.1.4. Forbidden green refinement and sub-
stituting blue refinement

III.1.4. Marked edge bisection. The marked edge bisection is
an alternative to the described regular red refinement which does not
require additional refinement rules for avoiding hanging nodes. It is
performed according to the following rules:

• The coarsest mesh T0 is constructed such that the longest edge
of any element is also the longest edge of the adjacent element
unless it is a boundary edge.
• The longest edges of the elements in T0 are marked.
• Given a partition Tk and an element thereof which should be

refined, it is bisected by joining the mid-point of its marked
edge with the vertex opposite to this edge.

94 III. IMPLEMENTATION

• When besecting the edge of an element, its two remaining
edges become the marked edges of the two resulting new tri-
angles.

This process is illustrated in Figure III.1.5. The marked edges are
labeled by •.

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

@
@
@

@
@
@

@
@

@
@
@
@

@
@
@

@
@
@

@
@

@
@
@
@

•

• •

@
@
@

@
@
@

�
�
�

�
�
�

• •

•
• • • •

• •

Figure III.1.5. Subsequent marked edge bisection, the
marked edges are labeled by •

III.1.5. Mesh-coarsening. The adaptive Algorithm I.1.1 (p. 8)
in combination with the marking strategies of Algorithms III.1.1 (p. 90)
and III.1.2 (p. 90) produces a sequence of increasingly refined parti-
tions. In many situations, however, some elements must be coarsened
in the course of the adaptive process. For time dependent problems this
is obvious: A critical region, e.g. an interior layer, may move through
the spatial domain in the course of time. For stationary problems this
is less obvious. Yet, for elliptic problems one can prove that a possi-
ble coarsening is mandatory to ensure the optimal complexity of the
adaptive process.

The basic idea of the coarsening process is to go back in the hi-
erarchy of partitions and to cluster elements with too small an error.
Algorithm III.1.3 goes m generations backwards, accumulates the error
indicators, and then advances n > m generations using the marking
strategies of Algorithms III.1.1 (p. 90) and III.1.2 (p. 90). For station-
ary problems, typical values are m = 1 and n = 2. For time dependent
problems one may choose m > 1 and n > m+1 to enhance the temporal
movement of the refinement zone.

Algorithm III.1.4 is particularly suited for the marked edge bisec-
tion of Section III.1.4. In the framework of Algorithm III.1.3 its pa-
rameters are m = 1 and n = 2, i.e., it constructs the partition of
the next level simultaneously refining and coarsening elements of the
current partition. For its description we need some notations:

III.1. MESH-REFINEMENT TECHNIQUES 95

Algorithm III.1.3 Mesh-coarsening

Require: hierarchy T0, . . ., Tk of adaptively refined partitions, error
indicators (ηK)K∈Tk , parameters 1 ≤ m ≤ k and n > m.

Provide: partition Tk−m+n.
1: for K ∈ Tk−m do
2: η̃K ← 0
3: end for
4: for K ∈ Tk do
5: for K ′ ∈ Tk−m ancestor of K do
6: η̃2

K′ ← η̃2
K′ + η2

K

7: end for
8: end for
9: Apply Algorithms III.1.1 (p. 90) or III.1.2 (p. 90) n times with η̃ as

error indicator; in doing so, equally distribute η̃K over the siblings
of K once an element K is subdivided.

@
@
@
@
@
@

@
@
@
@
@
@

�
�
�

�
�
�

�
�

�
�
�
�

�
�
�
�
�
�

@
@
@

@
@
@

• �
�
�
�
�
�
�
�
�

@
@

@
@
@

@
@
@
@

"
"
"
"
"
"
""

�
�
�
��

•

Figure III.1.6. The vertex marked • is resolvable in
the left patch but not in the right one.

• An element K of the current partition T has refinement level
` if it is obtained by subdividing ` times an element of the
coarsest partition.
• Given a triangle K of the current partition T which is obtained

by bisecting a parent triangle K ′, the vertex of K which is not
a vertex of K ′ is called the refinement vertex of K.
• A vertex z ∈ N of the current partition T and the correspond-

ing patch ωz are called resolvable (cf. Figure III.1.6) if
– z is the refinement vertex of all elements contained in ωz

and
– all elements contained in ωz have the same refinement

level.

Remark III.1.1. Algorithm III.1.4 obviously is a modification of
the maximum strategy of Algorithm III.1.1 (p. 90). A coarsening of

96 III. IMPLEMENTATION

Algorithm III.1.4 Simultaneous mesh coarsening and refinement

Require: partition T , error indicators (ηK)K∈T , parameters 0 < θ1 <
θ2 < 1.

Provide: subsets Tc and Tr of elements to be coarsened and refined.
1: Tc ← ∅, Tr ← ∅, ηT ,max ← maxK∈T ηK
2: for K ∈ T do
3: if ηK ≥ θ2ηT ,max then
4: Tr ← Tr ∪ {K}
5: end if
6: end for
7: for z ∈ N do
8: if z is resolvable and maxK⊂ωz ηK ≤ θ1ηT ,max then
9: Tc ← Tc ∪ {K : K ⊂ ωz}

10: end if
11: end for

elements can also be incorporated in the equilibration strategy of Al-
gorithm III.1.2 (p. 90).

III.1.6. Mesh-smoothing. In this section we describe mesh-
smoothing strategies which try to improve the quality of a partition
while retaining its topological structure. The vertices of the partition
are moved, but the number of elements and their adjacency remain un-
changed. All strategies use a process similar to the well-known Gauss-
Seidel algorithm to optimize a suitable quality function q over the class
of all partitions having the same topological structure. They differ in
the choice of the quality function. The strategies of this section do not
replace the mesh-refinement methods of the previous sections, they
complement them. In particular an improved partition may thus be
obtained when a further refinement is impossible due to an exhausted
storage.

In order to simplify the presentation, we assume throughout this
section that all partitions exclusively consist of triangles.

III.1.6.1. The Optimization Process. We first describe the optimiza-
tion process. To this end we assume that we dispose of a quality func-
tion q which associates with every element a non-negative number such
that a larger value of q indicates a better quality. Given a partition

T we want to find an improved partition T̃ with the same number of
elements and the same adjacency such that

min
K̃∈T̃

q(K̃) > min
K∈T

q(K).

To this end we perform several iterations of the following smoothing
procedure similar to the Gauß-Seidel iteration:

III.1. MESH-REFINEMENT TECHNIQUES 97

For every vertex z in the current partition T , fix the vertices
of ∂ωz and find a new vertex z̃ inside ωz such that

min
K̃⊂ωz̃

q(K̃) > min
K⊂ωz

q(K).

The practical solution of the local optimization problem depends
on the choice of the quality function q. In what follows we will present
three possible choices for q.

III.1.6.2. A Quality Function Based on Geometrical Criteria. The
first choice is purely based on the geometry of the partitions and tries
to obtain a partition which consists of equilateral triangles. To describe
this approach, we enumerate the vertices and edges of a given triangle
consecutively in counter-clockwise order from 0 to 2 such that edge i
is opposite to vertex i (cf. Figures III.1.2 (p. 91) and III.1.3 (p. 92)).
Then edge i has the vertices i+ 1 and i+ 2 as its endpoints where all
expressions have to be taken modulo 3. With these notations we define
the geometric quality function qG by

qG(K) =
4
√

3µ2(K)

µ1(E0)2 + µ1(E1)2 + µ1(E2)2
,

where µ2(K) is the area of K and µ1(E) the length of E. The func-
tion qG is normalized such that it attains its maximal value 1 for an
equilateral triangle.

