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CHAPTER I

Boundary Value Problems for Ordinary
Differential Equations

I.1. Initial Value Problems

In this and the following section we recall several properties of initial
value problems for ordinary differential equations and of their numerical
approximation. For further details we refer to [3].

I.1.1. Initial value problems for first order ordinary differ-
ential equations. Given an interval I, a subset D of Rd, a function
f(t, y) : I×D → Rd, an initial time t0 ∈ I and an initial value y0 ∈ D,
an initial value problem consists in finding a differentiable function
y : I → D such that

y′(t) = f(t, y(t)) for all t ∈ I (differential equation)

y(t0) = y0 (initial condition)

Example I.1.1. Assume that the function y describes the size at
time t of a population with constant death or birth rate λ. Then y
solves the initial value problem

y′(t) = λy(t),

y(0) = c,

where

I = R, D = R, f(t, y) = λy, t0 = 0, y0 = c.

The exact solution is

y(t) = ceλt.

Example I.1.2. The initial value problem

y′(t) =

(
λ −ω
ω λ

)
y(t)

y(0) =

(
c1

c2

)
describes a damped oscillation. Here we have

I = R, D = R2, f(t, y) =

(
λ −ω
ω λ

)
y, t0 = 0, y0 =

(
c1

c2

)
.

7
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The exact solution is

y(t) = eλt
(
c1 cos(ωt)− c2 sin(ωt)
c1 sin(ωt) + c2 cos(ωt)

)
.

Example I.1.3. For the initial value problem

y′(t) = y(t)2

y(0) = 1

we have
I = R, D = R, f(t, y) = y2, t0 = 0, y0 = 1.

The exact solution is

y(t) =
1

1− t
.

The solution explodes, when the time t approaches the value 1 from the
left.

Example I.1.4. For the initial value problem

y′(t) =
√
|y(t)|

y(0) = 0

we have

I = R, D = R, f(t, y) =
√
|y|, t0 = 0, y0 = 0.

It admits an infinite number of solutions ; two of these are given by

y(t) = 0 for all t,

y(t) =

{
0 for t < 0,
1
4
t2 for t ≥ 0.

Figure I.1.1 shows a typical solution.

-

6

Figure I.1.1. Typical solution for example I.1.4

Example I.1.5. Higher order differential equations can be trans-
formed into first order equations by introducing new unknowns. For
the mechanical system, e.g.,

Mx′′(t) +Rx′(t) +Kx(t) = F (t)

x(0) = x0

x′(0) = v0
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in Rd one introduces the velocity v(t) = x′(t) as a new unknown and
thus obtains the equation

v′(t) = x′′(t) = M−1F (t)−M−1Rv(t)−M−1Kx(t).

This transforms the original differential equation of second order in Rd

into a differential equation of first order in R2d which corresponds to
the data

y(t) =

(
x(t)
v(t)

)
,

f(t, y) =

(
0

M−1F (t)

)
+

(
0 1

−M−1K −M−1R

)
y.

I.1.2. Existence and uniqueness of solutions. As demonstra-
ted by examples I.1.3 and I.1.4, not every initial value problem admits a
unique solution which is defined on the same interval as the right-hand
side f . The following result gives a simple criterion for the existence
of a unique solution of an initial value problem and the size of its
existence interval. The criterion is not the sharpest possible. The
condition concerning the right-hand side f can be relaxed to requiring
the existence of a constant L such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2| (Lipschitz condition)

holds for all t ∈ I and all y1, y2 ∈ D. Continuously differentiable func-
tions with a bounded derivative satisfy this condition. The function
y 7→ |y| is an example of a non-differentiable function satisfying the
Lipschitz condition. The functions f of examples I.1.3 and I.1.4 do not
satisfy the Lipschitz condition.

If the function f is continuously differentiable w.r.t. the
variable y, there is an interval J = (t−, t+) with t0 ∈ J and
a unique continuously differentiable function y on J which
solves the initial value problem

y′(t) = f(t, y(t)),

y(t0) = y0.

Moreover, either J equals I or y(t) tends to the boundary
of D when t approaches t±.
If the derivative of f w.r.t. the variable y is bounded on
I ×D, J equals I.

I.1.3. Dependence on the initial value. The dependence of the
solution of an initial value problem on the initial value is crucial for
solving boundary value problems. The following result gives a simple
criterion whether the solution of an initial value problem is a differ-
entiable function of the initial value and simultaneously shows how
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to compute the corresponding derivative. This will be crucial for the
practical solution of boundary value problems with the simple shoot-
ing method in section I.4.1 and the multiple shooting method in section
I.4.3.

If f is twice continuously differentiable w.r.t. the variable
y, the solution y of the initial value problem

y′(t) = f(t, y(t))

y(t0) = y0

is a differentiable function of the initial value y0, i.e.

y(t) = y(t; y0).

The derivative Z(t) of the function y0 7→ y(t; y0) solves the
initial value problem

Z ′(t) = Dyf(t, y(t; y0))Z(t),

Z(t0) = I.

Here, Dyf(t, y) is the Jacobi matrix of f w.r.t. the variable
y and I denotes the identity matrix.

Example I.1.6. For the damped oscillation of example I.1.2 we
have

f(t, y) =

(
λ −ω
ω λ

)
y.

The Jacobi matrix of f is

Dyf(t, y) =

(
λ −ω
ω λ

)
.

The function Z takes its values in the set of 2× 2 matrices. The initial
value problem for Z is

Z ′(t) =

(
λ −ω
ω λ

)
Z(t),

Z(0) = I

or in components

z′1,1(t) = λz1,1(t)− ωz2,1(t), z1,1(0) = 1,

z′1,2(t) = λz1,2(t)− ωz2,2(t), z1,2(0) = 0,

z′2,1(t) = ωz1,1(t) + λz2,1(t), z2,1(0) = 0,

z′2,2(t) = ωz1,2(t) + λz2,2(t), z2,2(0) = 1.

I.2. Numerical Methods for Initial Value Problems

I.2.1. Basic idea. The numerical solution of initial value prob-
lems is based on the following idea:
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Approximate the solution y of the initial value problem at
discrete times t0 < t1 < t2 < . . . and denote by ηi the ap-
proximation for y(ti). For i = 0, 1, . . . successively compute
ηi+1 using f and ηi (single step methods) or using f and
ηi, . . . , ηi−m (multi step methods).

In what follows we will only consider single step methods.
Many methods, in particular Runge-Kutta methods, are obtained

by applying a suitable quadrature formula to the integral in the identity

ηi+1 − ηi ≈ y(ti+1)− y(ti) =

∫ ti+1

ti

f(s, y(s))ds.

For abbreviation, one denotes by hi = ti+1 − ti the i-th step-size.
In the simplest case the points t0, t1, . . . are chosen equidistant, i.e.
hi = h and ti = t0 + ih for all i.

-

6

-

6

-

6
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Figure I.2.1. Quadrature formulae for the explicit Eu-
ler method (left), the implicit Euler method (middle) and
the trapezoidal rule (right)

I.2.2. Simplest methods. The simplest numerical methods for
solving initial value problems are the explicit Euler method, the implicit
Euler method and the trapezoidal rule which is also known as Crank-
Nicolson scheme. Figure I.2.1 sketches the corresponding quadrature
rules.

Explicit Euler method:

η0 = y0,

ηi+1 = ηi + hif(ti, ηi),

ti+1 = ti + hi.

Implicit Euler method:

η0 = y0,

ηi+1 = ηi + hif(ti+1, ηi+1),

ti+1 = ti + hi.
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Trapezoidal rule alias Crank-Nicolson scheme:

η0 = y0,

ηi+1 = ηi +
hi
2

[
f(ti, ηi) + f(ti+1, ηi+1)

]
,

ti+1 = ti + hi.

I.2.3. Runge-Kutta methods. The three methods of the previ-
ous section are particular representatives of a larger class of methods,
the so-called Runge-Kutta methods. These have the following general
form:

Runge-Kutta method:

η0 = y0,

ηi,j = ηi + hi

r∑
k=1

ajkf(ti + ckh, ηi,k) for j = 1, . . . , r,

ηi+1 = ηi + hi

r∑
k=1

bkf(ti + ckh, ηi,k),

ti+1 = ti + hi.

Here, r, 0 ≤ c1 ≤ . . . ≤ cr ≤ 1, (ajk)1≤j,k≤r and b1, . . . , br are given
numbers characterizing the particular method. The number r is called
stage number of the Runge-Kutta method.

The two Euler methods correspond to the choices r = 1 and c1 = 0,
a11 = 0, b1 = 1 for the explicit Euler method and c1 = 1, a11 = 1,
b1 = 1 for the implicit Euler method. The trapezoidal rule corresponds
to r = 2 and c1 = 0, c2 = 1, a11 = a12 = 0, a21 = a22 = 1

2
, b1 = b2 = 1

2
.

The method is called explicit, if ajk = 0 holds for all k ≥ j. It
is called implicit, if aj,k 6= 0 holds for at least one k ≥ j. The most
prominent representative of explicit methods is the so-called classical
Runge-Kutta method with stage number 4:

Classical Runge-Kutta method:

η0 = y0

ηi,1 = ηi

ηi,2 = ηi +
hi
2
f(ti, ηi,1)

ηi,3 = ηi +
hi
2
f(ti +

hi
2
, ηi,2)
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ηi,4 = ηi + hif(ti +
hi
2
, ηi,3)

ηi+1 = ηi +
hi
6

{
f(ti, ηi,1) + 2f(ti +

hi
2
, ηi,2)

+ 2f(ti +
hi
2
, ηi,3)

+ f(ti + hi, ηi,4)
}

ti+1 = ti + hi

When using an explicit method, the quantities ηi,1, . . . , ηi,r can be
computed successively. When using an implicit method, the compu-
tation of ηi,1, . . . , ηi,r requires the solution of a (non-linear) system of
equations with r · d equations and unknowns.

Thanks to their high order and good stability, strongly diagonal
implicit Runge-Kutta methods or SDIRK methods in short are of a
particular practical importance. They have a lower diagonal matrix
(aij)1≤i,j≤r with identical diagonal entries. The computation of ηi,1, . . .,
ηi,r therefore requires the successive solution of r (non-linear) systems of
equations with d equations and unknowns each. Moreover, all systems
have the same Jacobi matrix which reduces the computational cost
of Newton’s method. Two examples of SDIRK methods with stage
numbers 2 and 5, resp. are:

SDIRK2:

η0 = y0

ηi,1 = ηi +
3 +
√

3

6
hif(ti +

3 +
√

3

6
hi, ηi,1)

ηi,2 = ηi −
√

3

3
hif(ti +

3 +
√

3

6
hi, ηi,1)

+
3 +
√

3

6
hif(ti +

3−
√

3

6
hi, ηi,2)

ηi+1 = ηi +
hi
2

{
f(ti +

3 +
√

3

6
hi, ηi,1)

+ f(ti +
3−
√

3

6
hi, ηi,2)

}
ti+1 = ti + hi
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SDIRK5:

η0 = y0

ηi,1 = ηi +
hi
4
f(ti +

1

4
hi, ηi,1)

ηi,2 = ηi +
hi
4

{
2f(ti +

1

4
hi, ηi,1) + f(ti +

3

4
hi, ηi,2)

}
ηi,3 = ηi +

hi
100

{
34f(ti +

1

4
hi, ηi,1)− 4f(ti +

3

4
hi, ηi,2)

+ 25f(ti +
11

20
hi, ηi,3)

}
ηi,4 = ηi +

hi
2720

{
742f(ti +

1

4
hi, ηi,1)− 137f(ti +

3

4
hi, ηi,2)

+ 75f(ti +
11

20
hi, ηi,3) + 680f(ti +

1

2
hi, ηi,4)

}
ηi,5 = ηi +

hi
48

{
50f(ti +

1

4
hi, ηi,1)− 49f(ti +

3

4
hi, ηi,2)

+ 375f(ti +
11

20
hi, ηi,3)− 340f(ti +

1

2
hi, ηi,4)

+ 12f(ti + hi, ηi,5)
}

ηi+1 = ηi +
hi
48

{
50f(ti +

1

4
hi, ηi,1)− 49f(ti +

3

4
hi, ηi,2)

+ 375f(ti +
11

20
hi, ηi,3)− 340f(ti +

1

2
hi, ηi,4)

+ 12f(ti + hi, ηi,5)
}

ti+1 = ti + hi

I.2.4. Order of a single step method. The order is a measure
for the quality of a single step method. It measures the error of one
step of the method and is defined as follows:

A single step method has order p > 0 if

|y(t1)− η1| = O(hp+1
1 ).

The error after an arbitrary number of steps of the single step
method satisfies:

If the single step method has order p and if the right-hand
side f is continuously differentiable w.r.t. the variable y
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with bounded derivative, the error satisfies for all i

|y(ti)− ηi| = O
((

max
1≤j≤i

hj
)p)

Both Euler methods have order 1. The Crank-Nicolson scheme is of
order 2. The classical Runge-Kutta method has order 4. The methods
SDIRK2 and SDIRK5 given above are of order 3 and 4, respectively.
There are Runge-Kutta methods of arbitrarily high order.

I.2.5. Stability of a single step method. The order of a single
step method describes its asymptotic behaviour for step-sizes tending
to zero. In practice, however, one of course uses a given finite step-size.
Therefore, the single step method should yield a qualitatively correct
solution for an as large as possible range of step-sizes. This requirement
is described by the concept of stability.

Example I.2.1. When numerically solving the initial value problem

y′(t) = −100y(t)

y(0) = 1

with exact solution y(t) = e−100t by the two Euler methods and the
Crank-Nicolson scheme with constant step-size h we obtain

ηi =


(
1− 100h

)i
for the explicit Euler method,(

1 + 100h
)−i

for the implicit Euler method,(
1−50h
1+50h

)i
for the Crank-Nicolson scheme.

Hence, we observe:

• The explicit Euler method only yields a decaying solution if
the step-size is less than 1

50
.

• The implicit Euler method and the Crank-Nicolson scheme
yield decaying solutions for all step-sizes.

Explicit methods cannot by stable. But there are stable implicit
Runge-Kutta methods of arbitrarily high order.

The following examples demonstrate the effect of good stability
properties.

Example I.2.2. Consider the damped oscillation

y′(t) =

(
−0.9 −6.3
6.3 −0.9

)
y(t)

y(0) =

(
1
0

)
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Figure I.2.2. 100 steps with step-size h = 0.1 of the ex-
plicit Euler-method (red), implicit Euler method (blue),
the trapezoidal rule (green), the classical Runge-Kutta
method (yellow), the SDIRK2 method (turquoise) and
the SDIRK5 method (orange) for the initial value prob-
lem of a damped oscillation of example I.2.2 (left) and
an undamped oscillation of example I.2.3 (right). The
explicit Euler method leaves the frame within few steps.

with exact solution

y(t) = e−0.9t

(
cos(6.3t)
sin(6.3t)

)
.

The function t 7→ y(t) describes a contracting spiral with centre at
the origin. The left part of figure I.2.2 shows the result of the two
Euler methods (red and blue), the trapezoidal rule (green), the clas-
sical Runge-Kutta method (yellow), the SDIRK2 (turquoise) and the
SDIRK5 method (orange) for 100 steps with constant step-size h = 0.1.
The explicit Euler method (red) explodes within few steps and leaves
the frame of the figure since the step-size is too large. In order to ob-
tain a qualitatively correct solution with this method one would need
a step-size which is smaller by about a factor 10. The implicit Euler
method (blue) damps the solution too much. This effect diminishes
when reducing the step-size but persists in principle. The other meth-
ods yield qualitatively acceptable solutions.

Example I.2.3. Consider the undamped oscillation

y′(t) =

(
0 −6.3

6.3 0

)
y(t)

y(0) =

(
1
0

)
with exact solution

y(t) =

(
cos(6.3t)
sin(6.3t)

)
.
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The function t 7→ y(t) describes a circle with radius 1 and centre at
the origin. The right part of figure I.2.2 shows the result of the two
Euler methods (red and blue), the trapezoidal rule (green), the clas-
sical Runge-Kutta method (yellow), the SDIRK2 (turquoise) and the
SDIRK5 method (orange) for 100 steps with constant step-size h = 0.1.
The explicit Euler method (red) explodes within few steps and leaves
the frame of the figure since the step-size is too large. This effect per-
sists with decreasing step-size although more and more weakly. The
implicit Euler method (blue) damps the solution too much. This effect
diminishes when reducing the step-size but persists in principle. The
other methods yield qualitatively acceptable solutions.