To obtain a more explicit representation of qG and to solve the
optimization problem, we denote by x0 = (x0,1, x0,2), x1 = (x1,1, x1,2),
and x2 = (x2,1, x2,2) the co-ordinates of the vertices. Then we have

µ2(K) =
1

2

{
(x1,1 − x0,1)(x2,2 − x0,2)− (x2,1 − x0,1)(x1,2 − x0,2)

}
and

µ1(Ei)
2 = (xi+2,1 − xi+1,1)2 + (xi+2,2 − xi+1,2)2

for i = 0, 1, 2. There are two main possibilities to solve the optimization
problem for qG.

In the first approach, we determine a triangle K1 in ωz such that

qG(K1) = min
K⊂ωz

qG(K)

and start the enumeration of its vertices at the vertex z. Then we
determine a point z′ such that the points z′, x1, and x2 are the vertices
of an equilateral triangle and that this enumeration of vertices is in
counter-clockwise order. Now, we try to find a point z̃ approximately
solving the optimization problem by a line search on the straight line
segment connecting z and z′.

98 III. IMPLEMENTATION

In the second approach, we determine two triangles K1 and K2 in
ωz such that

qG(K1) = min
K⊂ωz

qG(K) and qG(K2) = min
K⊂ωz\K1

qG(K).

Then, we determine the unique point z′ such that the two triangles
corresponding to K1 and K2 with z replaced by z′ have equal qualities
qG. This point can be computed explicitly from the co-ordinates of K1

and K2 which remain unchanged. If z′ is within ωz, it is the optimal
solution z̃ of the optimization problem. Otherwise we again try to find
z̃ by a line search on the straight line segment connecting z and z′.

III.1.6.3. A Quality Function Based on Interpolation. Our second
candidate for a quality function is given by

qI(K) = ‖∇(uQ − uL)‖2
K ,

where uQ and uL denote the quadratic and linear interpolant, respec-
tively of u. Using the functions ψE of Section I.2.12 (p. 22) we have

uQ − uL =
2∑
i=0

diψEi

with

di = u

(
1

2
(xi+1 + xi+2)

)
− 1

2
u(xi+1)− 1

2
u(xi+2)

for i = 0, 1, 2 where again all indices have to be taken modulo 3. Hence,
we have

qI(K) = vtBv with v =
(
d0
d1
d2

)
and Bij =

∫
K

∇ψEi · ∇ψEj

for i, j = 0, 1, 2. A straightforward calculation yields

Bii =
µ1(E0)2 + µ1(E1)2 + µ1(E2)2

3µ2(K)
=

4√
3

1

qG(K)

for all i and

Bij =
2(xi+2 − xi+1) · (xj+2 − xj+1)

3µ2(K)

for i 6= j. Since B is spectrally equivalent to its diagonal, we approxi-
mate qI(K) by

q̃I(K) =
1

qG(K)

2∑
i=0

d2
i .

To obtain an explicit representation of q̃I in terms of the geometrical
data of K, we assume that the second derivatives of u are constant on
K. Denoting by HK the Hessian matrix of u on K, Taylor’s formula
then yields

di = −1

8
(xi+2 − xi+1)tHK(xi+2 − xi+1)

III.2. DATA STRUCTURES 99

for i = 0, 1, 2. Hence, with this assumption, q̃I is a rational function
with quadratic polynomials in the nominator and denominator. The
optimization problem can therefore be solved approximately with a few
steps of a damped Newton iteration. Alternatively we may adopt our
previous geometrical reasoning with qG replaced by q̃I .

III.1.6.4. A Quality Function Based on an Error Indicator. The
third choice of a quality function is given by

qE(K) =

∫
K

∣∣∣ 2∑
i=0

ei∇ψEi
∣∣∣2,

where the coefficients e0, e1 and e2 are computed from an error indicator
ηK . Once we dispose of these coefficients, the optimization problem for
the function qE may be solved in the same way as for qI .

The computation of the coefficients e0, e1 and e2 is particularly
simple for the error indicator ηN,K of Section II.2.1.3 (p. 40) which
is based on the solution of local Neumann problems on the elements.
Denoting by vK the solution of the auxiliary problem, we compute the
ei by solving the least-squares problem

minimize

∫
K

∣∣∣∇vK − 2∑
i=0

ei∇ψEi
∣∣∣2.

For the error indicator ηD,K of Section II.2.1.2 (p. 39) which is based
on the solution of an auxiliary discrete Dirichlet problem on the patch
ωK , we may proceed in a similar way and simply replace vK by the
restriction to K of ṽK , the solution of the auxiliary problem.

For the residual error indicator ηR,K of Section II.1 (p. 26), finally,
we replace the function vK by

hK
(
fK + ∆uT

)
ψK −

2∑
i=0

h
1
2
Ei
JE(nEi · ∇uT)ψEi

with the obvious modifications for edges on the boundary Γ.

III.2. Data structures

In this section we shortly describe the required data structures for
a Java, C++, or Python implementation of an adaptive finite element
algorithm. For simplicity we consider only the two-dimensional case.
Note that the data structures are independent of the particular differ-
ential equation and apply to all engineering problems which require the
approximate solution of partial differential equations.

III.2.1. Nodes. The class NODE realizes the concept of a node,
i.e., of a vertex of a grid. It has three members c, t, and d.
The member c stores the co-ordinates in Euclidean 2-space. It is a
double array of length 2.
The member t stores the type of the node. It equals 0 if it is an

100 III. IMPLEMENTATION

interior point of the computational domain. It is k, k > 0, if the node
belongs to the k-th component of the Dirichlet boundary part of the
computational domain. It equals −k, k > 0, if the node is on the k-th
component of the Neumann boundary.
The member d gives the address of the corresponding degree of freedom.
It equals −1 if the corresponding node is not a degree of freedom since,
e.g., it lies on the Dirichlet boundary. This member takes into account
that not every node actually is a degree of freedom.

III.2.2. Elements. The class ELEMENT realizes the concept of an
element. Its member nv determines the element type, i.e., triangle
or quadrilateral. Its members v and e realize the vertex and edge
informations, respectively. Both are integer arrays of length 4.
The vertices are enumerated consecutively in counter-clockwise order,
v[i] gives the global number of the i-th vertex. It is assumed that
v[3] = −1 if nv= 3.
The edges are also enumerated consecutively in counter-clockwise order
such that the i-th edge has the vertices i+ 1 mod nv and i+ 2 mod nv

as its endpoints. Thus, in a triangle, edge i is opposite vertex i.
A value e[i] = −1 indicates that the corresponding edge is on a straight
part of the boundary. Similarly e[i] = −k − 2, k ≥ 0, indicates that
the endpoints of the corresponding edge are on the k-th curved part of
the boundary. A value e[i] = j ≥ 0 indicates that edge i of the current
element is adjacent to element number j. Thus the member e decribes
the neighbourhood relation of elements.
The members p, c, and t realize the grid hierarchy and give the number
of the parent, the number of the first child, and the refinement type,
respectively. In particular we have

t ∈

{0} if the element is not refined

{1, . . . , 4} if the element is refined green

{5} if the element is refined red

{6, . . . , 24} if the element is refined blue

{25, . . . , 100} if the element is refined purple.

At first sight it may seem strange to keep the information about nodes
and elements in different classes. But this approach has several advan-
tages:

• It minimizes the storage requirement. The co-ordinates of a
node must be stored only once. If nodes and elements are rep-
resented by a common structure, these co-ordinates are stored
4− 6 times.
• The elements represent the topology of the grid which is inde-

pendent of the particular position of the nodes. If nodes and

III.3. NUMERICAL EXAMPLES 101

elements are represented by different structures it is much eas-
ier to implement mesh smoothing algorithms which affect the
position of the nodes but do not change the mesh topology.

III.2.3. Grid hierarchy. When creating a hierarchy of adaptively
refined grids, the nodes are completely hierarchical, i.e., a node of grid
Ti is also a node of any grid Tj with j > i. Since in general the grids
are only partly refined, the elements are not completely hierarchical.
Therefore, all elements of all grids are stored.

The information about the different grids is implemented by the
class LEVEL. Its members nn, nt, nq, and ne give the number of nodes,
triangles, quadrilaterals, and edges, resp. of a given grid. The members
first and last give the addresses of the first element of the current
grid and of the first element of the next grid, respectively. The mem-
ber dof yields the number of degrees of freedom of the corresponding
discrete finite element problems.

III.3. Numerical examples

The examples of this section are computed with the demonstration
Java-applet ALF on a MacIntosh G4 powerbook. The linear systems
are solved with a multi-grid V-cycle algorithm in Examples III.3.1 –
III.3.3 and a multi-grid W-cycle algorithm in Example III.3.4. In Ex-
amples III.3.1 and III.3.2 we use one Gauß-Seidel forward sweep for pre-
smoothing and one backward Gauß-Seidel sweep for post-smoothing.
In Example III.3.3 the smoother is one symmetric Gauß-Seidel sweep
for a downwind re-enumeration for the unknowns. In Example III.3.4
we use two steps of a symmetric Gauß-Seidel algorithm for pre- and
post-smoothing. Tables III.3.1 – III.3.4 give for all examples the fol-
lowing quantities:

L: the number of refinement levels,
NN: the number of unknowns,
NT: the number of triangles,
NQ: the number of quadrilaterals,

ε: the true relative error
‖u−uT ‖H1(Ω)

‖u‖H1(Ω)
, if the exact solution is

known, and the estimated relative error η
‖uT ‖H1(Ω)

, if the ex-

act solution is unknown,
q: the efficiency index η

‖u−uT ‖H1(Ω)
of the error estimator provided

the exact solution is known.

Example III.3.1. We consider the Poisson equation

−∆u = 0 in Ω

u = g on Γ

102 III. IMPLEMENTATION

in the L-shaped domain Ω = (−1, 1)2\(0, 1) × (−1, 0). The boundary
data g are chosen such that the exact solution in polar co-ordinates is

u = r
2
3 sin

(
3

2
πϕ

)
.

The coarsest mesh for a partition into quadrilaterals consists of three
squares with sides of length 1. The coarsest triangulation is obtained by
dividing each of these squares into two triangles by joining the top-left
and bottom-right corner of the square. For both coarsest meshes we
first apply a uniform refinement until the storage capacity is exhausted.
Then we apply an adaptive refinement strategy based on the residual
error estimator ηR,K of Section II.1.9 (p. 34) and the maximum strategy
of Algorithm III.1.1 (p. 90). The refinement process is stopped as soon
as we obtain a solution with roughly the same relative error as the
solution on the finest uniform mesh. The corresponding numbers are
given in Table III.3.1. Figures III.3.1 and III.3.2 show the finest meshes
obtained by the adaptive process.

Table III.3.1. Comparison of uniform and adaptive re-
finement for Example III.3.1

triangles quadrilaterals
uniform adaptive uniform adaptive

L 5 5 5 5
NN 2945 718 2945 405
NT 6144 1508 0 524
NQ 0 0 3072 175
ε(%) 1.3 1.5 3.6 3.9
q - 1.23 - 0.605

Example III.3.2. Now we consider the reaction-diffusion equation

−∆u+ κ2u = f in Ω

u = 0 on Γ

in the square Ω = (−1, 1)2. The reaction parameter κ is chosen equal
to 100. The right-hand side f is such that the exact solution is

u = tanh

(
κ(x2 + y2 − 1

4
)

)
.

It exhibits an interior layer along the boundary of the circle of radius 1
2

centered at the origin. The coarsest mesh for a partition into squares
consists of 4 squares with sides of length 1. The coarsest triangulation
again is obtained by dividing each square into two triangles by joining
the top-left and right-bottom corners of the square. For the compari-
son of adaptive and uniform refinement we proceed as in the previous

III.3. NUMERICAL EXAMPLES 103

Figure III.3.1. Adaptively refined triangulation of
level 5 for Example III.3.1

Figure III.3.2. Adaptively refined partition into
squares of level 5 for Example III.3.1

example. In order to take account of the reaction term, the error es-
timator now is the modified residual estimator ηR;K of Section II.3.1.3
(p. 56).

104 III. IMPLEMENTATION

Table III.3.2. Comparison of uniform and adaptive re-
finement for Example III.3.2

triangles quadrilaterals
uniform adaptive uniform adaptive

L 5 6 5 6
NN 3969 1443 3969 2650
NT 8192 2900 0 1600
NQ 0 0 4096 1857
ε(%) 3.8 3.5 6.1 4.4
q - 0.047 - 0.041

Figure III.3.3. Adaptively refined triangulation of
level 6 for Example III.3.2

Table III.3.3. Comparison of uniform and adaptive re-
finement for Example III.3.3

triangles quadrilaterals
adaptive adaptive adaptive adaptive

excess 0% excess 20% excess 0% excess 20%
L 8 6 9 7
NN 5472 2945 2613 3237
NT 11102 6014 1749 3053
NQ 0 0 1960 1830
ε(%) 0.4 0.4 0.6 1.2

III.3. NUMERICAL EXAMPLES 105

Figure III.3.4. Adaptively refined partition into
squares of level 6 for Example III.3.2

Example III.3.3. Next we consider the convection-diffusion equa-
tion

−ε∆u+ a · ∇u = 0 in Ω

u = g on Γ

in the square Ω = (−1, 1)2. The diffusion parameter is

ε =
1

100
,

the convection is

a =

(
2
1

)
,

and the boundary condition is

g =

{
0 on the left and top boundary,

100 on the bottom and right boundary.

The exact solution of this problem is unknown, but it is known that
it exhibits an exponential boundary layer at the boundary x = 1,
y > 0 and a parabolic interior layer along the line connecting the points
(−1,−1) and (1, 0). The coarsest meshes are determined as in Exam-
ple III.3.2. Since the exact solution is unknown, we cannot give the
efficiency index q and perform only an adaptive refinement. The error
estimator is the one of Section II.3.1.3 (p. 56). Since the exponential
layer is far stronger than the parabolic one, the maximum strategy of

106 III. IMPLEMENTATION

Algorithm III.1.1 (p. 90) leads to a refinement preferably close to the
boundary x = 1, y > 0 and has difficulties in catching the parabolic
interior layer. This is in particular demonstrated by Figure III.3.7.
We therefor also apply the modified maximum strategy of Section III.3
with an excess ε of 20%, i.e., the 20% elements with largest error are
first refined regularly and the maximum strategy is then applied to the
remaining elements.