I.3. Boundary Value Methods

I.3.1. General form of boundary value problems. Given an
interval I in R, two distinct points a and b in I, a subset D of Rd, a
function f(t, y) : I ×D → Rd and a function r(u, v) : Rd × Rd → Rd,
a boundary value problem consists in finding a differentiable function
y : I → D such that

y′(t) = f(t, y(t)) for all t ∈ I (differential equation)

r(y(a), y(b)) = 0 (boundary condition)

Example I.3.1. The boundary value problem

y′(t) =

(
λ −ω
ω λ

)
y(t)

y1(0) = 1

y1(
π

2ω
) = 0

for a damped oscillation corresponds to the data

I = R, a = 0, b =
π

2ω
, D = R2,

f(t, y) =

(
λ −ω
ω λ

)
y,

r(u, v) =

(
1 0
0 0

)
u+

(
0 0
1 0

)
v −

(
1
0

)
.

The exact solution is

y(t) = eλt
(

cos(ωt)
sin(ωt)

)
.
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Example I.3.2. In analogy to initial value problems, boundary
value problems for higher order differential equations can be trans-
formed into boundary value problems for first order equations by in-
troducing new unknowns. For the mechanical system, e.g.,

Mx′′(t) +Rx′(t) +Kx(t) = F (t)

x(0) = x0

x(L) = xL

in Rd we introduce the velocity v(t) = x′(t) as a new unknown and
thus obtain a boundary value problem corresponding to the data

I = R, a = 0, b = L, D = R2d,

y(t) =

(
x(t)
v(t)

)
,

f(t, y) =

(
0

M−1F (t)

)
+

(
0 1

−M−1K −M−1R

)
y,

r(u, v) =

(
I 0
0 0

)
u+

(
0 0
I 0

)
v −

(
x0

xL

)
.

I.3.2. Eigenvalue and free boundary problems. Some prob-
lems which at first sight are no boundary value problems nevertheless
fit into the framework of the preceding section. The most prominent
examples are eigenvalue and free boundary problems.

Example I.3.3. We are looking for a function u : [a, b]→ R and a
number λ ∈ R such that

u′(t) = g(t, u(t)),

ρ(u(a), u(b), λ) = 0,

where g and ρ are given functions. Interpreting the number λ as a
constant function, this eigenvalue problem corresponds to a boundary
value problem with the data

I = R, D = R2,

y(t) =

(
u(t)
λ

)
,

f(t, y) =

(
g(t, y1)

0

)
,

r(u, v) = ρ(u1, v1, v2).

Example I.3.4. We are looking for a number β > 0 and a function
u : [0, β]→ R such that

u′(s) = g(s, u(s)),

ρ(u(0), u(β)) = 0,
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where g and ρ again are given functions. This is a free boundary prob-
lem, since the point β is part of the unknown solution. Interpreting
the number β as a constant function and judiciously introducing a new
variable t, this problem corresponds to a boundary value problem with
the data

I = R, a = 0, b = 1, D = R2,

y(t) =

(
u(tβ)
β

)
,

t =
s

y2

,

f(t, y) =

(
y2g(ty2, y1)

0

)
,

r(u, v) = ρ(u1, v1).

I.3.3. Existence and uniqueness. Contrary to initial value
problems there is no general existence and uniqueness result for bound-
ary value problems. Instead the solvability and the eventual number of
solutions of a given boundary value problem depend on the particular
problem and the interplay of the differential equation and the boundary
condition. This is illustrated by the following example.

Example I.3.5. Consider the boundary value problem

y′(t) =

(
0 −ω
ω 0

)
y(t)(

1 0
0 0

)
y(0) +

(
0 0
1 0

)
y(L) =

(
α
β

)
for an undamped oscillation. The general solution of the differential
equation is

y(t) =

(
c1 cos(ωt)− c2 sin(ωt)
c1 sin(ωt) + c2 cos(ωt)

)
.

The data L = 2π
ω

, α = 0, β = 1 lead to the contradictory conditions
c1 = 0 and c1 = 1. Hence, the corresponding boundary value problem
doesn’t admit a solution. The data L = 2π

ω
, α = 0, β = 0, on the other

hand, lead to the single condition c1 = 0. Hence, c2 is arbitrary and
the corresponding boundary value problem admits an infinite number
of solutions.

I.4. Shooting Methods

I.4.1. The simple shooting method. The simple shooting
method is the simplest method for solving a general boundary value
problem. The underlying idea can be explained as follows:
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• Denote by y(t; s) the solution of the initial value problem

y′(t) = f(t, y(t)),

y(a; s) = s.

• Then y(t; s) solves the boundary boundary value problem

y′(t) = f(t, y(t)),

r(y(a), y(b)) = 0

if and only if
r(s, y(b; s)) = 0.

• Determine a zero of the function

F (s) = r(s, y(b; s))

using Newton’s method.
• The derivative DF (s) of F at the point s is

DF (s) = Dur(s, y(b; s)) +Dvr(s, y(b; s))Z(b; s),

where Z solves the initial value problem

Z ′(t; s) = Dyf(t, y(t; s))Z(t; s)

Z(a; s) = I

with I denoting the identity matrix.
• Solve the initial value problems for y(t; s) and Z(t; s) approx-

imately with a numerical method for initial value problems as
described in section I.3. In doing so ensure that both methods
use the same set of grid points ti.

This idea gives rise to the following algorithm:

Algorithm I.4.1. (Simple shooting method)

(0) Given an initial guess s(0) ∈ Rd and a tolerance ε. Set i = 0.
(1) Using a numerical method for initial value problems compute

an approximation η(i)(t) for the solution y(i) of the initial value
problem

y(i)′(t) = f(t, y(i)(t)),

y(i)(a) = s(i).

Set
F (i) = r(s(i), η(i)(b)).

(2) If ‖F (i)‖ ≤ ε stop, otherwise continue with step (3).
(3) Using the same method and grid points as in step (1) compute

an approximation ζ(i)(t) for the solution Z(i) of the initial value
problem

Z(i)′(t) = Dyf(t, η(i)(t))Z(i)(t),

Z(i)(a) = I.
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Set

D(i) = Dur(s
(i), η(i)(b)) +Dvr(s

(i), η(i)(b))ζ(i)(b).

(4) Solve the linear system of equations

D(i)∆s(i) = −F (i).

Set

s(i+1) = s(i) + ∆s(i),

increase i by 1 and return to step (1).

The simple shooting method has the following properties:

The initial value problems in step (1) have d unknowns.
The initial value problems in step (3) have d2 unknowns.
The initial value problems in step (3) are linear.
The linear systems in step (4) have d equations and un-
knowns.
Newton’s method should be damped.
If Newton’s method converges, the convergence is quadratic.

I.4.2. A warning example. Even if the boundary value problem
admits a unique solution, the simple shooting method can completely
break down. This is illustrated by the following example. The break-
down of the simple shooting method is due to the fact that solutions of
initial value problems with close-by initial values may run away with
an exponential rate. In this sense boundary value problems may be
ill-posed.

Example I.4.2. Consider the boundary value problem

y′(t) =

(
0 1

110 1

)
y(t),

y1(0) = 1,

y1(10) = 1.

The exact solution is

y(t) = c1e
−10t

(
1
−10

)
+ c2e

11t

(
1
11

)
with

c1 =
e110 − 1

e110 − e−100
, c2 =

1− e−100

e110 − e−100
.

The solution of the associated initial value problem with initial value
s is

y(t; s) =
11s1 − s2

21
e−10t

(
1
−10

)
+

10s1 + s2

21
e11t

(
1
11

)
.
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The correct initial value for the solution of the boundary value problem
is

s∗ =

(
1

−10 + 21 · 1−e−100

e110−e−100

)
.

The wrong initial value

s̃ =

(
1

−10 + 10−9

)
with a relative error of 10−10 yields the wrong boundary value

y1(10; s̃) ≈ 1037.

Thus one looses 47 digits!

I.4.3. The multiple shooting method. Example I.4.2 shows
that the simple shooting method may completely break down since
solutions to different initial values may separate with an exponential
rate. It, however, also indicates a way for avoiding this undesirable
phenomenon: Only solve initial value problems on small time inter-
vals. This leads to the following divide-and-conquer-type approach:

• Subdivide the interval [a, b] by introducing intermediate points
a = τ1 < τ2 < . . . < τm = b.
• For s1, . . . , sm ∈ Rd denote by y(t; τk, sk) the solution of the

initial value problem

y′(t) = f(t, y(t)),

y(τk; sk) = sk.

• Define a piecewise function ỹ by

ỹ(t) = y(t; τk, sk) for τk ≤ t < τk+1, 1 ≤ k ≤ m− 1,

ỹ(τm) = sm.

• Then ỹ solves the boundary value problem

y′(t) = f(t, y(t))

r(y(a), y(b)) = 0

if and only if

y(τk+1; τk, sk) = sk+1 for 1 ≤ k ≤ m− 1,

r(s1, sm) = 0.

• This yields a system of equations

F (s1, . . . , sm) = 0,

which can be solved with Newton’s method.
• The computation of the derivative of F requires the solution

of initial value problems on the intervals [τk, τk+1].
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Each step of Newton’s method requires the solution of a linear system
of equations

DF∆s = −F
with m · d equations and unknowns. Since DF has the particular form

DF =


G1 −I

G2 −I 0

0
. . . . . .

Gm−1 −I
A 0 · · · 0 B


with suitable d× d matrices G1, . . ., Gm−1, A and B, the linear system
takes the form

G1∆s1 −∆s2 = −F1

G2∆s2 −∆s3 = −F2

... =
...

Gm−1∆sm−1 −∆sm = −Fm−1

A∆s1 +B∆sm = −Fm.
Hence, the unknowns ∆s2, . . ., ∆sm can be eliminated successively and
one obtains the linear system

(A+BGm−1 . . . G1)∆s1 = −Fm −B
m−1∑
j=1

(
m−1∏
i=j+1

Gi)Fj

with d equations for the d components of ∆s1.
These ideas and observations give rise to the following algorithm:

Algorithm I.4.3. (Multiple shooting method)

(0) Given m points a = τ1 < . . . < τm = b, m vectors s
(0)
1 , . . . , s

(0)
m

∈ Rd and a tolerance ε. Set i = 0.
(1) Using a numerical method for initial value problems determine

approximations η(i,j)(t), 1 ≤ j ≤ m− 1, for the solutions y(i,j)

of the initial value problems

y(i,j)′(t) = f(t, y(i,j)(t)),

y(i,j)(τj) = s
(i)
j

for 1 ≤ j ≤ m− 1. Set

F
(i)
j = η(i,j)(τj+1)− s(i)

j+1 for 1 ≤ j ≤ m− 1,

F (i)
m = r(s

(i)
1 , s

(i)
m ).

(2) If
m∑
j=1

‖F (i)
j ‖ ≤ ε
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stop. Otherwise continue with step (3).
(3) Using the same numerical method and grid points as in step

(1) compute approximations ζ(i,j)(t) for the solutions Z(i,j) of
the initial value problems

Z(i,j)′(t) = Dyf(t, η(i,j)(t))Z(i,j)(t)

Z(i,j)(τj) = I

for 1 ≤ j ≤ m− 1. Set

G
(i)
j = ζ(i,j)(τj+1)

for 1 ≤ j ≤ m− 1 and

A(i) = Dur(s
(i)
1 , s

(i)
m ),

B(i) = Dvr(s
(i)
1 , s

(i)
m ).

(4) Compute the matrix

H(i) = A(i) +B(i)G
(i)
m−1 · . . . ·G

(i)
1

and the vector

ϕ(i) = −F (i)
m −B(i)

m−1∑
j=1

(
m−1∏
l=j+1

G
(i)
l )F

(i)
j .

Solve the linear system of equations

H(i)∆s
(i)
1 = ϕ(i)

and recursively compute the vectors

∆s
(i)
k+1 = G

(i)
k ∆s

(i)
k + F

(i)
k

for 1 ≤ k ≤ m− 1. Set

s
(i+1)
k = s

(i)
k + ∆s

(i)
k

for 1 ≤ k ≤ m, increase i by 1 and return to step (1).

The multiple shooting method has the following properties:

When using the same number of grid points on the complete
interval [a, b], the solution of the initial value problems in
the simple and the multiple shooting method requires the
same number of arithmetic operations.
The initial value problems on the subintervals can be solved
in parallel.
When lacking any additional information, the intermediate
points τ1, . . . , τm can be chosen equidistant.
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I.5. Finite Difference Methods

I.5.1. Sturm-Liouville problems. In this and the following sec-
tion we consider particular boundary value problems, the so-called
Sturm-Liouville problems. Here, we are given a continuously differ-
entiable function p : [0, 1]→ R with

p = min
0≤x≤1

p(x) > 0

and a continuous function q : [0, 1]→ R with

q = min
0≤x≤1

q(x) > 0

and we are looking for a twice continuously differentiable function u :
[0, 1]→ R with

−(pu′)′ + qu = f in (0, 1) (differential equation)

u(0) = 0, u(1) = 0 (boundary condition)

Example I.5.1. Often Sturm-Liouville problems are given in the
general form

−(pu′)′ + qu = f in (a, b)

u(a) = α, u(b) = β.

This can be transformed into the above particular form with a = 0,
b = 1, α = 0, β = 0 as follows: Seek u in the form

u(x) = α +
β − α
b− a

(x− a) + v(
x− a
b− a

)

with
v(0) = 0, v(1) = 0

and introduce a new variable

t =
x− a
b− a

.

I.5.2. Difference quotients. The difference methods of this sec-
tion are based on the symmetric difference quotient :

∂hϕ(x) =
1

h

[
ϕ(x+

h

2
)−ϕ(x− h

2
)
]
.

Taylor’s formula yields

∂hϕ(x) = ϕ′(x) +
h2

24
ϕ′′′(x+ θh)

with a suitable θ ∈ (−1
2
, 1

2
).
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I.5.3. Difference discretization. The idea of the difference dis-
cretization can be described as follows:

• Replace derivatives by the difference quotient ∂h(
−(pu′)′

)
(x)

≈
(
−∂h(pu′)

)
(x)

=
1

h

[
p(x− h

2
)u′(x− h

2
)− p(x+

h

2
)u′(x+

h

2
)
]

≈ 1

h

[
p(x− h

2
)∂hu(x− h

2
)− p(x+

h

2
)∂hu(x+

h

2
)
]

=
1

h2

[
p(x− h

2
)(u(x)− u(x− h))

− p(x+
h

2
)(u(x+ h)− u(x))

]
• Impose the resulting equations only in a set of grid points ih

with h = 1
n+1

und 1 ≤ i ≤ n.

Algorithm I.5.2. (Difference discretization)

(0) Choose a mesh-size h = 1
n+1

.
(1) For 1 ≤ i ≤ n set

fi = f(ih), qi = q(ih), pi± 1
2

= p(ih± h

2
).

(2) Determine u0, . . ., un+1 such that

u0 = 0, un+1 = 0

and

fi = − 1

h2
pi− 1

2
ui−1 +

( 1

h2

[
pi− 1

2
+ pi+ 1

2

]
+ qi

)
ui

− 1

h2
pi+ 1

2
ui+1

holds for 1 ≤ i ≤ n.
(3) Denote by uh the continuous piecewise linear function which

equals ui at grid point ih(see figure I.5.1).
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Figure I.5.1. Continuous piecewise linear interpolation

The difference discretization has the following properties:
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The difference discretization gives rise to a linear system of
equations with n equations for the n unknowns u1, . . ., un.
The matrix of the linear system is symmetric, positive def-
inite and tridiagonal with positive diagonal elements and
negative off-diagonal elements.
The linear system admits a unique solution.
The solution of the linear system with Gaussian elimination
or Cholesky decomposition requires O(n) operations.

I.5.4. Error estimates. The following a priori error estimates
can be proven for the solution of the difference discretization:

Suppose that q > 0, p > 0, p is three times continuously dif-
ferentiable and the solution u of the Sturm-Liouville prob-
lem is four times continuously differentiable, then the fol-
lowing a priori error estimate holds

max
0≤x≤1

|u(x)− uh(x)| ≤ ch2.

The constant c depends on the lower bound q for q, the
derivatives up to order 3 of p and the derivatives up to
order 4 of u.

I.6. Variational Methods

The assumptions

• q > 0,
• p three times continuously differentiable,
• u four times continuously differentiable

of the previous section are far too restrictive for most practical appli-
cations. They are overcome by the variational methods of the current
section.

I.6.1. Idea of the variational formulation. The basic idea of
the variational formulation of Sturm-Liouville problems can be de-
scribed as follows:

• Multiply the differential equation with a continuously differ-
entiable function v with v(0) = 0 and v(1) = 0:

−(pu′)′(x)v(x) + q(x)u(x)v(x) = f(x)v(x)

for 0 ≤ x ≤ 1.
• Integrate the result from 0 to 1:∫ 1

0

[
−(pu′)′(x)v(x) + q(x)u(x)v(x)

]
dx =

∫ 1

0

f(x)v(x)dx.
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• Use integration by parts for the term containing derivatives:

−
∫ 1

0

(pu′)′(x)v(x)dx

= p(0)u′(0) v(0)︸︷︷︸
=0

−p(1)u′(1) v(1)︸︷︷︸
=0

+

∫ 1

0

p(x)u′(x)v′(x)dx

=

∫ 1

0

p(x)u′(x)v′(x)dx.

To put these ideas on a profound basis we must better specify the prop-
erties of the functions u and v. Classical properties such as continuous
differentiability are too restrictive; the notion ‘derivative’ must be gen-
eralised in a suitable way. In view of the discretization the new notion
should in particular cover piecewise differentiable functions.

I.6.2. Weak derivatives. The above considerations lead to the
notion of a weak derivative. It is motivated by the following obser-
vation: Integration by parts yields for all continuously differentiable
functions u and v satisfying v(0) = 0 and v(1) = 0∫ 1

0

u′(x)v(x)dx = u(1) v(1)︸︷︷︸
=0

−u(0) v(0)︸︷︷︸
=0

−
∫ 1

0

u(x)v′(x)dx

= −
∫ 1

0

u(x)v′(x)dx.

A function u is called weakly differentiable with weak deriv-
ative w, if every continuously differentiable function v with
v(0) = 0 and v(1) = 0 satisfies∫ 1

0

w(x)v(x)dx = −
∫ 1

0

u(x)v′(x)dx.

Example I.6.1. Every continuously differentiable function is weakly
differentiable and the weak derivative equals the classical derivative.
Every continuous, piecewise continuously differentiable function is
weakly differentiable and the weak derivative equals the classical piece-
wise derivative.
The function u(x) = 1 − |2x − 1| is weakly differentiable with weak
derivative

w(x) =

{
2 for 0 < x < 1

2

−2 for 1
2
< x < 1

(cf. figure I.6.1). Notice that the value w(1
2
) is arbitrary.
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Figure I.6.1. Function u(x) = 1 − |2x − 1| (magenta)
with its weak derivative (red)

I.6.3. Sobolev spaces and norms. Variational formulations and
finite element methods are based on Sobolev spaces.

The L2-norm is defined by

‖v‖ =
{∫ 1

0

|v(x)|2dx
} 1

2
.

L2(0, 1) denotes the Lebesgue space of all functions v with
finite L2-norm ‖v‖.
H1(0, 1) is the Sobolev space of all functions v in L2(0, 1),
whose weak derivative exists and is contained in L2(0, 1)
too.
H1

0 (0, 1) denotes the Sobolev space of all functions v in
H1(0, 1) which satisfy v(0) = 0 and v(1) = 0.

Example I.6.2. Every bounded function is contained in L2(0, 1).
The function v(x) = 1√

x
is not contained in L2(0, 1), since the integral

of 1
x

= v(x)2 is not finite.
Every continuously differentiable function is contained in H1(0, 1).
Every continuous, piecewise continuously differentiable function is con-
tained in H1(0, 1).
The function v(x) = 1 − |2x − 1| is contained in H1

0 (0, 1) (cf. figure
I.6.1).
The function v(x) = 2

√
x is not contained in H1(0, 1), since the integral

of 1
x

=
(
v′(x))2 is not finite.

Notice that, in contrast to several dimensions, all functions in
H1(0, 1) are continuous.

I.6.4. Variational formulation of the Sturm-Liouville prob-
lem. The variational formulation of the Sturm-Liouville problem is
given by:
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Find u ∈ H1
0 (0, 1) such that for all v ∈ H1

0 (0, 1) there holds∫ 1

0

[
p(x)u′(x)v′(x) + q(x)u(x)v(x)

]
dx =

∫ 1

0

f(x)v(x)dx.

It has the following properties:

It admits a unique solution.
Its solution is the unique minimum in H1

0 (0, 1) of the energy
function

1

2

∫ 1

0

[
p(x)u′(x)2 + q(x)u(x)2

]
dx−

∫ 1

0

f(x)u(x)dx.

I.6.5. Finite element spaces. The discretization of the above
variational problem is based on finite element spaces. For their def-
inition denote by T an arbitrary partition of the interval (0, 1) into
non-overlapping sub-intervals and by k ≥ 1 an arbitrary polynomial
degree.

Sk,0(T ) denotes the finite element space of all continuous
functions which are piecewise polynomials of degree k on
the intervals of T .
Sk,00 (T ) is the finite element space of all functions v in
Sk,0(T ) which satisfy v(0) = 0 and v(1) = 0.

I.6.6. Finite element discretization of the Sturm-Liouville
problem. The finite element discretization of the Sturm-Liouville
problem is given by:

Find a trial function uT ∈ Sk,00 (T ) such that every test function

vT ∈ Sk,00 (T ) satisfies∫ 1

0

[
p(x)u′T (x)v′T (x) + q(x)uT (x)vT (x)

]
dx =

∫ 1

0

f(x)vT (x)dx.

It has the following properties:

It admits a unique solution.
Its solution is the unique minimum in Sk,00 (T ) of the energy
function.
After choosing a basis for Sk,00 (T ) it amounts to a linear
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system of equations with k · ]T −1 unknowns and a tridiag-
onal symmetric positive definite matrix, the so-called stiff-
ness matrix.
Integrals are usually approximately evaluated using a quad-
rature formula.
In most case one chooses k = 1 (linear elements) or k = 2
(quadratic elements).

One usually chooses a nodal basis for Sk,00 (T ) (cf. figure
I.6.2 and section I.6.7).

�
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Figure I.6.2. Nodal basis functions for linear elements
(left, blue) and for quadratic elements (right, endpoints
of intervals blue and midpoints of intervals magenta)

I.6.7. Nodal basis functions. The nodal basis functions for lin-
ear elements are those functions which take the value 1 at exactly one
endpoint of an interval and which vanish at all other endpoints of in-
tervals (cf. left part of figure I.6.2).
The nodal basis functions for quadratic elements are those functions
which take the value 1 at exactly one endpoint or midpoint of an inter-
val and which vanish at all other endpoints and midpoints of intervals
(right part of figure I.6.2, endpoints of intervals blue and midpoints of
intervals magenta).

I.6.8. Error estimates. Denoting by hT the maximal length of
intervals in T , one can prove the following a priori error estimates for
the finite element discretization of the Sturm-Liouville problem:

Suppose that q is non-negative, p > 0 and the derivative of
p and the first and second derivative of the solution u of the
Sturm-Liouville problem are in L2(0, 1), then the following
a priori error estimate holds

‖u′ − u′T ‖ ≤ c1hT ,

‖u− uT ‖ ≤ c2h
2
T .

The constants c1 und c2 depend on p, the derivative of p,
the maximum of q and the first and second derivatives of u.





CHAPTER II

Prerequisites for Finite Element and Finite
Volume Methods

II.1. Sobolev Spaces

II.1.1. Reaction-diffusion equation. As a motivation for the
Sobolev and finite element spaces, which will be introduced in this and
the following section, consider the following reaction-diffusion equation

− div(A∇u) + αu = f in Ω

u = 0 on Γ

which is a multi-dimensional generalization of the Sturm-Liouville prob-
lem of sections I.5 and I.6. Here, Ω is a polyhedron in Rd with d = 2
or d = 3, A(x) is a symmetric positive definite, d× d matrix for every
x in Ω and α(x) a non-negative number for every x in Ω.

II.1.2. The divergence theorem and integration by parts
in several dimensions. Similarly to section I.6 we want to derive a
variational formulation of the reaction-diffusion equation. Again this
will be based on integration by parts.

To explain this further we first recall the definition of the divergence
of a vector-field

div w =
d∑
i=1

∂wi
∂xi

and the divergence theorem alias Gauß theorem∫
Ω

div wdx =

∫
Γ

w · ndS.

Applying the divergence theorem to w = v(A∇u) yields∫
Ω

v div(A∇u)dx+

∫
Ω

∇v · A∇udx =

∫
Ω

div(vA∇u)dx

=

∫
Ω

div wdx

33
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=

∫
Γ

w · ndS

=

∫
Γ

vn · A∇udS.

If v = 0 on Γ, this in particular implies∫
Ω

∇v · A∇udx = −
∫

Ω

v div(A∇u)dx.

On the other hand, applying the divergence theorem to w = uvei,
where ei denotes the i-th unit vector, gives∫

Ω

∂u

∂xi
vdx+

∫
Ω

u
∂v

∂xi
dx =

∫
Ω

∂(uv)

∂xi
dx

=

∫
Ω

div wdx

=

∫
Γ

w · ndS

=

∫
Γ

uvnidS.

If u = 0 or v = 0 on Γ, this in particular implies∫
Ω

∂u

∂xi
vdx = −

∫
Ω

u
∂v

∂xi
dx.

II.1.3. Idea of the variational formulation. The idea of the
variational formulation of the reaction-diffusion equation can be de-
scribed as follows:

• Multiply the differential equation with a continuously differ-
entiable function v with v = 0 on Γ to obtain

− div(A∇u)(x)v(x) + α(x)u(x)v(x) = f(x)v(x)

for x ∈ Ω.
• Integrate the result over Ω∫

Ω

[
− div(A∇u)v + αuv

]
dx =

∫
Ω

fvdx.

• Use integration by parts for the term containing derivatives

−
∫

Ω

div(A∇u)vdx =

∫
Ω

∇v · A∇udx.

In order to put these ideas on a sound basis the following problems
must be settled:

• The properties of the functions u and v must be stated more
precisely.
• Classical properties such as ‘continuously differentiable’ are

too restrictive.
• The notion ‘derivative’ must be generalized.
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• In view of the discrete problems, piecewise differentiable func-
tions should be differentiable in the new weaker sense.

II.1.4. Weak derivatives. The second integration by parts for-
mula of section II.1.2 motivates the following notion of a weak deriva-
tive which generalizes the classical partial derivative.

The function u is said to be weakly differentiable w.r.t. xi
with weak derivative wi, if every continuously differentiable
function v with v = 0 on Γ satisfies∫

Ω

wivdx = −
∫

Ω

u
∂v

∂xi
dx.

If u is weakly differentiable w.r.t. to all variables x1, . . . , xd,
we call u weakly differentiable and write ∇u for the vector
(w1, . . . , wd) of the weak derivatives.

Example II.1.1. Every function which is continuously differen-
tiable in the classical sense is weakly differentiable and its classical
derivative coincides with the weak derivative.
Every continuous piecewise differentiable function is weakly differen-
tiable and its weak derivative is the piecewise classical derivative.
The function |x| is not differentiable in (−1, 1), but it is differentiable in
the weak sense. Its weak derivative is the piecewise constant function
which equals −1 on (−1, 0) and 1 on (0, 1).

II.1.5. Sobolev spaces and norms. Here, we will only introduce
the first order Sobolev space. Its definition is based on the notion of
weak derivatives introduced above and of the Lebesgue space L2(Ω):

‖v‖ =
{∫

Ω

|v|2dx
} 1

2
denotes the L2-norm.

L2(Ω) is the Lebesgue space of all functions v with finite
L2-norm ‖v‖.
H1(Ω) is the Sobolev space of all functions v in L2(Ω), which
are weakly differentiable and for which |∇v|, the Euclidean
norm of ∇v, is in L2(Ω).
H1

0 (Ω) is the Sobolev space of all functions v in H1(Ω) with
v = 0 on Γ.

Higher order Sobolev spaces can be defined in a similar way by first
introducing higher order weak derivatives similarly to section II.1.4 and
by then considering all functions in L2(Ω) which have all their weak
derivatives up to a given order contained in L2(Ω).

Example II.1.2. Every bounded function is in L2(Ω).
Every continuously differentiable function is in H1(Ω).
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A piecewise differentiable function is in H1(Ω), if and only if it is glob-
ally continuous.
Functions in H1(Ω) must not admit point values (see examples II.1.3
and II.1.4 below).

Example II.1.3 (Radially symmetric functions in R2). Denote by
Ω the circle with radius 1 and centre at the origin. Given a real number
α ∈ R set

vα(x, y) =
(
x2 + y2

)α
2 .

We then have ∫
Ω

v2
αdxdy = 2π

∫ 1

0

r2αrdr <∞

⇐⇒ 2α + 1 > −1 ⇐⇒ α > −1

and ∫
Ω

|∇vα|2dxdy = 2π

∫ 1

0

α2r2α−2rdr <∞

⇐⇒ 2α− 1 > −1 ⇐⇒ α > 0.

Hence we conclude that vα ∈ H1(Ω) if and only if α > 0.

Notice that v(x) = ln(|ln(
√
x2 + y2)|) is in H1(Ω) but has no finite

value at the origin.

Example II.1.4 (Radially symmetric functions in R3). Denote by
Ω the ball with radius 1 and centre at the origin. Given a real number
α ∈ R set

vα(x, y, z) =
(
x2 + y2 + z2

)α
2 .

We then have ∫
Ω

v2
αdxdydz = 4π

∫ 1

0

r2αr2dr <∞

⇐⇒ 2α + 2 > −1 ⇐⇒ α > −3

2

and ∫
Ω

|∇vα|2dxdydz = 4π

∫ 1

0

α2r2α−2r2dr <∞

⇐⇒ 2α > −1 ⇐⇒ α > −1

2
.

Hence we conclude that vα ∈ H1(Ω) if and only if α > −1
2
. In particular

the function v(x) =
(
x2 +y2 +y2

)− 1
8 is in H1(Ω) but has no finite value

at the origin.
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II.1.6. Variational problem. The variational formulation of the
reaction-diffusion equation now takes the form:

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω)∫
Ω

[
∇v · A∇u+ αuv

]
dx =

∫
Ω

fvdx.

It has the following properties:

The variational problem admits a unique solution.
The solution of the variational problem is the unique mini-
mum in H1

0 (Ω) of the energy function

1

2

∫
Ω

[
∇u · A∇u+ αu2

]
dx−

∫
Ω

fudx.

II.1.7. Convective derivatives. General second order elliptic
differential equations also contain so-called convective derivatives of

the form a · ∇u. They give rise to the additional term

∫
Ω

a · ∇uv on

the left-hand side of the variational problem. Now, the solution of the
variational problem cannot be interpreted as the minimum of an energy
function.

II.1.8. Neumann boundary conditions. The boundary condi-
tion u = 0 on Γ considered so far is usually called a Dirichlet boundary
condition. Physically it describes a clamped membrane or prescribed
temperature profile. In practice of course also free membranes or prob-
lems with a prescribed heat flux have to be modelled. This requires a
so-called Neumann boundary condition of the form n ·A∇u = g on ΓN
where g is a given flux and ΓN is a subset of Γ which may equal Γ. It

gives rise to the additional term

∫
ΓN

gv on the right-hand side of the

variational problem.

II.1.9. Weak divergence. Many engineering problems, e.g. the
equations of linearized elasticity, require so-called mixed energy prin-
ciples which are based on spaces different from the Sobolev spaces
considered so far. The most prominent representative of these spaces
is H(div; Ω). It is based on the notion of a weak divergence:

A vector-field u : Ω ⊂ Rd → Rd is said to have the weak
divergence w : Ω → R if every continuously differentiable
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scalar function v satisfies∫
Ω

wv = −
∫

Ω

u · ∇v.

If u has the weak divergence w, one writes w = div u.

Notice that if u is continuously differentiable, it has a weak diver-
gence which coincides with the classical divergence.

The space H(div; Ω) is now defined by

H(div; Ω) =
{
u : Ω→ Rd : u ∈ L2(Ω)d and div u ∈ L2(Ω)

}
.

Note that a piecewise differentiable vector-field is in H(div; Ω), if
and only if its normal component is continuous across interfaces.

II.2. Finite Element Spaces

II.2.1. Basic idea. The basic idea of the finite element method
can be described as follows:

• Subdivide Ω into non-overlapping simple sub-domains called
elements such as triangles, parallelograms, tetrahedra or par-
allelepipeds, . . . (partition).
• In the variational problem replace the space H1

0 (Ω) by a finite
dimensional subspace consisting of continuous functions which
are element-wise polynomials (finite element space).
• This gives rise to a linear system of equations for the approx-

imation uT of the solution u of the differential equation.

In order to make these ideas operative, we will address the following
topics in what follows:

• construction of the partition,
• construction and properties of the finite element spaces,
• building of the linear system of equations.

Methods for efficiently solving the discrete problems will be the subject
of chapter III.