Figure III.3.5. Adaptively refined triangulation of Ex-
ample III.3.3 with refinement based on the maximum
strategy

Example III.3.4. Finally we consider a diffusion equation

− div(A gradu) = 1 in Ω

u = 0 on Γ

in the square Ω = (−1, 1)2 with a discontinuous diffusion

A =

(
10 90

11
90
11

10

)
in 4x2 + 16y2 < 1,(

1 0

0 1

)
in 4x2 + 16y2 ≥ 1.

The exact solution of this problem is not known. Hence we cannot give
the efficiency index q. The coarsest meshes are as in Examples III.3.2
and III.3.3. The adaptive process is based on the error estimator of
Section II.3.1.3 (p. 56) and the maximum strategy of Algorithm III.1.1
(p. 90).

III.3. NUMERICAL EXAMPLES 107

Figure III.3.6. Adaptively refined triangulation of Ex-
ample III.3.3 with refinement based on the modified max-
imum strategy with excess of 20%

Figure III.3.7. Adaptively refined partition into
squares of Example III.3.3 with refinement based on the
maximum strategy

108 III. IMPLEMENTATION

Figure III.3.8. Adaptively refined partition into
squares of Example III.3.3 with refinement based on the
modified maximum strategy with excess of 20%

Table III.3.4. Comparison of uniform and adaptive re-
finement for Example III.3.4

triangles quadrilaterals
uniform adaptive uniform adaptive

L 5 6 5 6
NN 3969 5459 3969 2870
NT 8192 11128 0 1412
NQ 0 0 4096 2227
ε(%) - 2.5 - 14.6

III.3. NUMERICAL EXAMPLES 109

Figure III.3.9. Adaptively refined triangulation of Ex-
ample III.3.4

Figure III.3.10. Adaptively refined partition into
squares of Example III.3.4

CHAPTER IV

Solution of the discrete problems

IV.1. Overview

To get an overview of the particularities of the solution of finite el-
ement problems, we consider a simple, but instructive model situation:
the model problem of Section II.1.2 (p. 26) on the unit square (0, 1)2

(d = 2) or the unit cube (0, 1)3 (d = 3) discretized by linear elements
(Section II.1.3 (p. 26) with k = 1) on a mesh that consists of squares
(d = 2) or cubes (d = 3) with edges of length h = 1

n
.

The number of unknowns is

Nh =
(1

n− 1

)d
.

The stiffness matrix Lh is symmetric positive definite and sparse; every
row contains at most 3d non-zero elements. The total number of non-
zero entries in Lh is

eh = 3dNh.

The ratio of non-zero entries to the total number of entries in Lh is

ph =
eh
N2
h

≈ 3dN−1
h .

The stiffness matrix is a band matrix with bandwidth

bh = h−d+1 ≈ N
1− 1

d
h .

Therefore the Gaussian elimination, the LR-decomposition or the Cho-
lesky decomposition require

sh = bhNh ≈ N
2− 1

d
h

bytes for storage and

zh = b2
hNh ≈ N

3− 2
d

h

arithmetic operations.
These numbers are collected in Table IV.1.1. It clearly shows that

direct methods are not suited for the solution of large finite element
problems both with respect to the storage requirement as with respect
to the computational work. Therefore one usually uses iterative meth-
ods for the solution of large finite element problems. Their efficiency
is essentially determined by the following considerations:

111

112 IV. SOLUTION OF THE DISCRETE PROBLEMS

Table IV.1.1. Storage requirement and arithmetic op-
erations of the Cholesky decomposition applied to the
linear finite element discretization of the model problem
on (0, 1)d

d h Nh eh bh sh zh

1
16

225 1.1 · 103 15 3.3 · 103 7.6 · 105

2 1
32

961 4.8 · 103 31 2.9 · 104 2.8 · 107

1
64

3.9 · 103 2.0 · 104 63 2.5 · 105 9.9 · 108

1
128

1.6 · 104 8.0 · 104 127 2.0 · 106 3.3 · 1010

1
16

3.3 · 103 2.4 · 104 225 7.6 · 105 1.7 · 108

3 1
32

3.0 · 104 2.1 · 105 961 2.8 · 107 2.8 · 1010

1
64

2.5 · 105 1.8 · 106 3.9 · 103 9.9 · 108 3.9 · 1012

1
128

2.0 · 106 1.4 · 107 1.6 · 104 3.3 · 1010 5.3 · 1014

• The exact solution of the finite element problem is an approx-
imation of the solution of the differential equation, which is
the quantity of interest, with an error O(hk) where k is the
polynomial degree of the finite element space. Therefore it is
sufficient to compute an approximate solution of the discrete
problem which has the same accuracy.
• If the mesh T1 is a global or local refinement of the mesh T0, the

interpolate of the approximate discrete solution corresponding
to T0 is a good initial guess for any iterative solver for the
discrete problem corresponding to T1.

These considerations lead to the following nested iteration, Algorithm
IV.1.1. Here T0, . . ., TR denotes a sequence of successively (globally or
locally) refined meshes with corresponding finite element problems

Lkuk = fk 0 ≤ k ≤ R

and Ik−1,k is a suitable interpolation operator from the mesh Tk−1 to
the mesh Tk.

Usually, the number mk of iterations in Algorithm IV.1.1 is deter-
mined by the stopping criterion

‖fk − Lkũk‖ ≤ ε‖fk − Lk(Ik−1,kũk−1)‖.

That is, the residual of the starting value measured in an appropriate
norm should be reduced by a factor ε. Typically, ‖·‖ is a weighted

IV.1. OVERVIEW 113

Algorithm IV.1.1 Nested iteration

Require: data Lk, fk, 1 ≤ k ≤ R.
Provide: approximate solutions ũk to Lkuk = fk.

1: ũ0 ← L−1
0 f0

2: for k = 1, . . . , R do
3: Apply mk iterations of an iterative solver for the problem
Lkuk = fk with starting value Ik−1,kũk−1.

4: end for

Euclidean norm and ε is in the realm 0.05 to 0.1. If the iterative solver
has the convergence rate δk, the number mk of iterations is given by

mk =
⌈ ln ε

ln δk

⌉
.

Table IV.1.2 gives the number mk of iterations that require the clas-
sical Gauß-Seidel algorithm, the conjugate gradient algorithm IV.3.1
(p. 116) and the preconditioned conjugate gradient algorithm IV.3.2
(p. 117) with SSOR-preconditioning IV.3.3 (p. 118) for reducing an
initial residual by the factor ε = 0.1. These algorithms need the fol-
lowing number of operations per unknown:

2d+ 1 (Gauß-Seidel),

2d+ 6 (CG),

5d+ 8 (SSOR-PCG).

Table IV.1.2. Number of iterations required for reduc-
ing an initial residual by the factor 0.1

h Gauß-Seidel CG SSOR-PCG
1
16

236 12 4

1
32

954 23 5

1
64

3820 47 7

1
128

15287 94 11

Table IV.1.2 shows that the preconditioned conjugate gradient algo-
rithm with SSOR-preconditioning yields satisfactory results for prob-
lems that are not too large. Nevertheless, its computational work is
not proportional to the number of unknowns; for a fixed tolerance ε it

approximately is of the order N
1+ 1

2d
h . The multigrid algorithm IV.4.1

(p. 120) overcomes this drawback. Its convergence rate is indepen-
dent of the mesh-size. Correspondingly, for a fixed tolerance ε, its

114 IV. SOLUTION OF THE DISCRETE PROBLEMS

computational work is proportional to the number of unknowns. The
advantages of the multigrid algorithm are reflected by Table IV.1.3.