II.2.2. Finite element partitions. In what follows T denotes a
partition of the computational domain Ω into subsets called elements
and labelled K. It has to satisfy the following conditions:

• Ω ∪ Γ is the union of all elements in T .
• (Affine equivalence) Each K ∈ T is either a trian-

gle or a parallelogram, if d = 2, or a tetrahedron
or a parallelepiped, if d = 3.
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• (Admissibility) Any two elements in T are either
disjoint or share a vertex or a complete edge or –
if d = 3 – a complete face (see figure II.2.1).
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Figure II.2.1. Admissible (left and middle) and not
admissible partition (right)

In two dimensions triangles and parallelograms may be mixed (cf.
figure II.2.2). In three dimensions tetrahedrons and parallelepipeds can
be mixed provided prismatic elements are also incorporated.
The condition of affine equivalence may be dropped. It, however, con-
siderably simplifies the analysis since it implies constant Jacobians for
all element transformations.
The admissibility is necessary to ensure the continuity of the finite el-
ement functions and thus the inclusion of the finite element spaces in
H1

0 (Ω).
If the admissibility is violated, the continuity of the finite element func-
tions must be enforced which leads to a more complicated implemen-
tation.
Curved boundaries can be approximated by piecewise straight lines or
planes.
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Figure II.2.2. Mixture of triangular and quadrilateral elements

II.2.3. Finite element spaces. For any multi-index α ∈ Nd we
set for abbreviation

|α|1 = α1 + . . .+ αd,

|α|∞ = max{αi : 1 ≤ i ≤ d},
xα = xα1

1 · . . . · x
αd
d .
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Denote by

K̂ = {x̂ ∈ Rd : x1 + . . .+ xd ≤ 1, xi ≥ 0, 1 ≤ i ≤ d}

the reference simplex for a partition into triangles or tetrahedra and
by

K̂ = [0, 1]d

the reference cube for a partition into parallelograms or parallelepipeds.

Then every element K ∈ T is the image of K̂ under an affine mapping
FK . For every integer number k set

Rk(K̂) =

{
span{xα : |α|1 ≤ k} ,if K is the reference simplex,

span{xα : |α|∞ ≤ k} ,if K is the reference cube

and set

Rk = Rk(K) =
{
p̂ ◦ F−1

K : p̂ ∈ R̂k

}
.

With this notation we define finite element spaces by

Sk,−1(T ) =
{
ϕ : Ω→ R : ϕ

∣∣∣
K
∈ Rk(K) for all K ∈ T

}
,

Sk,0(T ) = Sk,−1(T ) ∩ C(Ω),

Sk,00 (T ) = Sk,0(T ) ∩H1
0 (Ω) =

{
ϕ ∈ Sk,0(T ) : ϕ = 0 on Γ

}
.

Note, that k may be 0 for the first space, but must be at least 1 for
the other spaces.
The global continuity ensures the inclusions Sk,0(T ) ⊂ H1(Ω) and

Sk,00 (T ) ⊂ H1
0 (Ω).

The polynomial degree k may vary from element to element. This,
however, leads to a more complicated implementation.

Example II.2.1. For a triangle, we have

R1(K) = span{1, x1, x2},
R2(K) = span{1, x1, x2, x

2
1, x1x2, x

2
2}.

For a parallelogram on the other hand, we have

R1(K) = span{1, x1, x2, x1x2},
R2(K) = span{1, x1, x2, x1x2, x

2
1, x

2
1x2, x

2
1x

2
2, x1x

2
2, x

2
2}.

II.2.4. Discrete problem. The finite element discretization of
the reaction-diffusion equation of section II.1.1 and of its variational
formulation of section II.1.6 is given by:
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Find a trial function uT ∈ Sk,00 (T ) such that for all test

functions vT ∈ Sk,00 (T )∫
Ω

[
∇vT · A∇uT + αuT vT

]
dx =

∫
Ω

fvT dx.

It has the following properties:

The discrete problem admits a unique solution.
The solution of the discrete problem is the unique minimum
in Sk,00 (T ) of the energy function

1

2

∫
Ω

[
∇u · A∇u+ αu2

]
dx−

∫
Ω

fudx.

After choosing a basis for Sk,00 (T ) the discrete problem
amounts to a linear system of equations with ≈ kdNT equa-
tions and unknowns where NT is the number of elements.

II.2.5. Degrees of freedom. The basis functions of the finite
element spaces Sk,0(T ) are defined by their nodal degrees of freedom
NT ,k. These are build by gluing together the element-wise degrees of
freedom NK,k by setting

NT ,k =
⋃
K∈T

NK,k.

Figures II.2.3 and II.2.4 show the element degrees and nodal de-
grees, resp. for different values of k.

Notice that the functions in Sk,0(T ) are uniquely defined by their
values in NT ,k thanks to the admissibility of T .

II.2.6. Nodal basis functions. The nodal basis function λz,k as-
sociated with a vertex z ∈ NT ,k is uniquely defined by the conditions

λz,k ∈ Sk,0(T ),

λz,k(z) = 1,

λz,k(y) = 0 for all y ∈ NT ,k \ {z}.

Figure II.2.5 shows a typical function λz,1.
The nodal basis functions have the following properties:

{λz,k : z ∈ NT ,k} is a basis for Sk,0(T ).

{λz,k : z ∈ NT ,k \ Γ} is a basis for Sk,00 (T ), i.e. the degrees
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Figure II.2.3. Element degrees of freedom NK,k for
k = 1, . . . , 4 and a triangle and a parallelogram
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Figure II.2.4. Nodal degrees of freedom NT ,k for k =
1, 2 and a patch T consisting of two triangles or two
parallelograms

of freedom on the boundary Γ are suppressed.
λz,k vanishes outside the union of all elements that share
the vertex z.
The stiffness matrix is sparse.

II.2.7. Evaluation of the nodal basis functions. Building the
stiffness matrix and the load vector of the discrete problem requires
the evaluation of the functions λz,k and their derivatives. This can be
achieved in two ways:

• transformation to a reference element K̂,
• reduction to the first order nodal basis functions λz,1 and direct

evaluation of these using the element geometry.
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Figure II.2.5. Nodal basis function λz,1

In the first approach one proceeds as follows:

• Determine the nodal basis functions λ̂ẑ,k for the reference ele-

ment K̂.
• Determine an affine transformation

K̂ 3 x̂ 7→ x = bK +BK x̂

of the reference element K̂ onto the current element K.
• Compute λz,k from λ̂ẑ,k using the affine transformation by set-

ting

λz,k(x) = λ̂ẑ,k(x̂).

Figure II.2.6 shows the commonly used reference elements in two and
three dimensions.
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Figure II.2.6. Reference triangle, square, tetrahedron
and cube (from left to right)

Example II.2.2. For the reference triangle the nodal basis func-

tions λ̂ẑ,1 for the vertices are

1− x− y, x, y.

The nodal basis functions λ̂ẑ,2 for the vertices are

(1− x− y)(1− 2x− 2y), x(2x− 1), y(2y − 1)
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and for the mid-points of edges

4x(1− x− y), 4xy, 4y(1− x− y).

For the reference square the nodal basis functions λ̂ẑ,1 for the vertices
are

(1− x)(1− y), x(1− y), xy, (1− x)y.

The nodal basis functions λ̂ẑ,2 for the vertices are

(1− 2x)(1− x)(1− 2y)(1− y), x(2x− 1)(1− 2y)(1− y),

x(2x− 1)y(2y − 1), (1− 2x)(1− x)y(2y − 1)

and for the mid-points of edges

4x(1− x)(1− y)(1− 2y), 4x(2x− 1)y(1− y),

4x(1− x)y(2y − 1), 4y(1− y)(1− 2x)(1− x)

and for the barycentre

16x(1− x)y(1− y).

Example II.2.3. The vector bK and the matrix BK of the affine
transformation of a triangle, parallelogram or tetrahedron are (see fig-
ure II.2.7 for the enumeration of the vertices)

bK = a0, BK =
(
a1 − a0 , a2 − a0

)
,

bK = a0, BK =
(
a1 − a0 , a3 − a0

)
,

bK = a0, BK =
(
a1 − a0 , a2 − a0 , a3 − a0

)
.

Similar formulae hold for parallelepipeds.

Example II.2.4. The first order nodal basis functions λai,1 corre-
sponding to a vertex ai of a triangle, parallelogram or tetrahedron are
given by (see figure II.2.7 for the enumeration of the vertices)

det(x− ai+1 , ai+2 − ai+1)

det(ai − ai+1 , ai+2 − ai+1)
,

det(x− ai+2 , ai+3 − ai+2)

det(ai − ai+2 , ai+3 − ai+2)
· det(x− ai+2 , ai+1 − ai+2)

det(ai − ai+2 , ai+1 − ai+2)
,

det(x− ai+1, ai+2 − ai+1, ai+3 − ai+1)

det(ai − ai+1, ai+2 − ai+1, ai+3 − ai+1)
.

Here, all indices have to be taken modulo the number of vertices of
the current element. Similar expressions hold for parallelepipeds with
3 factors corresponding to 3 tetrahedra.

Example II.2.5. The second order nodal basis function λai,2 cor-
responding to a vertex ai of a triangle is given by

λai,2 = λai,1[λai,1 − λai+1,1 − λai+2,1].
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Figure II.2.7. Affine transformation of a triangle, par-
allelogram and tetrahedron

Similarly, the function λz,2 corresponding to the mid-point z of the
edge connecting vertices ai and ai+1 is

λz,2 = 4λai,1λai+1,1.

For a parallelogram one obtains for a vertex ai

λai,2 = λai,1[λai,1 − λai+1,1 + λai+2,1 − λai+3,1],

for the mid-point z of the edge connecting vertices ai and ai+1

λz,2 = 4λai,1[λai+1,1 − λai+2,1]

and for the barycentre y

λy,2 = 16λa0,1λa2,1.

II.2.8. Evaluation of integrals. The exact evaluation of the in-
tegrals appearing in the entries of the stiffness matrix and load vector
often is too expensive or even impossible. They are therefore approxi-
mately evaluated using a suitable quadrature formula:∫

K

ϕdx ≈ Qk(ϕ) =
∑
q∈QK

cqϕ(q).
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In order to avoid that this spoils the accuracy of the finite element
discretization, the quadrature formula must have the order 2k − 2,
where k is the element degree, i.e.∫

K

ϕdx = QK(ϕ) for all ϕ ∈ R2k−2(K).

The order 0 is sufficient for linear elements; order 2 is sufficient for
quadratic elements.

Example II.2.6. The data
QK barycentre of K,

cq = |K|
and

QK mid-points of edges of K,

cq =
1

3
|K| for alle q

yield quadrature formulae of order 1 and 2, resp. for triangles. Here,
|K| denotes the area of K.
The data

QK barycentre of K,

cq = |K|
and

QK vertices, mid-points of edges and barycentre of K,

cq =


1
36
|K| if q is a vertex

4
36
|K| if q is a mid-point of edge

16
36
|K| if q is the barycentre

yield quadrature formulae of order 1 and 2, resp. for parallelograms.
Here, |K| again denotes the area of K.
Similar formulae can be derived for tetrahedra and parallelepipeds.

II.2.9. Convective derivatives. Convective derivatives lead to
a non-symmetric stiffness matrix. They often give rise to unphysi-
cal oscillations of the numerical solution. To avoid these oscillations
special modifications such as upwinding or streamline Petrov-Galerkin
stabilization must be introduced (cf. [4, §II.3] and [5, §II.3.1.2]).

II.2.10. Neumann boundary conditions. The so-called Neu-
mann boundary condition n · A∇u = g on ΓN ⊂ Γ gives rise to an

additional term

∫
ΓN

gvT dS on the right-hand side of the discrete prob-

lem. The additional entries of the load vector are taken into account
when sweeping through the elements. Moreover, degrees of freedom
associated with points on the Neumann boundary ΓN are additional
unknowns.
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II.3. Finite Volume Methods

II.3.1. Systems in divergence form. Finite volume methods
are tailored for systems in divergence form where we are looking for a
vector field U defined on a subset Ω of Rd having values in Rm which
satisfies the differential equation

∂M(U)

∂t
+ div F(U) = g(U, x, t) in Ω× (0,∞)

U(·, 0) = U0 in Ω.

Here,

g: the source, is a vector field on Rm × Ω × (0,∞) with values
in Rm,

M: the mass, is a vector field on Rm with values in Rm,
F: the flux is a matrix valued function on Rm with values in
Rm×d and

U0: the initial value, is a vector field on Ω with values in Rm.

The differential equation of course has to be completed with suitable
boundary conditions. These, however, will be ignored in what follows.

Notice that the divergence has to be taken row-wise

div F(U) =
( d∑
j=1

∂F(U)i,j
∂xj

)
1≤i≤m

.

The flux F can be slit into two contributions

F = Fadv + Fvisc.

Fadvis called advective flux and contains no derivatives. Fvisc is called
viscous flux and contains spacial derivatives. The advective flux models
transport or convection phenomena while the viscous flux is responsible
for diffusion phenomena.

Example II.3.1. A linear parabolic equation of 2nd order

∂u

∂t
− div(A∇u) + a · ∇u+ αu = f,

is a system in divergence form with

m = 1, U = u, M(U) = u,

Fadv(U) = au, Fvisc(U) = −A∇u, g(U) = f − αu+ (div a)u.

Example II.3.2. Burger’s equation

∂u

∂t
+ u

∂u

∂x
= 0

is a system in divergence form with

m = d = 1, u = u, M(U) = u,
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Fadv(u) =
1

2
u2, Fvisc(U) = 0, g(U) = 0.

Other important examples of systems in divergence form are the
Euler equations and Navier-Stokes equations for non-viscous respective
viscous fluids. Here we have d = 2 or d = 3 and m = d+ 2. The vector
U consists of the density, velocity and the internal energy of the fluid
(cf. [4, §IV.3]).

II.3.2. Basic idea of the finite volume method. Choose a
time step τ > 0 and a partition T of Ω consisting of arbitrary non-
overlapping polyhedra. Here, the elements may have more complicated
shapes than in the finite element method (see figures II.3.1 and II.3.2).
Moreover, admissibility is no longer required.

Now we choose an integer n ≥ 1 and an element K ∈ T and keep
both fixed in what follows. First we integrate the differential equation
on K × [(n− 1)τ, nτ ]∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
dxdt+

∫ nτ

(n−1)τ

∫
K

div F(U)dxdt

=

∫ nτ

(n−1)τ

∫
K

g(U, x, t)dxdt.

Next we use integration by parts for the terms on the left-hand side∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
dxdt =

∫
K

M(U(x, nτ))dx

−
∫
K

M(U(x, (n− 1)τ))dx,∫ nτ

(n−1)τ

∫
K

div F(U)dxdt =

∫ nτ

(n−1)τ

∫
∂K

F(U) · nKdSdt.

For the following steps we assume that U is piecewise constant with
respect to space and time. We denote by Un

K and Un−1
K the value of U

on K at times nτ und (n− 1)τ , respectively. Then we have∫
K

M(U(x, nτ))dx ≈ |K|M(Un
K)∫

K

M(U(x, (n− 1)τ))dx ≈ |K|M(Un−1
K )∫ nτ

(n−1)τ

∫
∂K

F(U) · nKdSdt ≈ τ

∫
∂K

F(Un−1
K ) · nKdS∫ nτ

(n−1)τ

∫
K

g(U, x, t)dxdt ≈ τ |K|g(Un−1
K , xK , (n− 1)τ).

Here, |K| denotes the area of K, if d = 2, or the volume of K, if d = 3,
respectively.
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In a last step we approximate the boundary integral for the flux by a
numerical flux

τ

∫
∂K

F(Un−1
K ) · nKdS

≈ τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|FT (Un−1
K ,Un−1

K′ ).

Here, ∂K ∩ ∂K ′ ∈ E means that K and K ′ share an edge, if d = 2, or
a face, if d = 3, and |∂K ∩ ∂K ′| denotes the length respective area of
the common boundary of K ∩K ′.

All together we obtain the following finite volume method

For every element K ∈ T compute

U0
K =

1

|K|

∫
K

U0(x).

For n = 1, 2, . . . successively compute for every element K ∈
T the quantity Un

K such that

M(Un
K) = M(Un−1

K )

− τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|
|K|

FT (Un−1
K ,Un−1

K′ )

+ τg(Un−1
K , xK , (n− 1)τ).

This method may be modified as follows:

• The time step may be variable.
• The partition of Ω may change from one time step to the other.
• The approximation Un

K must not be piecewise constant.

In order to obtain an operating discretization, we still have to make
precise the following topics:

• construction of T ,
• choice of FT .

Moreover we have to take into account boundary conditions. This item,
however, will not be addressed in what follows.

II.3.3. Construction of dual finite volume meshes. For con-
structing the finite volume mesh T , we start from a standard finite ele-

ment partition T̃ which satisfies the conditions of section II.2.2. Then

we subdivide each element K̃ ∈ T̃ into smaller elements by either

• drawing the perpendicular bisectors at the mid-points of edges

of K̃ (cf. figure II.3.1) or by

• connecting the barycentre of K̃ with its mid-points of edges
(cf. figure II.3.2).
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Then the elements in T consist of the unions of all small elements that
share a common vertex in the partition T̃ .
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Figure II.3.1. Dual mesh (red) via perpendicular bi-
sectors of primal mesh (blue)
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Figure II.3.2. Dual mesh (red) via barycentres of pri-
mal mesh (blue)

Thus the elements in T can be associated with the vertices in NT̃
(see left part of figure II.3.3). Moreover, we may associate with each
edge or face in ET exactly two vertices in NT̃ such that the line con-
necting these vertices intersects the given edge or face, respectively (see
right part of figure II.3.3).

The first construction has the advantage that this intersection is
orthogonal. But this construction also has some disadvantages which
are not present with the second construction:
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Figure II.3.3. Volume of the dual mesh associated
with a vertex of the primal mesh (left) and vertices of
the primal mesh associated with an edge of the dual mesh
(right)

• The perpendicular bisectors of a triangle may intersect in a
point outside the triangle. The intersection point is within
the triangle only if its largest angle is at most a right one.
• The perpendicular bisectors of a quadrilateral may not inter-

sect at all. They intersect in a common point inside the quadri-
lateral only if it is a rectangle.
• The first construction has no three dimensional analogue.

II.3.4. Construction of numerical fluxes. For the construction
of numerical fluxes we assume that T is a dual mesh corresponding to

a primal finite element partition T̃ . With every edge or face E of T we
denote by K1 and K2 the adjacent volumes, by U1 and U2 the values

Un−1
K1

and Un−1
K2

, respectively and by x1, x2 vertices of T̃ such that the
segment x1 x2 intersects E (see right part of figure II.3.3).

As in the analytical case, we split the numerical flux FT (U1,U2)
into a viscous numerical flux FT ,visc(U1,U2) and an advective numer-
ical flux FT ,adv(U1,U2) which are constructed separately.

We first construct the numerical viscous fluxes. To this end we
introduce a local coordinate system η1, . . . , ηd such that η1 is parallel
to x1 x2 and such that the remaining coordinates are tangential to E
(see figure II.3.4). Next we express all derivatives in Fvisc in terms of
partial derivatives corresponding to the new coordinates and suppress
all derivatives which do not pertain to η1. Finally we approximate
derivatives corresponding to η1 by differences of the form ϕ1−ϕ2

|x1−x2| .

We now construct the numerical advective fluxes. To this end we
denote by nK1 the unit outward normal of K1 and by

C(V) = D(Fadv(V) · nK1) ∈ Rm×m

the derivative of Fadv(V) ·nK1 with respect to V and suppose that this
matrix can be diagonalized, i.e., there is an invertible matrix Q(V) ∈



52 II. FINITE ELEMENT AND FINITE VOLUME METHODS

�
�
�
�
�
�
�
�
�

•

•
η1

η2

�
���

6

Figure II.3.4. Local coordinate system for the approx-
imation of viscous fluxes

Rm×m and a diagonal matrix ∆(V) ∈ Rm×m such that

Q(V)−1C(V)Q(V) = ∆(V).

This assumption is, e.g., satisfied for the Euler and Navier-Stokes equa-
tions. With any real number z we then associate its positive and neg-
ative part

z+ = max{z, 0}, z− = min{z, 0}

and set

∆(V)± = diag
(
∆(V)±11, . . . ,∆(V)±mm

)
,

C(V)± = Q(V)∆(V)±Q(V)−1.

With these notations the Steger-Warming scheme for the approxima-
tion of advective fluxes is given by

FT ,adv(U1,U2) = C(U1)+U1 + C(U2)−U2.

A better approximation is the van Leer scheme

FT ,adv(U1,U2)

=
[1

2
C(U1) + C(

1

2
(U1 + U2))+ − C(

1

2
(U1 + U2))−

]
U1

+
[1

2
C(U2)− C(

1

2
(U1 + U2))+ + C(

1

2
(U1 + U2))−

]
U2.

Both approaches require the computation of DFadv(V) · nK1 to-
gether with its eigenvalues and eigenvectors for suitable values of V.
In general the van Leer scheme is more costly than the Steger-Warming
scheme since it requires three evaluations of C(V) instead of two. For
the Euler and Navier-Stokes equations, however, this extra cost can be
avoided profiting from the particular structure Fadv(V) ·nK1 = C(V)V
of these equations.
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Example II.3.3. When applied to Burger’s equation of example
II.3.2 the Steger-Warming scheme takes the form

FT ,adv(u1, u2) =


u2

1 if u1 ≥ 0, u2 ≥ 0

u2
1 + u2

2 if u1 ≥ 0, u2 ≤ 0

u2
2 if u1 ≤ 0, u2 ≤ 0

0 if u1 ≤ 0, u2 ≥ 0

while the van Leer scheme reads

FT ,adv(u1, u2) =

{
u2

1 if u1 ≥ −u2

u2
2 if u1 ≤ −u2.

II.3.5. TVD and ENO schemes. The convergence analysis of
finite volume methods is based on compactness arguments, in particular
the concept of compensated compactness. This requires to bound the
total variation of the numerical approximation and to avoid unphysical
oscillations. This leads to the concept of total variation d iminishing
TVD and essentially non-oscillating ENO schemes. Corresponding
material may be found under the names of Enquvist, LeVeque, Osher,
Roe, Tadmor, . . ..

II.3.6. Relation to finite element methods. The fact that the
elements of a dual mesh can be associated with the vertices of a finite
element partition gives a link between finite volume and finite element
methods:

Consider a function ϕ that is piecewise constant on the
dual mesh T , i.e. ϕ ∈ S0,−1(T ). With ϕ we associate

a continuous piecewise linear function Φ ∈ S1,0(T̃ ) cor-

responding to the finite element partition T̃ such that
Φ(xK) = ϕK for the vertex xK ∈ NT̃ corresponding to
K ∈ T .

This link considerably simplifies the analysis of finite volume meth-
ods and suggests a very simple and natural approach to a posteriori
error estimation and mesh adaptivity for finite volume methods (cf. [5,
§II.4.11.5]).





CHAPTER III

Efficient Solvers for Linear Systems of Equations

III.1. Properties of Direct and Iterative Solvers

III.1.1. A model problem. To get an overview of the particu-
larities of the solution of finite element problems, we consider a simple,
but instructive model problem

−∆u = f in Ω

u = 0 on Γ

with Ω denoting the unit square (0, 1)2 (d = 2) or the unit cube (0, 1)3

(d = 3) discretized by linear elements on a mesh that consists of squares
(d = 2) or cubes (d = 3) with edges of length h = 1

n
.

The number of unknowns is

Nh =
( 1

n− 2

)d
.

The stiffness matrix Lh is symmetric positive definite and sparse; every
row contains at most 3d non-zero elements. The total number of non-
zero entries in Lh is

eh = 3dNh.

The ratio of non-zero entries to the total number of entries in Lh is

ph =
eh
N2
h

≈ 3dN−1
h .

The stiffness matrix is a band matrix with bandwidth

bh = h−d+1 ≈ N
1− 1

d
h .

Therefore the Gaussian elimination, the LR-decomposition or the Cho-
lesky decomposition require

sh = bhNh ≈ N
2− 1

d
h

bytes for storage and

zh = b2
hNh ≈ N

3− 2
d

h

arithmetic operations.
These numbers are collected in table III.1.1. It clearly shows that

direct methods are not suited for the solution of large finite element
problems both with respect to the storage requirement as with respect

55
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Table III.1.1. Storage requirement and arithmetic op-
erations of the Cholesky decomposition applied to the
linear finite element discretization of the model problem
on (0, 1)d

d h Nh eh bh sh zh

1
16

225 1.1 · 103 15 3.3 · 103 7.6 · 105

2 1
32

961 4.8 · 103 31 2.9 · 104 2.8 · 107

1
64

3.9 · 103 2.0 · 104 63 2.5 · 105 9.9 · 108

1
128

1.6 · 104 8.0 · 104 127 2.0 · 106 3.3 · 1010

1
16

3.3 · 103 2.4 · 104 225 7.6 · 105 1.7 · 108

3 1
32

3.0 · 104 2.1 · 105 961 2.8 · 107 2.8 · 1010

1
64

2.5 · 105 1.8 · 106 3.9 · 103 9.9 · 108 3.9 · 1012

1
128

2.0 · 106 1.4 · 107 1.6 · 104 3.3 · 1010 5.3 · 1014

to the computational work. Therefore one usually uses iterative meth-
ods for the solution of large finite element problems. Their efficiency
is essentially determined by the following considerations:

• The exact solution of the finite element problem is an approx-
imation of the solution of the differential equation, which is
the quantity of interest, with an error O(hk) where k is the
polynomial degree of the finite element space. Therefore it is
sufficient to compute an approximate solution of the discrete
problem which has the same accuracy.
• If the mesh T1 is a global or local refinement of the mesh T0, the

interpolate of the approximate discrete solution corresponding
to T0 is a good initial guess for any iterative solver for the
discrete problem corresponding to T1.

III.1.2. Nested iteration. The above considerations lead to the
following nested iteration. Here T0, . . ., TR denotes a sequence of suc-
cessively (globally or locally) refined meshes with corresponding finite
element problems

Lkuk = fk 0 ≤ k ≤ R.

Algorithm III.1.1. (Nested iteration)

(1) Compute

ũ0 = u0 = L−1
0 f0.

(2) For k = 1, . . ., R compute an approximate solution ũk for
uk = L−1

k fk by applying mk iterations of an iterative solver for
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the problem

Lkuk = fk

with starting value Ik−1,kũk−1, where Ik−1,k is a suitable inter-
polation operator from the mesh Tk−1 to the mesh Tk.

Usually, the number mk of iterations in algorithm III.1.1 is deter-
mined by the stopping criterion

‖fk − Lkũk‖ ≤ ε‖fk − Lk(Ik−1,kũk−1)‖.

That is, the residual of the starting value measured in an appropriate
norm should be reduced by a factor ε. Typically, ‖·‖ is a weighted
Euclidean norm and ε is in the realm 0.05 to 0.1. If the iterative solver
has the convergence rate δk, the number mk of iterations is given by

mk =
⌈ ln ε

ln δk

⌉
.

Table III.1.2 gives the number mk of iterations that require the clas-
sical Gauß-Seidel algorithm, the conjugate gradient algorithm III.3.2
and the preconditioned conjugate gradient algorithm III.3.4 with
SSOR-preconditioning III.3.5 for reducing an initial residual by the
factor ε = 0.1. These algorithms need the following number of opera-
tions per unknown:

2d+ 1 (Gauß-Seidel),

2d+ 6 (CG),

5d+ 8 (SSOR-PCG).

Table III.1.2. Number of iterations required for reduc-
ing an initial residual by the factor 0.1

h Gauß-Seidel CG SSOR-PCG
1
16

236 12 4

1
32

954 23 5

1
64

3820 47 7

1
128

15287 94 11

Table III.1.2 shows that the preconditioned conjugate gradient algo-
rithm with SSOR-preconditioning yields satisfactory results for prob-
lems that are not too large. Nevertheless, its computational work is
not proportional to the number of unknowns; for a fixed tolerance ε it
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approximately is of the order N
1+ 1

2d
h . The multigrid algorithm III.4.1

overcomes this drawback. Its convergence rate is independent of the
mesh-size. Correspondingly, for a fixed tolerance ε, its computational
work is proportional to the number of unknowns. The advantages of
the multigrid algorithm are reflected by table III.1.3.

Table III.1.3. Arithmetic operations required by the
preconditioned conjugate gradient algorithm with SSOR-
preconditioning and the V-cycle multigrid algorithm
with one Gauß-Seidel step for pre- and post-smoothing
applied to the model problem in (0, 1)d

d h PCG-SSOR multigrid
1
16

16′200 11′700

2 1
32

86′490 48′972

1
64

500′094 206′988

1
128

3′193′542 838′708

1
16

310′500 175′500

3 1
32

3′425′965 1′549′132

1
64

4.0 · 107 1.3 · 107

1
128

5.2 · 108 1.1 · 108

III.2. Classical Iterative Solvers

The setting of this and the following section is as follows: We want
to solve a linear system of equations

Lu = f

with N unknowns and a symmetric positive definite matrix L. We
denote by κ the condition of L, i.e. the ratio of its largest to its
smallest eigenvalue. Moreover we assume that κ ≈ N

2
d .

III.2.1. Stationary iterative solvers. All methods of this sec-
tion are so-called stationary iterative solvers and have the following
structure:

Algorithm III.2.1. (Stationary iterative solver)

(0) Given: a matrix L, a right-hand side f , an initial guess u0

and a tolerance ε.
Sought: an approximate solution of the linear system of equa-
tions Lu = f .
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(1) Set i = 0.
(2) If

‖Lui − f‖ < ε,

return ui as approximate solution; stop.
(3) Compute

ui+1 = F (ui;L, f)

increase i by 1 and return to step (2).

Here, u 7→ F (u;L, f) is an affine mapping, the so-called iteration
method, which characterizes the particular iterative solver. ‖·‖ is any
norm on RN , e.g., the Euclidean norm.

III.2.2. Richardson iteration. The simplest stationary iteration
method is the Richardson iteration. The iteration method is given by

u 7→ u+
1

ω
(f − Lu).

Here, ω is a damping parameter, which has to be of the same order as
the largest eigenvalue of L. The convergence rate of the Richardson
iteration is κ−1

κ+1
≈ 1−N− 2

d .

III.2.3. Jacobi iteration. The Jacobi iteration is closely related
to the Richardson iteration. The iteration method is given by

u 7→ u+D−1(f − Lu).

Here, D is the diagonal of L. The convergence rate again is κ−1
κ+1
≈

1 − N−
2
d . Notice, the Jacobi iteration sweeps through all equations

and exactly solves the current equation for the corresponding unknown
without modifying subsequent equations.

III.2.4. Gauß-Seidel iteration. The Gauß-Seidel iteration is a
modification of the Jacobi iteration: Now every update of an unknown
is immediately transferred to all subsequent equations. This modifica-
tion gives rise to the following iteration method:

u 7→ u+ L−1(f − Lu).

Here, L is the lower diagonal part of L, diagonal included. The con-
vergence rate again is κ−1

κ+1
≈ 1−N− 2

d .
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III.2.5. SSOR iteration. The SSOR iteration is a modification
of the Gauß-Seidel iteration based on the following ideas:

• Sweep through the equations first in increasing order, then in
decreasing order.
• Solve the i-th equation for the i-th unknown and write the

result in the form “old value plus increment”.
• The new approximation for the i-th unknown then is the old

one plus a factor, usually 1.5, times the increment.
• Immediately insert the new value of the i-th unknown in all

subsequent equations.

III.2.6. Comparison. Figure III.2.1 shows the evolution of the
convergence rate in the course of the iteration process for the Richard-
son, Jacobi, Gauß-Seidel and SSOR iterations for the model problem
of section III.1.1 with mesh-size h = 1

64
. The slow-down of the conver-

gence with increasing number of iterations is typical. The mean con-
vergence rates for the four methods are 0.992, 0.837, 0.752 and 0.513.
Thus the convergence rate of the SSOR iteration is acceptable for this
simple example. Nevertheless, when further reducing the mesh-size h,
the convergence rate of the SSOR iteration will also approach 1.

III.3. Conjugate Gradient Algorithm

III.3.1. The gradient algorithm. This algorithm is based on
the following ideas:

• For symmetric positive definite stiffness matrices L the solu-
tion of the linear system of equations

Lu = f

is equivalent to the minimization of the quadratic functional

J(u) =
1

2
u · (Lu)− f · u.

• Given an approximation v to the solution u of the linear sys-
tem, the negative gradient

−∇J(v) = f − Lv

of J at v gives the direction of the steepest descent.
• Given an approximation v and a search direction d 6= 0, J

attains its minimum on the line t 7→ v + td at the point

t∗ =
d · (f − Lv)

d · (Ld)
.

These lead to the following algorithm:
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Figure III.2.1. Evolution of the convergence rate in
the course of the iteration process for the Richardson,
Jacobi, Gauß-Seidel and SSOR iterations (left to right,
top to bottom) for the model problem of section III.1.1
with mesh-size h = 1

64

Algorithm III.3.1. (Gradient algorithm)

(0) Given: a linear system of equations Lu = f with a symmetric,
positive definite matrix L, an initial guess u0 for the solution,
and a tolerance ε > 0.
Sought: an approximate solution of the linear system.