Table IV.1.3. Arithmetic operations required by the
preconditioned conjugate gradient algorithm with SSOR-
preconditioning and the V-cycle multigrid algorithm
with one Gauß-Seidel step for pre- and post-smoothing
applied to the model problem in (0, 1)d

d h PCG-SSOR multigrid
1
16

16′200 11′700

2 1
32

86′490 48′972

1
64

500′094 206′988

1
128

3′193′542 838′708

1
16

310′500 175′500

3 1
32

3′425′965 1′549′132

1
64

4.0 · 107 1.3 · 107

1
128

5.2 · 108 1.1 · 108

IV.2. Classical iterative solvers

The setting of this and the following section is as follows: We want
to solve a linear system of equations

Lu = f

with N unknowns and a symmetric positive definite matrix L. We
denote by κ the condition of L, i.e. the ratio of its largest to its smallest
eigenvalue. Moreover we assume that κ ≈ N

2
d .

All methods of this section are so-called stationary iterative solvers
and have the structure of Algorithm IV.2.1. Here, u 7→ F (u;L, f) is an
affine mapping, the so-called iteration method, which characterizes the
particular iterative solver. |·| is any norm on RN , e.g., the Euclidean
norm.

The simplest method is the Richardson iteration. The iteration
method is given by

u 7→ u+
1

ω
(f − Lu).

IV.3. CONJUGATE GRADIENT ALGORITHMS 115

Algorithm IV.2.1 Stationary iterative solver

Require: matrix L, right-hand side f , initial guess u, tolerance ε,
maximal number or iterations M .

Provide: approximate solution of Lu = f .
1: m← 0
2: while |Lui − f | > ε and m < M do
3: u← F (u;L, f), m← m+ 1
4: end while

Here, ω is a damping parameter, which has to be of the same order as
the largest eigenvalue of L. The convergence rate of the Richardson
iteration is κ−1

κ+1
≈ 1−N− 2

d .
The Jacobi iteration is closely related to the Richardson iteration.

The iteration method is given by

u 7→ u+D−1(f − Lu).

Here, D is the diagonal of L. The convergence rate again is κ−1
κ+1
≈

1 − N−
2
d . Notice, the Jacobi iteration sweeps through all equations

and exactly solves the current equation for the corresponding unknown
without modifying subsequent equations.

The Gauß-Seidel iteration is a modification of the Jacobi iteration:
Now every update of an unknown is immediately transferred to all
subsequent equations. This modification gives rise to the following
iteration method:

u 7→ u+ L−1(f − Lu).

Here, L is the lower diagonal part of L diagonal included. The conver-
gence rate again is κ−1

κ+1
≈ 1−N− 2

d .

IV.3. Conjugate gradient algorithms

IV.3.1. The conjugate gradient algorithm. The conjugate
gradient algorithm IV.3.1 is based on the following ideas:

• For symmetric positive definite stiffness matrices L the solu-
tion of the linear system of equations

Lu = f

is equivalent to the minimization of the quadratic functional

J(u) =
1

2
u · (Lu)− f · u.

116 IV. SOLUTION OF THE DISCRETE PROBLEMS

• Given an approximation v to the solution u of the linear sys-
tem, the negative gradient

−∇J(v) = f − Lv

of J at v gives the direction of the steepest descent.
• Given an approximation v and a search direction d 6= 0, J

attains its minimum on the line t 7→ v + td at the point

t∗ =
d · (f − Lv)

d · (Ld)
.

• When successively minimizing J in the directions of the neg-
ative gradients, the algorithm slows down since the search di-
rections become nearly parallel.
• The algorithm speeds up when choosing the successive search

directions L-orthogonal, i.e.

di · (Ldi−1) = 0

for the search directions of iterations i− 1 and i.
• These L-orthogonal search directions can be computed during

the algorithm by a suitable three-term recursion.

Algorithm IV.3.1 Conjugate gradient algorithm

Require: matrix L, right-hand side f , initial guess u, tolerance ε,
maximal number of iterations N .

Provide: approximate solution u with ‖Lu− f‖ ≤ ε.
1: r ← f − Lu, d← r, γ ← r · r, n← 0
2: while γ > ε2 und n ≤ N do
3: s← Ld, α← γ

d·s , u← u+ αd, r ← r − αs
4: β ← r·r

γ
, γ ← r · r, d← r + βd, n← n+ 1

5: end while

The convergence rate of the CG-algorithm is given by

δ =

√
κ− 1√
κ+ 1

where κ is the condition number of L and equals the ratio of the largest
to the smallest eigenvalue of L. For finite element discretizations of
elliptic equations of second order, we have κ ≈ h−2 and correspondingly
δ ≈ 1− h, where h is the mesh-size.

IV.3.2. The preconditioned conjugate gradient algorithm.
The idea of the preconditioned conjugate gradient algorithm IV.3.2 is
the following:

IV.3. CONJUGATE GRADIENT ALGORITHMS 117

• Instead of the original system

Lu = f

solve the equivalent system

L̂û = f̂

with

L̂ = H−1LH−t

f̂ = H−1f

û = H tu

and an invertible square matrix H.
• Choose the matrix H such that:

– The condition number of L̂ is much smaller than the one
of L.

– Systems of the form Cv = d with C = HH t are much
easier to solve than the original system Lu = f .

• Apply the conjugate gradient algorithm to the new system

L̂û = f̂ and express everything in terms of the original quan-
tities L, f , and u.

Algorithm IV.3.2 Preconditioned conjugate gradient algorithm,
PCG-algorithm

Require: matrix L, right-hand side f , initial guess u, tolerance ε,
preconditioning matrix C, maximal number of iterations N .

Provide: approximate solution u with ‖Lu− f‖ ≤ ε.
1: r ← f − Lu, z ← C−1r, d← z, γ ← (r , z), n← 0
2: while γ > ε2 und n ≤ N do

3: s← Ld, α← γ

(d , s)
, u← u+ αd, r ← r − αs

4: z ← C−1r, β ← (r , z)

γ
, γ ← (r , z), d← z + βd, n← n+ 1

5: end while

For the trivial choice C = I, the identity matrix, Algorithm IV.3.2
reduces to the conjugate gradient Algorithm IV.3.1. For the non-
realistic choice C = A, Algorithm IV.3.2 stops after one iteration and
produces the exact solution.

The convergence rate of the PCG-algorithm is given by

δ =

√
κ̂− 1√
κ̂+ 1

118 IV. SOLUTION OF THE DISCRETE PROBLEMS

where κ̂ is the condition number of L̂ and equals the ratio of the largest

to the smallest eigenvalue of L̂.
Obviously the efficiency of the PCG-algorithm hinges on the good

choice of the preconditioning matrix C. It has to satisfy the contra-

dictory goals that L̂ should have a small condition number and that
problems of the form Cz = d should be easy to solve. A good compro-
mise is the SSOR-preconditioner. It corresponds to

C =
1

ω(2− ω)
(D − ωU t)D−1(D − ωU)

where D and U denote the diagonal of L and its strictly upper diagonal
part, respectively and where ω ∈ (0, 2) is a relaxation parameter.