(1) Compute

r0 = f − Lu0, γ0 = r0 · r0.

Set i = 0.
(2) If γi < ε2 return ui as approximate solution; stop. Otherwise

go to step 3.
(3) Compute

si = Ldi, αi =
γi

di · si
,

ui+1 = ui + αidi, ri+1 = ri − αisi,
γi+1 = ri+1 · ri+1.

Increase i by 1 and go to step 2.
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The gradient algorithm corresponds to a Richardson iteration with
an automatic and optimal choice of the relaxation parameter. The con-
vergence rate, however, is the same as for the Richardson iteration and
equals κ−1

κ+1
≈ 1 − N− 2

d . Figure III.3.1 shows the evolution of the con-
vergence rate in the course of the iteration process for the Richardson
iteration and the gradient algorithm for the model problem of section
III.1.1 with mesh-size h = 1

64
. The mean convergence rates are 0.992 for

the Richardson iteration and 0.775 for the gradient algorithm. When
the mesh-size is reduced the convergence rate of the gradient algorithm
will further approach the rate of the Richardson iteration.

Figure III.3.1. Evolution of the convergence rate in
the course of the iteration process for the Richardson
iteration (left) and the gradient algorithm (right) for the
model problem of section III.1.1 with mesh-size h = 1

64

III.3.2. The conjugate gradient algorithm. The conjugate
gradient algorithm is a modification of the gradient algorithm and is
inspired by the following observations:

• The gradient algorithm slows down since the search directions
become nearly parallel.
• The algorithm speeds up when choosing the successive search

directions L-orthogonal, i.e.

di · (Ldi−1) = 0

for the search directions of iterations i− 1 and i.
• These L-orthogonal search directions can be computed during

the algorithm by a suitable three-term recursion.
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Algorithm III.3.2. (Conjugate gradient algorithm)

(0) Given: a linear system of equations Lu = f with a symmetric,
positive definite matrix L, an initial guess u0 for the solution,
and a tolerance ε > 0.
Sought: an approximate solution of the linear system.

(1) Compute

r0 = f − Lu0, d0 = r0, γ0 = r0 · r0.

Set i = 0.
(2) If

γi < ε2

return ui as approximate solution; stop. Otherwise go to step
3.

(3) Compute

si = Ldi, αi =
γi

di · si
,

ui+1 = ui + αidi, ri+1 = ri − αisi,

γi+1 = ri+1 · ri+1, βi =
γi+1

γi
,

di+1 = ri+1 + βidi.

Increase i by 1 and go to step 2.

The convergence rate of the CG-algorithm equals
√
κ−1√
κ+1
≈ 1−N− 1

d .

Notice:

The CG-algorithm can only be applied to symmetric posi-
tive definite matrices, it breaks down for non-symmetric or
indefinite matrices.

Example III.3.3. Consider the linear system(
1 −3
−3 8

)
x =

(
2
1

)
.

Since detA = −1 the matrix A is not positive definite. If we neverthe-
less apply the conjugate gradient algorithm with starting value x0 = 0
we obtain

r0 =

(
2
1

)
and (r0, Ar0) = 0.

Hence, the conjugate gradient algorithm breaks down.

III.3.3. The preconditioned conjugate gradient algorithm.
The preconditioned conjugate gradient algorithm is based on the fol-
lowing ideas:
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• Instead of the original system

Lu = f

solve the equivalent system

L̂û = f̂

with

L̂ = H−1LH−t

f̂ = H−1f

û = H tu

and an invertible square matrix H.
• Choose the matrix H such that:

– The condition number of L̂ is much smaller than the one
of L.

– Systems of the form

Cv = d

with

C = HH t

are much easier to solve than the original system Lu = f .
• Apply the conjugate gradient algorithm to the new system

L̂û = f̂ and express everything in terms of the original quan-
tities L, f , and u.

Algorithm III.3.4. (Preconditioned conjugate gradient algorithm)

(0) Given: a linear system of equations Lu = f with a symmetric,
positive definite matrix L, an approximation C to L, an initial
guess u0 for the solution, and a tolerance ε > 0.
Sought: an approximate solution of the linear system.

(1) Compute

r0 = f − Lu0,

solve

Cz0 = r0,

and compute

d0 = z0, γ0 = r0 · z0.

Set i = 0.
(2) If γi < ε2 return ui as approximate solution; stop. Otherwise

go to step 3.
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(3) Compute

si = Ldi, αi =
γi

di · si
,

ui+1 = ui + αidi, ri+1 = ri − αisi,
solve

Czi+1 = ri+1,

and compute

γi+1 = ri+1 · zi+1, βi =
γi+1

γi
, di+1 = zi+1 + βidi.

Increase i by 1 and go to step 2.

For the trivial choice C = I, the identity matrix, algorithm III.3.4
reduces to the conjugate gradient algorithm III.3.2. For the non-
realistic choice C = A, algorithm III.3.4 stops after one iteration and
produces the exact solution.

The convergence rate of the PCG-algorithm equals
√
κ̂−1√
κ̂+1

, where κ̂

is the condition number of L̂ and equals the ratio of the largest to the

smallest eigenvalue of L̂.

III.3.4. SSOR-preconditioning. Obviously the efficiency of the
PCG-algorithm hinges on a good choice of the preconditioning matrix

C. It has to satisfy the contradictory goals that L̂ should have a small
condition number and that problems of the form Cz = d should be
easy to solve. A good compromise is the SSOR-preconditioner. It
corresponds to

C =
1

ω(2− ω)
(D − ωU t)D−1(D − ωU)

where D and U denote the diagonal of L and its strictly upper diagonal
part, respectively and where ω ∈ (0, 2) is a relaxation parameter.

The following algorithm realizes the SSOR-preconditioning.

Algorithm III.3.5. (SSOR-preconditioning)

(0) Given: r and a relaxation parameter ω ∈ (0, 2).
Sought: z = C−1r.

(1) Set
z = 0.

(2) For i = 1, . . . , N compute

zi = zi + ωL−1
ii

{
ri −

N∑
j=1

Lijzj

}
.

(3) For i = N, . . . , 1 compute

zi = zi + ωL−1
ii

{
ri −

N∑
j=1

Lijzj

}
.
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The SSOR-preconditioning yields κ̂ ≈ N
1
d . Hence, the PCG algo-

rithm with SSOR-preconditioning has a convergence rate ≈ 1−N− 1
2d .

III.3.5. Comparison. Figure III.3.2 shows the evolution of the
convergence rate in the course of the iteration process for the CG and
SSOR-PCG algorithm for the model problem of section III.1.1 with
mesh-sizes h = 1

64
and h = 1

128
. The mean convergence rates for the

two methods are 0.712 and 0.376 for h = 1
64

and 0.723 and 0.377 for

h = 1
128

. They underline that the SSOR-PCG-algorithm is an efficient
solver for problems of medium size.

Figure III.3.2. Evolution of the convergence rate in
the course of the iteration process for the CG (left) and
SSOR-PCG (right) algorithm for the model problem of
section III.1.1 with mesh-sizes h = 1

64
(top) and h = 1

128

(bottom)

III.4. Multigrid Algorithm

III.4.1. The basic idea. The multigrid algorithm is based on the
following observations:

• Classical iterative methods such as the Gauß-Seidel algorithm
quickly reduce highly oscillatory error components.
• Classical iterative methods such as the Gauß-Seidel algorithm

on the other hand are very poor in reducing slowly oscillatory
error components.
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• Slowly oscillating error components can well be resolved on
coarser meshes with fewer unknowns.

III.4.2. The multigrid algorithm. The multigrid algorithm is
based on a sequence of meshes T0, . . ., TR, which are obtained by suc-
cessive local or global refinement, and associated discrete problems
Lkuk = fk, k = 0, . . ., R, corresponding to a partial differential equa-
tion. The finest mesh TR corresponds to the problem that we actually
want to solve.

The multigrid algorithm has three ingredients:

• a smoothing operator Mk, which should be easy to evaluate and
which at the same time should give a reasonable approximation
to L−1

k ,
• a restriction operator Rk,k−1, which maps functions on a fine

mesh Tk to the next coarser mesh Tk−1,
• a prolongation operator Ik−1,k, which maps functions from a

coarse mesh Tk−1 to the next finer mesh Tk.
For a concrete multigrid algorithm these ingredients must be specified.
This will be done in the next sections. Here, we discuss the general
form of the algorithm and its properties.

Algorithm III.4.1. (MG (k, µ, ν1, ν2, Lk, fk, uk) one iteration of
the multigrid algorithm on mesh Tk)

(0) Given: the level number k of the actual mesh, parameters µ,
ν1, and ν2, the stiffness matrix Lk of the actual discrete prob-
lem, the actual right-hand side fk, and an initial guess uk.
Sought: an improved approximate solution uk.

(1) If k = 0, compute

u0 = L−1
0 f0;

stop. Otherwise go to step 2.
(2) (Pre-smoothing) Perform ν1 steps of the iterative procedure

uk 7→ uk +Mk(fk − Lkuk).
(3) (Coarse grid correction)

(a) Compute

fk−1 = Rk,k−1(fk − Lkuk)

and set

uk−1 = 0.

(b) Perform µ iterations of MG(k − 1, µ, ν1, ν2, Lk−1, fk−1,
uk−1) and denote the result by uk−1.

(c) Update

uk 7→ uk + Ik−1,kuk−1.
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(4) (Post-smoothing) Perform ν2 steps of the iterative procedure

uk 7→ uk +Mk(fk − Lkuk).
The following Java method implements the multigrid method with

µ = 1. Note that the recursion has been resolved.
// one MG cycle

// non-recursive version

public void mgcycle( int lv, SMatrix a ) {

int level = lv;

count[level] = 1;

while( count[level] > 0 ) {

while( level > 1 ) {

smooth( a, 1 ); // presmoothing

a.mgResidue( res, x, bb ); // compute residue

restrict( a ); // restrict

level--;

count[level] = cycle;

}

smooth( a, 0 ); // solve on coarsest grid

count[level]--;

boolean prolongate = true;

while( level < lv && prolongate ) {

level++;

prolongateAndAdd( a ); // prolongate to finer grid

smooth( a, -1 ); // postsmoothing

count[level]--;

if( count[level] > 0 )

prolongate = false;

}

}

} // end of mgcycle

The used variables and methods have the following meaning:

• lv number of actual level, corresponds to k,
• a stiffness matrix on actual level, corresponds to Lk,
• x actual approximate solution, corresponds to uk,
• bb actual right-hand side, corresponds to fk,
• res actual residual, corresponds to fk − Lkuk,
• smooth perform the smoothing,
• mgResidue compute the residual,
• restrict perform the restriction,
• prolongateAndAdd compute the prolongation and add the re-

sult to the current approximation.

III.4.3. Computational cost. The parameter µ determines the
complexity of the algorithm. Popular choices are µ = 1 called V-cycle
and µ = 2 called W-cycle. Figure III.4.1 gives a schematic presentation
of the multigrid algorithm for the case µ = 1 and R = 2 (three meshes).
Here, S denotes smoothing, R restriction, P prolongation, and E exact
solution.

The number of smoothing steps per multigrid iteration, i.e. the
parameters ν1 and ν2, should not be chosen too large. A good choice for
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S−−−→ S−−−→

R
y xP

S−−−→ S−−−→

R
y xP

E−−−→

Figure III.4.1. Schematic presentation of a multigrid
algorithm with V-cycle and three grids. The labels have
the following meaning: S smoothing, R restriction, P
prolongation, E exact solution.

positive definite problems such as the Poisson equation is ν1 = ν2 = 1.
For indefinite problems such as mixed formulations of the equations of
linearized elasticity, a good choice is ν1 = ν2 = 2.

If µ ≤ 2, one can prove that the computational work of one multi-
grid iteration is proportional to the number of unknowns of the actual
discrete problem.

III.4.4. Convergence rate. Under suitable conditions on the
smoothing algorithm, which is determined by the matrix Mk, one can
prove that the convergence rate of the multigrid algorithm is indepen-
dent of the mesh-size, i.e., it does not deteriorate when refining the
mesh. In practice one observes convergence rates of about 0.1 for pos-
itive definite problems such as the Poisson equation and of about 0.3
for indefinite problems such as mixed formulations of the equations of
linearized elasticity.

III.4.5. Smoothing. The symmetric Gauss-Seidel algorithm of
section III.2.4 is the most popular smoothing algorithm for positive
definite problems such as the Poisson equation. It corresponds to the
choice

Mk = (Dk − U t
k)D

−1
k (Dk − Uk),

where Dk and Uk denote the diagonal and the strictly upper diagonal
part of Lk respectively.

III.4.6. Prolongation. Since the partition Tk of level k always is
a refinement of the partition Tk−1 of level k−1, the corresponding finite
element spaces are nested, i.e., finite element functions corresponding
to level k−1 are contained in the finite element space corresponding to
level k. Therefore, the values of a coarse-grid function corresponding
to level k− 1 at the nodal points corresponding to level k are obtained
by evaluating the nodal basis functions corresponding to Tk−1 at the
requested points. This defines the interpolation operator Ik−1,k.
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Figure III.4.2. Partitions of a triangle; expressions of
the form i+ 1 have to be taken modulo 3

Figures III.4.2 and III.4.3 show various partitions of a triangle and
of a square, respectively. The numbers outside the element indicate the
enumeration of the element vertices and edges. Thus, e.g., edge 2 of
the triangle has the vertices 0 and 1 as its endpoints. The numbers +0,
+1 etc. inside the elements indicate the enumeration of the children.
The remaining numbers inside the elements give the enumeration of
the vertices of the children.

Example III.4.2. Consider a piecewise constant approximation,
i.e. S0,−1(T ). The nodal points are the barycentres of the elements.
Every element in Tk−1 is subdivided into several smaller elements in
Tk. The nodal value of a coarse-grid function at the barycentre of a
children in Tk then is its nodal value at the barycentre of the parent
element in Tk.

Example III.4.3. Consider a piecewise linear approximation, i.e.
S1,0(T ). The nodal points are the vertices of the elements. The re-
finement introduces new vertices at the mid-points of some edges of
the parent element and possibly – when using quadrilaterals – at the
barycentre of the parent element. The nodal value at the mid-point of
an edge is the average of the nodal values at the endpoints of the edge.
Thus, e.g., the value at vertex 1 of child +0 is the average of the values
at vertices 0 and 1 of the parent element. Similarly, the nodal value at
the barycentre of the parent element is the average of the nodal values
at the four element vertices.

III.4.7. Restriction. The restriction is computed by expressing
the nodal basis functions corresponding to the coarse partition Tk−1 in
terms of the nodal basis functions corresponding to the fine partition
Tk and inserting this expression in the variational formulation. This
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Figure III.4.3. Partitions of a square; expressions of
the form i+ 1 have to be taken modulo 4

results in a lumping of the right-hand side vector which, in a certain
sense, is the transpose of the interpolation.

Example III.4.4. Consider a piecewise constant approximation,
i.e. S0,−1(T ). The nodal shape function of a parent element is the
sum of the nodal shape functions of the children. Correspondingly, the
components of the right-hind side vector corresponding to the children
are all added and associated with the parent element.

Example III.4.5. Consider a piecewise linear approximation, i.e.
S1,0(T ). The nodal shape function corresponding to a vertex of a parent
triangle takes the value 1 at this vertex, the value 1

2
at the mid-points of
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the two edges sharing the given vertex and the value 0 on the remaining
edges. If we label the current vertex by a and the mid-points of the
two edges emanating form a by m1 and m2, this results in the following
formula for the restriction on a triangle

Rk,k−1ψ(a) = ψ(a) +
1

2
{ψ(m1) + ψ(m2)}.

When considering a quadrilateral, we must take into account that the
nodal shape functions take the value 1

4
at the barycentre b of the parent

quadrilateral. Therefore the restriction on a quadrilateral is given by
the formula

Rk,k−1ψ(a) = ψ(a) +
1

2
{ψ(m1) + ψ(m2)}+

1

4
ψ(b).

An efficient implementation of the prolongation and restrictions
loops through all elements and performs the prolongation or restric-
tion element-wise. This process is similar to the usual element-wise
assembly of the stiffness matrix and the load vector.

III.5. Indefinite Problems

III.5.1. Conjugate gradient type algorithms. The CG- and
the PCG-algorithms III.3.2 and III.3.4 can only be applied to problems
with a symmetric positive definite stiffness matrix, i.e., to scalar linear
elliptic equations without convection and the displacement formulation
of the equations of linearized elasticity. Scalar linear elliptic equations
with convection – though possibly being small – and mixed formula-
tions of the equations of linearized elasticity lead to non-symmetric or
indefinite stiffness matrices. For these problems algorithms III.3.2 and
III.3.4 break down.

There are several possible remedies to this difficulty. An obvious
one is to consider the equivalent normal equations

LtLu = Ltf

which have a symmetric positive matrix. This simple device, however,
cannot be recommended, since passing to the normal equations squares
the condition number and thus doubles the number of iterations. A
much better alternative is the bi-conjugate gradient algorithm. It tries
to solve simultaneously the original problem Lu = f and its adjoint or
conjugate problem Ltv = Ltf .

Algorithm III.5.1. (Stabilized bi-conjugate gradient algorithm
Bi-CG-stab)

(0) Given: a linear system of equations Lx = b, an initial guess
x0 for the solution, and a tolerance ε.
Sought: an approximate solution of the linear system.
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(1) Compute
r0 = b− Lx0,

and set

r0 = r0, v−1 = 0, p−1 = 0 ,

α−1 = 1, ρ−1 = 1, ω−1 = 1 .

Set i = 0.
(2) If ri · ri < ε2 return xi as approximate solution; stop. Other-

wise go to step 3.
(3) Compute

ρi = ri · ri, βi−1 =
ρiαi−1

ρi−1ωi−1

.

If
|βi−1| < ε

there is a possible break-down; stop. Otherwise compute

pi = ri + βi−1{pi−1 − ωi−1vi−1}, vi = Lpi,

αi =
ρi

r0 · vi
.

If
|αi| < ε

there is a possible break-down; stop. Otherwise compute

si = ri − αivi, ti = Lsi,

ωi =
ti · si
ti · ti

, xi+1 = xi + αipi + ωisi,

ri+1 = si − ωiti.
Increase i by 1 and go to step 2.

III.5.2. Multigrid algorithm. The multigrid algorithm III.4.1
can directly be applied to non-symmetric and indefinite problems. One
only has to take special care for an appropriate smoothing method.

For non-symmetric or indefinite problems such as scalar linear ellip-
tic equations with convection or mixed formulations of the equations
of linearized elasticity, the most popular smoothing algorithm is the
squared Jacobi iteration. This is the Jacobi iteration applied to the
squared system LtkLkuk = Ltkfk and corresponds to the choice

Mk = ω−2Ltk

with a suitable damping parameter satisfying ω > 0 and ω = O(h−2
k ).

Alternatively, one may use an incomplete LU-decompostion LU ≈
1
2
(Lk + Ltk) of the symmetric part of Lk. Here, incomplete means that

every fill-in is suppressed in the standard LU-decomposition. This
approach corresponds to the choice Mk = LU .





CHAPTER IV

Linear and Non-Linear Optimization Problems

IV.1. Linear Optimization Problems

IV.1.1. Motivation. Optimization problems play a crucial role
in science and engineering. They consist in finding a minimum or
maximum of an objective function subject to constraints. Since the
maximum of a given function is the negative of the minimum of the
negative function, it suffices to consider minimization problems. Usu-
ally both the objective function and the constraints are non-linear func-
tions. These non-linear problems are solved by some Newton-type pro-
cess which requires the solution of auxiliary linear problems with lin-
ear objective and constraints. Thus the solution of linear optimization
problems is a fundamental tool. Linear optimization problems, how-
ever, are of their own interest since many practical problems already
have this simpler form.

We start with a simple example.

Example IV.1.1. A small company produces two models of shoes.
The net profit is 16 $ and 32 $, resp. per shoe. The required material
is 6dm2 and 15dm2, resp. per shoe; there are 4500dm2 available per
month. The required machine-time is 4h and 5h, resp. per shoe; the
available total time is 2000h per month. The required man-time is 20h
and 10h, resp. per shoe; the available total time is 8000h per month.
The company wants to maximize its profit, this lead to the optimization
problem:

maximize the objective function 16x+ 32y

subject to the constraints

6x+ 15y ≤ 4500, 4x+ 5y ≤ 2000, 20x+ 10y ≤ 8000,

x ≥ 0, y ≥ 0.

Figure IV.1.1 shows the domain of the admissible x and y values in
blue and the level lines of the objective function in red. Since level
lines farther to the top right corner correspond to larger profits we
conclude from figure IV.1.1 that the maximum profit is 10400 $ and
is attained when producing 250 shoes of the first kind and 200 ones of
the second kind.

75
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Figure IV.1.1. Domain of admissible x and y values
(blue) and level lines of the objective function (red) for
example IV.1.1

IV.1.2. General linear optimization problems. We say that
two vectors u and v in Rk satisfy the inequality u ≤ v if and only if
the inequality ui ≤ vi holds for all components of these vectors.

Given two integers 1 ≤ m < n, a vector c ∈ Rn, a matrix A ∈ Rm×n,
vectors b, b ∈ [R ∪ {−∞,∞}]m and vectors `, u ∈ [R ∪ {−∞,∞}]n the
general form of a linear optimization problem is given by:

Find a minimum of the linear function

Rn 3 x 7→ ctx ∈ R
subject to the linear constraints

b ≤ Ax ≤ b, ` ≤ x ≤ u.

Notice that inequalities of the form ui ≤ ∞ or ui ≥ −∞ can be
ignored in practice and are only incorporated into the above problem
to obtain a convenient short-hand form.

Example IV.1.2. Since the maximum of a given function is the
negative of the minimum of the negative function, example IV.1.1 cor-
responds to the following data:

n = 2, m = 3

A =

 6 15
4 5
20 10

 ,

b =

−∞−∞
−∞

 , b =

4500
2000
8000

 ,
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` =

(
0
0

)
, u =

(
∞
∞

)
c =

(
−16
−32

)
.

IV.1.3. Linear optimization problems in standard form.
The so-called standard form of a linear optimization problem is given
by:

Find a minimum of the linear function

Rn 3 x 7→ ctx ∈ R
subject to the linear constraints

Ax = b, x ≥ 0.

The set

P = {x ∈ Rn : Ax = b , x ≥ 0}

is called the set of admissible vectors or admissible set in short associ-
ated with the optimization problem.

Example IV.1.3. Example IV.1.1 corresponds to the following data:

n = 5, m = 3,

A =

 6 15 1 0 0
4 5 0 1 0
20 10 0 0 1

 ,

b =

4500
2000
8000

 , c =


−16
−32

0
0
0

 .

When comparing examples IV.1.2 and IV.1.3 we observe that the num-
ber of unknowns has increased. This is due to the introduction of slack
variables as described in section IV.1.5 below.

IV.1.4. Linear optimization problems in simplex form. The
so-called simplex form of a linear optimization problem is particularly
convenient for the simplex algorithm described below. It takes the
form:

Find a maximum of the special linear function

R 3 z 7→ z ∈ R
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subject to the constraints

Ax = b, ctx+ z = 0, x ≥ 0.

Setting

Â =

(
A 0
ct 1

)
, x̂ =

(
x
z

)
, b̂ =

(
b
0

)
the above constraints can be written in the short-hand form

Âx̂ = b̂, x ≥ 0.

Example IV.1.4. Example IV.1.1 corresponds to the data

Â =


6 15 1 0 0 0
4 5 0 1 0 0
20 10 0 0 1 0
−16 −32 0 0 0 1

 , b̂ =


4500
2000
8000

0

 .

IV.1.5. Equivalence of linear optimization problems. The
different forms of optimization problems described above are all equiv-
alent in the sense that each problem can be transformed into one of the
other forms by introducing suitable new variables or writing equalities
as inequalities. In particular observe that:

• The function x 7→ ctx is minimal, if and only if the function
x 7→ (−c)tx is maximal. Hence, it is sufficient to consider
minimization problems.
• The equality y = b is equivalent to the two inequalities y ≤ b

and y ≥ b.
• An inequality y ≤ b is equivalent to equality y+z = b plus the

inequality z ≥ 0. The vector z is called slack vector or slack
variable.

IV.1.6. Properties of linear optimization problems. Linear
optimization problems have the following properties:

The set P of admissible vectors is a simplex.
If the set P is empty, the optimization problem has no so-
lution.
If the function x 7→ ctx is not bounded from below on P ,
the optimization problem has no solution.
If the set P is not empty and bounded, the optimization
problem admits a solution.
The solution may not be unique.
Every solution is attained at a vertex of the set P .



IV.1. LINEAR OPTIMIZATION PROBLEMS 79

IV.1.7. Basic idea of the simplex algorithm. The simplex al-
gorithm is the most commonly used algorithm for solving linear opti-
mization problems. Its basic ideas can be described as follows:

Given a vertex of P find a neighbouring vertex with a
smaller value for ctx.
If such a neighbour does not exist, the current vertex solves
the optimization problem.
A vector x ∈ Rn is a vertex of P , if it has m non-negative
components and n − m vanishing components and solves
the system Ax = b.
When freezing n −m components of x to zero, the system
Ax = b reduces to a linear system of m equations and m un-
knowns involving only those columns of A which correspond
to the unfrozen components of x.

In order to make these ideas operative we will discuss in the follow-
ing sections how to solve the following tasks:

• Find a vertex of P .
• Decide whether a given vertex is optimal.
• Find a neighbouring vertex with a smaller value of ctx.

IV.1.8. Finding a vertex of the admissible set. Vertices of
the admissible set P correspond to sets J = {j1, . . . , jm} ⊂ {1, . . . , n}
of m indices such that the corresponding columns of the matrix A are
linearly independent. Given such a set we proceed as follows:

Set xk = 0 for all k 6∈ J .
Denote by AJ the m×m matrix which is obtained by dis-
carding all columns of A corresponding to indices not con-
tained in J .
Solve the linear system of equations AJy = b.
Set xji = yi for i = 1, . . . ,m.

If xj ≥ 0 for all j ∈ J , x is a vertex of P . In this case we set:

A = A−1
J A, b = A−1

J b

c̃i = cji for 1 ≤ i ≤ m, ct = −c̃tA+ ct,

β = −ctx.
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Example IV.1.5. For example IV.1.3 and J = {3, 4, 1} we obtain

x =


400
0

2100
400
0

 , A =


0 12 1 0 − 6

20

0 3 0 1 − 4
20

1 1
2

0 0 − 1
20

 ,

b =

2100
400
400

 , c =


0
−24

0
0
16
20

 ,

β = 6400.

IV.1.9. Checking for optimality and solvability. Suppose
that x is a vertex of the admissible set P . Then we have:

If ck ≥ 0 for all k 6∈ J , x solves the optimization problem.
If, for all s 6∈ J with cs < 0, all entries in the corresponding
columns of A are non-positive, the optimization problem
has no solution.

Example IV.1.6. We continue with example IV.1.5. Since c2 =
−24 < 0 and 2 6∈ J , x does not solve the optimization problem. Since
the entries in the second column of A are positive, the optimization
problem admits a solution and we must find a better vertex.

IV.1.10. Finding a better neighbour. Suppose that x is a ver-
tex of the admissible set P which is not optimal and which guarantees
the solvability of the optimization problem. Then we determine a new
vertex with a better value of ctx as follows:

Choose an index s 6∈ J such that cs < 0 and such that a,
the s-th column of A, has a positive entry.
Find an index r ∈ {1, . . . ,m} such that ar > 0 and such

that br
ar

is minimal among all fractions
bj
aj

with positive de-

nominator.
Remove the r-th entry from the index set J and put s into
J .
Update x, A, b, β and c.

Notice that the above update can be performed by dividing the r-
th row of a suitable matrix by ar and subtracting the result from the
other rows of that matrix.
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Example IV.1.7. We continue with examples IV.1.5 and IV.1.6
and choose s = 2. Then we have

b1

a1

=
2100

12
= 175,

b2

a2

=
400

3
,

b3

a3

=
400

1
2

= 800

and conclude that r = 2. Hence, the new set J is {3, 2, 1} and we
obtain the updated values

x =



1000
3

400
3

500
0
0

 , A =


0 0 1 −4 1

2

0 1 0 1
3
− 2

30

1 0 0 −1
6

5
60

 ,

b =

500
400
3

1000
3

 , c =


0
0
0
8
−16

20

 ,

β = 9600.

Since c5 = −16
20
< 0 and 5 6∈ J , x is not the solution of the optimization

problem. Since the fifth column of A contains a positive entry. The
optimization problem admits a solution and we must find a better
vertex. We now have

b1

a1

=
500

1
2

= 1000,
b3

a3

=
1000

3
5
60

= 4000.

Hence, we have s = 5 and r = 1 and obtain the new set J = {5, 2, 1}.
We obtain the updated values

x =


250
200
0
0

1000

 , A =


0 0 2 −8 1

0 1 4
30

1
5

0

1 0 −1
6

1
2

0

 ,

b =

1000
200
250

 , c =


0
0
8
5

8
5

0

 ,

β = 10400.

Since now all values cs with s 6∈ J are positive, this is the solution of
the optimization problem, β = 10400 is the maximal profit.
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IV.1.11. Modifications of the simplex algorithm. The sim-
plex algorithm may run into a cycle since different index sets J may
lead to the same value of ctx. This cycling can be avoided by introduc-
ing a suitable ordering of the vectors x.

The first index set J needed to start the simplex algorithm can be
determined by applying the simplex algorithm to a suitable auxiliary
optimization problem which has unit vectors as vertices.

IV.1.12. Complexity of the simplex algorithm. Every step
of the simplex algorithm requires O((m + 1)(n + 1 −m)) operations.
Since the admissible set has at most

(
n
m

)
vertices, the algorithm stops

after at most
(
n
m

)
iterations with a solution or the information that

the optimization problem has no solution. Thus, in the worst case the

overall complexity of the simplex algorithm is O(2
n
2

(
n
2

)2
) operations.

Notice, that this is an exponential complexity. Klee and Minty have
constructed optimization problems where this pessimistic number of
iterations really is attained.

IV.1.13. Dual problems. Every vertex of the admissible set P
yields an upper bound for the function ctx. To obtain a lower bound
for ctx one has to consider the so-called dual optimization problem:

Find a maximum of the function

Rm 3 y 7→ bty ∈ R
subject to the constraint

Aty ≤ c.

Example IV.1.8. The dual problem associated with example IV.1.1
consists in finding the maximum of the function

4500y1 + 2000y2 + 8000y3

subject to the constraints

6y1 + 4y2 + 20y3 ≤ −16

15y1 + 5y2 + 10y3 ≤ −32

y1 ≤ 0

y2 ≤ 0

y3 ≤ 0.

One can prove that the minimal value of ctx and the maximal value
of bty are identical. Therefore, every vertex of the admissible set of
the dual problem yields a lower bound for bty and thus for the original
function ctx.

The dual problem can be solved with a variant of the simplex algo-
rithm which works with the original data A, b and c.
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IV.1.14. Idea of interior point methods. The simplex algo-
rithm sweeps through the boundary of the admissible set P . Interior
point methods instead sweep through the interior of P and aim at a
simultaneous solution of both the original and the dual optimization
problem. To this end both problems are reformulated as a system of
algebraic equations to which Newton’s method is applied.

Interior point methods yield an approximation to the solutions
of both optimization problems with an error ε with a complexity of
O(
√
n ln(n

ε
)) operations. Notice that this is an algebraic complexity.

After stopping the interior point method, the obtained approxima-
tion for the original optimization problem is projected to a close-by
vertex of P and a few steps of the simplex algorithm then yield the
exact solution.

IV.1.15. Basic form of interior point methods. Given a vec-
tor x denote by X the diagonal matrix which has the components of x
as its diagonal entries.

We consider the optimization problem

minimize ctx subject to the constraints Ax = b, x ≥ 0

and the corresponding dual problem

maximize bty subject to the constraints Aty + s = c, s ≥ 0.

Then the vector (x∗, y∗, s∗) solves both problems if and only if

Ψ0(x∗, y∗, s∗) = 0

where

Ψ0(x, y, s) =

 Ax− b
Aty + s− c

Xs


This set of non-linear equations is then solved by applying Newton’s
method.

Example IV.1.9. For example IV.1.1 the function Ψ0 is defined on
R5 × R3 × R5 and is given by

Ψ0(x, y, s) =



6x1+15x2+x3−4500
4x1+5x2+x4−2000

20x1+10x2+x5−8000
6y1+4y2+20y3+s1+16
15y1+5y2+10y3+s2+32

y1+s3
y2+s4
y3+s5
x1s1
x2s2
x3s3
x4s4
x5s5


.
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IV.1.16. Improved form of interior point methods. The in-
terior point method in its primitive form as described above suffers
from the difficulty that the derivative DΨ0(x, y, s) becomes nearly sin-
gular when (x, y, s) approaches the solution (x∗, y∗, s∗) so that Newton’s
method tends to fail when approaching (x∗, y∗, s∗). To overcome this
difficulty one applies Newton’s method to

Ψµ(x, y, s) =


Ax− b

Aty + s− c

Xs− µ
(

1
...
1

)


and lets µ tend to 0 in a judicious way.