Algorithm IV.3.3 realizes the SSOR-preconditioning.

Algorithm IV.3.3 SSOR-preconditioning

Require: matrix A, vector r, relaxation parameter ω ∈ (0, 2).
Provide: z = C−1r.

1: z ← 0
2: for i = 1, . . . , n do

3: zi ← zi +
ω

Lii

{
ri −

n∑
j=1

Lijzj

}
4: end for
5: for i = n, n− 1, . . . , 1 do

6: zi ← zi +
ω

Lii

{
ri −

n∑
j=1

Lijzj

}
7: end for

For finite element discretizations of elliptic equations of second
order and the SSOR-preconditioning of Algorithm IV.3.3, we have
κ̂ ≈ h−1 and correspondingly δ ≈ 1− h 1

2 , where h is the mesh-size.

IV.3.3. Non-symmetric and indefinite problems. The CG-
and the PCG-algorithms IV.3.1 and IV.3.2 can only be applied to
problems with a symmetric positive definite stiffness matrix, i.e., to
scalar linear elliptic equations without convection and the displace-
ment formulation of the equations of linearized elasticity. Scalar lin-
ear elliptic equations with convection – though possibly being small –
and mixed formulations of the equations of linearized elasticity lead
to non-symmetric or indefinite stiffness matrices. For these problems
Algorithms IV.3.1 and IV.3.2 break down.

There are several possible remedies to this difficulty. An obvious
one is to consider the equivalent normal equations

LtLu = Ltf

IV.4. MULTIGRID ALGORITHMS 119

which have a symmetric positive matrix. This simple device, however,
cannot be recommended, since passing to the normal equations squares
the condition number and thus doubles the number of iterations. A
much better alternative is the bi-conjugate gradient algorithm IV.3.4.
It tries to solve simultaneously the original problem Lu = f and its
adjoint or conjugate problem Ltv = Ltf .

Algorithm IV.3.4 Stabilized bi-conjugate gradient algorithm Bi-CG-
stab

Require: matrix L, right-hand side f , initial guess u, tolerance ε,
maximal number of iterations N .

Provide: approximate solution u with ‖Lu− f‖ ≤ ε.
1: r ← f − Lu, n← 0, γ ← r · r
2: r ← r, r̂ ← r, v ← 0, p← 0, α← 1, ρ← 1, ω ← 1
3: while γ > ε2 and n ≤ N do
4: β ← r·rα

ρω
, ρ← r · r

5: if |β| < ε then
6: stop . Break-down
7: end if
8: p← r + β{p− ωv}, v ← Lp, α← ρ

r̂·v
9: if |α| < ε then

10: stop . Break-down
11: end if
12: s← r − αv, t← Ls, ω ← t·s

t·t
13: u← u+ αp+ ωs, r ← s− ωt, n← n+ 1
14: end while

IV.4. Multigrid algorithms

Multigrid algorithms are based on the following observations:

• Classical iterative methods such as the Gauß-Seidel algorithm
quickly reduce highly oscillatory error components.
• Classical iterative methods such as the Gauß-Seidel algorithm

on the other hand are very poor in reducing slowly oscillatory
error components.
• Slowly oscillating error components can well be resolved on

coarser meshes with fewer unknowns.

IV.4.1. The multigrid algorithm. The multigrid algorithm
IV.4.1 is based on a sequence of meshes T0, . . ., TR, which are ob-
tained by successive local or global refinement, and associated discrete
problems Lkuk = fk, k = 0, . . ., R, corresponding to a partial differen-
tial equation. The finest mesh TR corresponds to the problem that we
actually want to solve.

The multigrid algorithm IV.4.1 has three ingredients:

120 IV. SOLUTION OF THE DISCRETE PROBLEMS

• a smoothing operator Mk, which should be easy to evaluate and
which at the same time should give a reasonable approximation
to L−1

k ,
• a restriction operator Rk,k−1, which maps functions on a fine

mesh Tk to the next coarser mesh Tk−1,
• a prolongation operator Ik−1,k, which maps functions from a

coarse mesh Tk−1 to the next finer mesh Tk.
For a concrete multigrid algorithm these ingredients must be specified.
This will be done in the next sections. Here, we discuss the general
form of the algorithm and its properties.

Algorithm IV.4.1 MG(k, µ, ν1, ν2, Lk, f, u) one multigrid iteration on
mesh Tk
Require: level number k, parameters µ, ν1, ν2, stiffness matrix Lk,

right-hand side f , approximation Mk for L−1
k , initial guess u.

Provide: improved approximate solution u.
1: if k = 0 then
2: u← L−1

0 f , stop
3: end if
4: for i = 1, . . . , ν1 do . Pre-smoothing
5: u← u+Mk(f − Lku)
6: end for
7: b← Rk,k−1(f − Lku), v ← 0 . Coarse grid correction
8: Perform µ iterations of MG(k − 1, µ, ν1, ν2, Lk−1, b, v); result v.
9: u← u+ Ik−1,kv

10: for i = 1, . . . , ν2 do . Post-smoothing
11: u← u+Mk(f − Lku)
12: end for

S−−−→ S−−−→

R
y xP

S−−−→ S−−−→

R
y xP

E−−−→

Figure IV.4.1. Schematic presentation of a multigrid
algorithm with V-cycle and three grids. The labels have
the following meaning: S smoothing, R restriction, P
prolongation, E exact solution.

IV.4. MULTIGRID ALGORITHMS 121

Remark IV.4.1. (1) The parameter µ determines the complexity
of the algorithm. Popular choices are µ = 1 called V-cycle and µ = 2
called W-cycle. Figure IV.4.1 gives a schematic presentation of the
multigrid algorithm for the case µ = 1 and R = 2 (three meshes).
Here, S denotes smoothing, R restriction, P prolongation, and E exact
solution.
(2) The number of smoothing steps per multigrid iteration, i.e. the pa-
rameters ν1 and ν2, should not be chosen too large. A good choice for
positive definite problems such as the Poisson equation is ν1 = ν2 = 1.
For indefinite problems such as mixed formulations of the equations of
linearized elasticity, a good choice is ν1 = ν2 = 2.
(3) If µ ≤ 2, one can prove that the computational work of one multi-
grid iteration is proportional to the number of unknowns of the actual
discrete problem.
(4) Under suitable conditions on the smoothing algorithm, which is
determined by the matrix Mk, one can prove that the convergence rate
of the multigrid algorithm is independent of the mesh-size, i.e., it does
not deteriorate when refining the mesh. These conditions will be dis-
cussed in the next section. In practice one observes convergence rates
of 0.1 – 0.5 for positive definite problems such as the Poisson equation
and of 0.3 – 0.7 for indefinite problems such as mixed formulations of
the equations of linearized elasticity.

IV.4.2. Smoothing. The symmetric Gauss-Seidel algorithm is
the most popular smoothing algorithm for positive definite problems
such as the Poisson equation. It corresponds to the choice

Mk = (Dk − U t
k)D

−1
k (Dk − Uk),

where Dk and Uk denote the diagonal and the strictly upper diagonal
part of Lk respectively.