IV.2. Unconstrained Non-Linear Optimization Problems

IV.2.1. Problem setting. Unconstrained non-linear optimization
problems often appear as auxiliary problems in solving constrained non-
linear optimization problems (see section IV.3 below). Still, they are
also of their own interest.

To describe the general form of an unconstrained non-linear opti-
mization problem, consider a non-empty set D in Rn and a function
f : D → R. Then we are looking for a minimizer of f , i.e. a point
x ∈ D with

f(x) ≤ f(y) for all y ∈ D.

or in short-hand notation

min{f(x) : x ∈ D}.

Ideally, we are looking for a global minimum but in most cases we
have to be satisfied with a local minimum (see figure IV.2.1). The
methods of this and the following section usually only yield local min-
ima. Methods for finding global minima will be discussed in section
IV.4.

•

•

Figure IV.2.1. Local (blue) versus global (red) minima
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IV.2.2. Optimality conditions. For differentiable functions f
there are the following necessary and sufficient optimality conditions
for local minima:

If f is differentiable, every local minimum is a critical point,
i.e. it satisfies Df(x) = 0.
If f is twice differentiable, x is a critical point and the Hes-
sian D2f is positive definite, then x is a local minimum.

IV.2.3. Newton’s method. The above optimality conditions
suggest to apply Newton’s method to Df in order to find a local min-
imum. This idea gives rise to the following algorithm.

Algorithm IV.2.1. (Newton’s method for finding a local mini-
mum)

(0) Given: an initial guess x0 and a tolerance ε.
Set n = 0.

(1) If

‖Df(xn)‖ ≤ ε,

go to step (3).
(2) Solve the linear system

D2f(xn)zn = −Df(xn)

set

xn+1 = xn + zn,

increase n by 1 and got to step (1).
(3) Check whether D2f(xn) is positive definite.

This naive approach has the following drawbacks:

• Newton’s method at best yields a critical point, its result may
be a maximum or a saddle-point.
• The algorithm requires second order derivatives.
• Checking the positive definiteness of a matrix is expensive.
• A critical point may be a local minimum although D2f is only

positive semi-definite, e.g. f(x) = x4.

In what follows we therefore strive at attaining the following goals:

• Develop algorithms which at least find a local minimum.
• Develop algorithms which need as few derivatives as possible.
• Embed Newton’s method into a larger class of algorithms to

gain more flexibility and insight.
• In view of future applications, develop efficient algorithms for

line search, i.e. for the minimization of functions of one vari-
able.
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IV.2.4. One-dimensional minimization by bisection. Algo-
rithm IV.2.2 below is based on the following ideas:

• Assume that the function f : [a, b]→ R is continuous and that
there is a point x ∈ (a, b) with

f(x) ≤ min{f(a), f(b)}.
• Then f admits a local minimum η ∈ (a, b) and f ′(η) = 0 if f

is differentiable (see figure IV.2.2).
• Determine the mid-point u of the smaller one of the two in-

tervals [a, x] and [x, b] and suitably choose three points out of
{a, x, u, b}.

•
•

•

Figure IV.2.2. Situation of algorithm IV.2.2

Algorithm IV.2.2. (One-dimensional minimization by bisection)

(0) Given: three points a0 < x0 < b0 with

f(x0) ≤ min{f(a0), f(b0}
and a tolerance ε.
Set k = 0.

(1) Compute

uk =

{
1
2
(bk + xk) if xk ≤ 1

2
(ak + bk),

1
2
(ak + xk) if xk >

1
2
(ak + bk).

If

f(xk) ≤ f(uk),

set

xk+1 = xk

and

ak+1 =

{
ak if xk ≤ 1

2
(ak + bk),

uk if xk >
1
2
(ak + bk),

bk+1 =

{
uk if xk ≤ 1

2
(ak + bk),

bk if xk >
1
2
(ak + bk).

If

f(uk) < f(xk),
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set
xk+1 = uk

and

ak+1 =

{
xk if xk ≤ 1

2
(ak + bk),

ak if xk >
1
2
(ak + bk),

bk+1 =

{
bk if xk ≤ 1

2
(ak + bk),

xk if xk >
1
2
(ak + bk).

(2) Increase k by 1. If bk − ak < ε stop. Otherwise return to step
(1).

Algorithm IV.2.2 has the following properties:

ak < xk < bk for all k.
f(xk) ≤ min{f(ak), f(bk)} for all k.
bk − ak ≤ (3

4
)k−1(b0 − a0) for all k.

For every prescribed tolerance, the algorithm yields an in-
terval with length less than the tolerance which contains a
local minimum of f .
If f is differentiable, the common limit point η of the se-
quences ak, bk and xk is a critical point of f , i.e. f ′(η) = 0.
If f is twice differentiable f ′′(η) ≥ 0.

IV.2.5. General descent algorithm. We now embed Newton’s
method into a broader class of algorithms for the minimization of func-
tions.

Algorithm IV.2.3. (General descent algorithm)

(0) Given: parameters 0 < c1 ≤ c2 < 1, 0 < γ ≤ 1 and an initial
guess x0 ∈ Rn.
Set k = 0.

(1) If
Df(xk) = 0

stop, otherwise proceed with step (2).
(2) Choose a search direction sk ∈ Rn with

‖sk‖ = 1 and −Df(xk)sk ≥ γ‖Df(xk)‖.
(3) Choose a step size λk > 0 such that

f(xk + λksk) ≤ f(xk) + λkc1Df(xk)sk

and
Df(xk + λksk)sk ≥ c2Df(xk)sk.

(4) Set
xk+1 = xk + λksk,

increase k by 1 and return to step (1).
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Algorithm IV.2.3 has the following properties:

The sequence f(xk) is monotonically decreasing.
The sequence xk admits at least one accumulation point.
Every accumulation point of the sequence xk is a critical
point of f .

In order to make algorithm IV.2.3 operative we will next present
feasible choices of the search direction and of the step size.

IV.2.6. Choice of the search direction. Smaller values of γ
give more flexibility in the choice of the search direction. In the limiting
case γ → 0, the only condition is that the search direction must not be
orthogonal to the negative gradient −Df(xk).

The choice

sk = − 1

‖Df(xk)‖
Df(xk)

is feasible for all values of γ and corresponds to Newton’s method with
damping.

When applied to

f(x) =
1

2
xtAx− btx

with a symmetric positive definite matrix A, the general descent al-
gorithm with a suitable choice of search directions covers the gradient
algorithm III.3.1 and (preconditioned) conjugate gradient algorithms
III.3.2 and III.3.4.

IV.2.7. Choice of the step size. There are two major possibil-
ities for determining the step size:

• Exact line search: The step size λk is chosen such that it min-
imizes the function t 7→ f(xk + tsk) on the positive real line.
• Armijo line search: Fix a constant σ > 0, determine λ∗k,0 such

that

λ∗k,0 ≥ σ‖Df(xk)‖
and determine the smallest integer jk satisfying

f(xk + 2−jkλ∗k,0sk) ≤ f(xk) + 2−jkc1Df(xk)sk.

Set

λk = 2−jkλ∗k,0

or

λk = 2−i
∗
λ∗k,0

with

f(xk + 2−i
∗
λ∗k,0sk) = min

i
f(xk + 2−iλ∗k,0sk).



IV.3. CONSTRAINED NON-LINEAR OPTIMIZATION PROBLEMS 89

IV.3. Constrained Non-Linear Optimization Problems

IV.3.1. Convex sets and functions. Convex optimization prob-
lems are a particularly important subclass of non-linear optimization
problems. Before formulating these problems and corresponding opti-
mality conditions, we recall the definitions of convex sets and of convex
and affine functions.

A set C ⊂ Rn is called convex, if for all x, y ∈ C and all λ ∈ [0, 1]
the point λx+ (1− λ)y is contained in C too (see figure IV.3.1).

Figure IV.3.1. Examples of convex (left) and non-
convex (right) sets

A function f : C → Rn on a convex set is called convex, if for all
x, y ∈ C and all λ ∈ [0, 1] the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

is valid (see figure IV.3.2). A function is convex if and only if the set
{(x, z) ∈ C × R : z ≥ f(x)} is convex.

A function g : C → R on a convex set C ⊂ Rn is called affine if it
takes the form g(x) = a · x+ b with a given vector a ∈ Rn and a given
number b ∈ R.

Figure IV.3.2. Examples of convex (left) and non-
convex (right) functions

IV.3.2. Convex optimization problems. Suppose that we are
given two integers m ≥ 1 and p with 0 ≤ p ≤ m, a convex set C ⊂ Rn,
a convex function f : C → R, convex functions f1, . . . , fp : C →
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R, and affine functions fp+1, . . . , fm : C → R. A convex constrained
optimization problem then takes the form:

Find a minimum of f under the constraints

fi(x) ≤ 0 for 1 ≤ i ≤ p,

fj(x) = 0 for p+ 1 ≤ j ≤ m.

Notice that the particular cases p = 0, no inequality constraints,
and p = m, no equality constraints, are explicitly admitted.

IV.3.3. Optimality conditions for convex constrained opti-
mization problems. Assume that C = Rn and that the functions f
and f1, . . . , fm are differentiable. Then x∗ ∈ Rn solves the above convex
constrained optimization problem, if and only if there is a y∗ ∈ Rm such
that (x∗, y∗) satisfies the following Karush-Kuhn-Tucker conditions or
KKT conditions in short:

Df(x∗) +
m∑
i=1

y∗iDfi(x
∗) = 0,

fi(x
∗)y∗i = 0, 1 ≤ i ≤ p,

fi(x
∗) ≤ 0, 1 ≤ i ≤ p,

y∗i ≥ 0, 1 ≤ i ≤ p,

fj(x
∗) = 0, p+ 1 ≤ j ≤ m.

IV.3.4. Lagrange function. For abbreviation set

D = {y ∈ Rm : yi ≥ 0 for 1 ≤ i ≤ p}.

Then the function L : C ×D → R with

L(x, y) = f(x) +
m∑
j=1

yjfj(x)

is called the Lagrange function of the convex constrained optimization
problem of section IV.3.2.

With the help of the Lagrange function, the above optimality con-
ditions can be formulated in the following compact form:

A vector x∗ ∈ C is a solution of the convex constrained
optimization problem if and only if there is y∗ ∈ D such
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that (x∗, y∗) is a saddle point of L, i.e.

L(x, y∗) ≥ L(x∗, y∗) ≥ L(x∗, y)

for all (x, y) ∈ C ×D.

IV.3.5. General non-linear optimization problems. Suppose
that we are given two integers m ≥ 1 and p with 0 ≤ p ≤ m,
a differentiable function f : Rn → R and differentiable functions
f1, . . . , fm : Rn → R. A non-linear constrained optimization problem
then takes the form:

Find a minimum of f under the constraints

fi(x) ≤ 0 for 1 ≤ i ≤ p,

fj(x) = 0 for p+ 1 ≤ j ≤ m.

Notice that again the particular cases p = 0, no inequality con-
straints, and p = m, no equality constraints, are explicitly admitted.

IV.3.6. Tangent cones. Sharp optimality conditions for general
non-linear constrained optimization problems are based on the concept
of tangent cones which generalize the concept of a tangent space.

The tangent cone T (S;x) of a set S ⊂ Rn at a point x ∈ S
is the collection of all vectors v ∈ Rn for which there is a
sequence λk of non-negative real numbers and a sequence
xk of points in S such that xk → x and λk(xk − x)→ v.

Figure IV.3.3 shows two examples of tangent cones. Note that
T (S;x) = Rn if x is an interior point of S and that T (S;x) is the
classical tangent space if x is a boundary point of S and if the boundary
of S is smooth at x.

IV.3.7. Cone condition. The sharpest optimality condition for
a general non-linear constrained optimization problem is the following
cone condition:

Assume that x∗ ∈ S is a local minimum of f and that
f is differentiable at x∗, then Df(x∗)v ≥ 0 holds for all
v ∈ T (S;x).

The cone condition is of limited practical use since in general the
computation of the tangent cone is too expensive. Hence it is replaced
by weaker more practical conditions obtained by some sort of lineariza-
tion.
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• •

Figure IV.3.3. Tangent cone T (S;x) (red) for a set S
(blue) at a point x (magenta)

IV.3.8. Optimality conditions for non-linear constrained
optimization problems. Assume that x∗ is a local minimum of f , the
gradients Dfp+1(x∗), . . . , Dfm(x∗) are linearly independent and there
is a vector s ∈ Rn with Dfj(x

∗)s = 0 for all p + 1 ≤ j ≤ m and
Dfi(x

∗)s < 0 for all those i with 1 ≤ i ≤ m and fi(x
∗) = 0. Then

there is a vector y∗ ∈ Rm such that (x∗, y∗) is a saddle point of the
Lagrange function

L(x, y) = f(x) +
m∑
j=1

yjfj(x)

and satisfies the following Karush-Kuhn-Tucker conditions or KKT
conditions in short:

Df(x∗) +
m∑
i=1

y∗iDfi(x
∗) = 0,

fi(x
∗)y∗i = 0, 1 ≤ i ≤ p,

fi(x
∗) ≤ 0, 1 ≤ i ≤ p,

y∗i ≥ 0, 1 ≤ i ≤ p,

fj(x
∗) = 0, p+ 1 ≤ j ≤ m.

IV.3.9. Overview of algorithms for non-linear constrained
optimization problems. The algorithms of sections IV.3.10 – IV.3.12
below aim at satisfying the KKT conditions of sections IV.3.3 and
IV.3.8. The algorithm of section IV.3.13 on the other hand is com-
pletely different. In contrast to the other algorithms it in particular
does not require any derivatives.
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IV.3.10. Projection methods. Projection methods can be re-
garded as variants of the general descent algorithm IV.2.3 combined
with an orthogonal projection onto the set S of admissible vectors sat-
isfying the constraints.

For every convex set S ⊂ Rn and every point x ∈ Rn there is a
unique point PS(x) ∈ S, its projection, which is closest to x, i.e.

‖x− PS(x)‖ ≤ ‖x− y‖
for all y ∈ S (see figure IV.3.4).

• ×

Figure IV.3.4. Projection PS(x) (red) of a point x
(blue) onto a convex set S (black)

The projection PS has the following properties

(PS(y)− PS(x))t(y − x) ≥ ‖PS(y)− PS(x)‖2

‖PS(y)− PS(x)‖ ≤ ‖x− y‖
for all x, y ∈ Rn.

Algorithm IV.3.1. (Projection method)

(0) Given: a convex set S ⊂ Rn, an initial guess x0 ∈ S and
parameters β, µ ∈ (0, 1) and γ > 0.
Set k = 0.

(1) Compute Df(xk).
(2) If

Df(xk)v ≥ 0 for all v ∈ T (S;xk)

stop, otherwise proceed with step (3).
(3) Find the smallest integer mk such that

zk = PS(xk − βmkγDf(xk))

satisfies

f(zk) ≤ f(xk) + µDf(xk)(zk − xk).
Set

xk+1 = zk,

increase k by 1 and return to step (1).
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Algorithm IV.3.1 has the following properties:

It is a damped Newton’s method combined with a projec-
tion onto the set S.
Its practicability hinges on the computability of the tangent
cones and the ability to check the cone condition Df(xk)v ≥
0.
Every accumulation point x∗ of the generated sequence xk
satisfies the cone conditionDf(x∗)v ≥ 0 for all v ∈ T (S;x∗).

IV.3.11. Penalty methods. The basic ideas of penalty methods
can be summarized as follows:

• ‘Penalize’ the constraints.
• Solve unconstrained optimization problems incorporating the

‘penalization’.
• If the penalty vanishes for the solution of the auxiliary un-

constrained problem we have found a solution of the original
constrained problem.
• Successively increase the penalty and hope that the solutions

of the auxiliary problems converge to a solution of the original
constrained problem.
• Either all constraints are penalized by a penalty function or

only inequality constraints are penalized by a barrier function.

A function ` : Rn → R is called a penalty function for the
non-empty set S ⊂ Rn if

`(x) > 0 for all x 6∈ S
and

`(x) = 0 for all x ∈ S.

Example IV.3.2. The function

`(x) =

p∑
i=1

(fi(x)+)α +
m∑

j=p+1

|fj(x)|α

with α > 0 and
z+ = max{z, 0}

is a penalty function for the set

S = {x ∈ Rn : fi(x) ≤ 0, 1 ≤ i ≤ p, fj(x) = 0, p+ 1 ≤ j ≤ m}
associated with a general non-linear optimization problem.

Algorithm IV.3.3. (Penalty algorithm with general penalty func-
tion)
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(0) Given: initial guesses x0 ∈