For non-symmetric or indefinite problems such as scalar linear ellip-
tic equations with convection or mixed formulations of the equations
of linearized elasticity, the most popular smoothing algorithm is the
squared Jacobi iteration. This is the Jacobi iteration applied to the
squared system LtkLkuk = Ltkfk and corresponds to the choice

Mk = ω−2Ltk

with a suitable damping parameter satisfying ω > 0 and ω = O(h−2
K).

IV.4.3. Prolongation. Since the partition Tk of level k always is
a refinement of the partition Tk−1 of level k−1, the corresponding finite
element spaces are nested, i.e., finite element functions corresponding
to level k−1 are contained in the finite element space corresponding to
level k. Therefore, the values of a coarse-grid function corresponding
to level k− 1 at the nodal points corresponding to level k are obtained
by evaluating the nodal bases functions corresponding to Tk−1 at the
requested points. This defines the interpolation operator Ik−1,k.

122 IV. SOLUTION OF THE DISCRETE PROBLEMS

Figures III.1.2 (p. 91) and III.1.3 (p. 92) show various partitions of a
triangle and of a square, respectively. The numbers outside the element
indicate the enumeration of the element vertices and edges. Thus, e.g.,
edge 2 of the triangle has the vertices 0 and 1 as its endpoints. The
numbers +0, +1 etc. inside the elements indicate the enumeration of
the child elements. The remaining numbers inside the elements give
the enumeration of the vertices of the child elements.

Example IV.4.2. Consider a piecewise constant approximation,
i.e. S0,−1(T). The nodal points are the barycentres of the elements.
Every element in Tk−1 is subdivided into several smaller elements in
Tk. The nodal value of a coarse-grid function at the barycentre of a
child element in Tk then is its nodal value at the barycentre of the
parent element in Tk.

Example IV.4.3. Consider a piecewise linear approximation, i.e.
S1,0(T). The nodal points are the vertices of the elements. The re-
finement introduces new vertices at the midpoints of some edges of
the parent element and possibly – when using quadrilaterals – at the
barycentre of the parent element. The nodal value at the midpoint of
an edge is the average of the nodal values at the endpoints of the edge.
Thus, e.g., the value at vertex 1 of child +0 is the average of the values
at vertices 0 and 1 of the parent element. Similarly, the nodal value at
the barycentre of the parent element is the average of the nodal values
at the four element vertices.

IV.4.4. Restriction. The restriction is computed by expressing
the nodal bases functions corresponding to the coarse partition Tk−1 in
terms of the nodal bases functions corresponding to the fine partition
Tk and inserting this expression in the variational formulation. This
results in a lumping of the right-hand side vector which, in a certain
sense, is the transpose of the interpolation.

Example IV.4.4. Consider a piecewise constant approximation,
i.e. S0,−1(T). The nodal shape function of a parent element is the sum
of the nodal shape functions of the child elements. Correspondingly,
the components of the right-hind side vector corresponding to the child
elements are all added and associated with the parent element.

Example IV.4.5. Consider a piecewise linear approximation, i.e.
S1,0(T). The nodal shape function corresponding to a vertex of a parent
triangle takes the value 1 at this vertex, the value 1

2
at the midpoints of

the two edges sharing the given vertex and the value 0 on the remaining
edges. If we label the current vertex by a and the midpoints of the two
edges emanating form a by m1 and m2, this results in the following
formula for the restriction on a triangle

Rk,k−1ψ(a) = ψ(a) +
1

2
{ψ(m1) + ψ(m2)}.

IV.4. MULTIGRID ALGORITHMS 123

When considering a quadrilateral, we must take into account that the
nodal shape functions take the value 1

4
at the barycentre b of the parent

quadrilateral. Therefore the restriction on a quadrilateral is given by
the formula

Rk,k−1ψ(a) = ψ(a) +
1

2
{ψ(m1) + ψ(m2)}+

1

4
ψ(b).

Remark IV.4.6. An efficient implementation of the prolongation
and restrictions loops through all elements and performs the prolon-
gation or restriction element-wise. This process is similar to the usual
element-wise assembly of the stiffness matrix and the load vector.

Bibliography

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element
Analysis, Wiley, New York, 2000.

[2] D. Braess, Finite Elements, second ed., Cambridge University Press, Cam-
bridge, 2001, Theory, fast solvers, and applications in solid mechanics, Trans-
lated from the 1992 German edition by Larry L. Schumaker.

[3] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element
Methods, Oxford University Press, Oxford, 2013.

125

Index

∆ Laplace operator, 11
‖·‖H(div;ω) norm of H(div;ω), 57
· inner product, 11
∇ gradient, 11
‖·‖k Sobolev norm, 13
‖·‖ 1

2 ,Γ
trace norm, 13

|·|1 `1-norm, 16
|·|k Sobolev norm, 13
|·|∞ `∞-norm, 16
(·, ·)T , 48
: dyadic product, 11
xα, 16
A closure of A, 11
E faces of T , 22
N vertices of T , 18
T partition, 14
C∞0 (Ω) smooth functions, 12
∂α1+...+αd

∂x
α1
1 ...∂x

αd
d

partial derivative, 12

EK faces of K, 15
E faces of T , 15
EΓ boundary faces, 15
EΓD faces on the Dirichlet boundary,

16
EΓN faces on the Neumann

boundary, 16
EΩ interior faces, 16
Γ boundary of Ω, 10
ΓD Dirichlet boundary, 10
ΓN Neumann boundary, 10
H(div; Ω), 57
H1
D(Ω) Sobolev space, 13

H1
0 (Ω) Sobolev space, 13

H
1
2 (Γ) trace space, 13

Hk(Ω) Sobolev space, 13
I, 72
IT quasi-interpolation operator, 21
In, 72
K element, 14
NE vertices of E, 15
NK vertices of K, 15

N vertices of T , 15
NΓ boundary vertices, 15
NΓD vertices on the Dirichlet

boundary, 15
NΓN vertices on the Neumann

boundary, 15
NΩ interior vertices, 15
Ω domain, 10
RE(uT), 28
RK , 65
RK(uT), 28
RT0(K) lowest order

Raviart-Thomas space on K,
58, 63

RT0(T) lowest order
Raviart-Thomas space, 58

Sk,−1 finite element space, 17
Sk,0 finite element space, 17

Sk,0D finite element space, 17

Sk,00 finite element space, 17
Tn, 72
VK , 40

ṼK , 39
Vx, 37
Xn, 72
aK,E vertex of K opposite to face E,

49
CT shape parameter, 15
curl curl-operator, 59
div divergence, 11
ηI , 76
ηD,K , 39, 67
ηD,x, 37
ηH , 46
ηN,K , 40, 66
ηR,K , 34, 61, 65
ηZ , 49
ηZ,K , 49
γE(τ), 64
γK,E vector field in trace equality, 49

127

128 INDEX

hE diameter of E, 16
hK diameter of K, 14, 16
JE(·) jump, 23
κ condition of a matrix, 114
λ, 60
λx nodal basis function, 18
µ, 60
nE normal vector, 23
ωE sharing adjacent to E, 16
ω̃E elements sharing a vertex with

E, 16
ωK elements sharing a face with K,

16
ω̃K elements sharing a vertex with

K, 16
ωx elements sharing the vertex x, 16,

18
|ωx| area or volume of ωx, 21
πn, 73
ψE face bubble function, 22
ψK element bubble function, 22
P1, 37
ρK diameter of the largest ball

inscribed into K, 14
supp support, 12
τn, 72
tr, 60

a posteriori error estimate, 59
a posteriori error estimator, 30
admissibility, 14
advective flux, 81
advective numerical flux, 85
affine equivalence, 14
asymptotically exact estimator, 52

BDMS element, 64
Bi-CG-stab algorithm, 119
blue element, 93
body load, 60
Burger’s equation, 81

CG algorithm, 115
characteristic equation, 79
coarsening strategy, 94
condition, 114
conjugate gradient algorithm, 115
Crank-Nicolson scheme, 74
criss-cross grid, 53
curl operator, 59

damping parameter, 115
deformation tensor, 11, 60
degree condition, 73

Dirichlet boundary, 26
discontinuous Galerkin method, 87
displacement, 60
displacement formulation, 61
divergence, 11
dual finite volume mesh, 81
dyadic product, 11

edge bubble function, 22
edge residual, 28
efficiency index, 52
efficient, 30
efficient estimator, 52
elasticity tensor, 60
element, 14
element bubble function, 22
element residual, 28
equilibration strategy, 89
Euler equations, 82
Euler-Lagrange equation, 61

face bubble function, 22
finite volume method, 81, 83
flux, 81
Friedrichs inequality, 14

Galerkin orthogonality, 28
Gauss-Seidel algorithm, 121
Gauß-Seidel algorithm, 96
Gauß-Seidel iteration, 115
general adaptive algorithm, 7
geometric quality function, 97
gradient, 11
green element, 93

hanging node, 89, 92
Hellinger-Reissner principle, 63
Helmholtz decomposition, 59
Hessian matrix, 98
hierarchical a posteriori error

estimator, 46
hierarchical basis, 20

implicit Euler scheme, 74
initial value, 81
inner product, 11
irregular refinement, 89
iteration method, 114

Jacobi iteration, 115

L2-representation of the residual, 28
Lamé parameters, 60
Laplace operator, 11

INDEX 129

linear interpolant, 98
locking phenomenon, 62
longest edge bisection, 93

marking strategy, 89
mass, 81
material derivative, 79
maximum strategy, 89
meshcoarsening, 94
mesh-smoothing strategy, 96
method of characteristics, 79
method of lines, 71
MG algorithm, 119
mixed finite element approximation,

58
multigrid algorithm, 119

Navier-Stokes equations, 82
nearly incompressible material, 62
nested iteration, 112
Neumann boundary, 26
nodal shape function, 18
non-degeneracy, 72
numerical flux, 83, 85

partition, 14
PCG algorithm, 116
PEERS element, 64
Poincaré inequality, 14
Poisson equation, 26
preconditioned conjugate gradient

algorithm, 116
prolongation operator, 120
purple element, 93

quadratic interpolant, 98
quality function, 96
quasi-interpolation operator, 21

Raviart-Thomas space, 50, 58, 63
red element, 91
reference cube, 16
reference simplex, 16
refinement level, 95
refinement rule, 89
refinement vertex, 95
regular refinement, 89
reliable, 30
residual, 27
residual a posteriori error estimator,

34, 65
resolvable patch, 95
restriction operator, 120
Richardson iteration, 114

rigid body motions, 65
Rothe’s method, 71

saturation assumption, 43
shape parameter, 15
shape-regularity, 14
simultaneous mesh coarsening and

refinement, 94
skew symmetric part, 60
smoothing operator, 120
smoothing procedure, 96
Sobolev space, 13
source, 81
space-time finite elements, 72
SSOR-preconditioning, 118
stabilized bi-conjugate gradient

algorithm, 119
stationary iterative solver, 114
Steger-Warming scheme, 86
strain tensor, 60
streamline upwind Petrov-Galerkin

discretization, 56
strengthened Cauchy-Schwarz

inequality, 43
stress tensor, 60
SUPG discretization, 56
support, 12
symmetric gradient, 60
system in divergence form, 81

tangential component, 64
Taylor’s formula, 98
θ-scheme, 74
total energy, 61
trace, 13
trace space, 13
transition condition, 73

unit tensor, 11

V-cycle, 121
van Leer scheme, 86
variational formulation, 57
viscous flux, 81
viscous numerical flux, 85

W-cycle, 121

	Chapter I. Introduction
	I.1. Motivation
	I.2. Sobolev and finite element spaces
	I.2.1. Domains and functions
	I.2.2. Differentiation of products
	I.2.3. Integration by parts formulae
	I.2.4. Weak derivatives
	I.2.5. Sobolev spaces and norms
	I.2.6. Friedrichs and Poincaré inequalities
	I.2.7. Finite element partitions
	I.2.8. Finite element spaces
	I.2.9. Approximation properties
	I.2.10. Nodal shape functions
	I.2.11. A quasi-interpolation operator
	I.2.12. Bubble functions

	Chapter II. A posteriori error estimates
	II.1. A residual error estimator for the model problem
	II.1.1. The model problem
	II.1.2. Variational formulation
	II.1.3. Finite element discretization
	II.1.4. Equivalence of error and residual
	II.1.5. Galerkin orthogonality
	II.1.6. L2-representation of the residual
	II.1.7. Upper error bound
	II.1.8. Lower error bound
	II.1.9. Residual a posteriori error estimate

	II.2. A catalogue of error estimators for the model problem
	II.2.1. Solution of auxiliary local discrete problems
	II.2.2. Hierarchical error estimates
	II.2.3. Averaging techniques
	II.2.4. H(`39`42`"613A``45`47`"603Adiv)-lifting
	II.2.5. Asymptotic exactness
	II.2.6. Convergence

	II.3. Elliptic problems
	II.3.1. Scalar linear elliptic equations
	II.3.2. Mixed formulation of the Poisson equation
	II.3.3. Displacement form of the equations of linearized elasticity
	II.3.4. Mixed formulation of the equations of linearized elasticity
	II.3.5. Non-linear problems

	II.4. Parabolic problems
	II.4.1. Scalar linear parabolic equations
	II.4.2. Variational formulation
	II.4.3. An overview of discretization methods for parabolic equations
	II.4.4. Space-time finite elements
	II.4.5. Finite element discretization
	II.4.6. A preliminary residual error estimator
	II.4.7. A residual error estimator for the case of small convection
	II.4.8. A residual error estimator for the case of large convection
	II.4.9. Space-time adaptivity
	II.4.10. The method of characteristics
	II.4.11. Finite volume methods
	II.4.12. Discontinuous Galerkin methods

	Chapter III. Implementation
	III.1. Mesh-refinement techniques
	III.1.1. Marking strategies
	III.1.2. Regular refinement
	III.1.3. Additional refinement
	III.1.4. Marked edge bisection
	III.1.5. Mesh-coarsening
	III.1.6. Mesh-smoothing

	III.2. Data structures
	III.2.1. Nodes
	III.2.2. Elements
	III.2.3. Grid hierarchy

	III.3. Numerical examples

	Chapter IV. Solution of the discrete problems
	IV.1. Overview
	IV.2. Classical iterative solvers
	IV.3. Conjugate gradient algorithms
	IV.3.1. The conjugate gradient algorithm
	IV.3.2. The preconditioned conjugate gradient algorithm
	IV.3.3. Non-symmetric and indefinite problems

	IV.4. Multigrid algorithms
	IV.4.1. The multigrid algorithm
	IV.4.2. Smoothing
	IV.4.3. Prolongation
	IV.4.4. Restriction

	Bibliography
	Index

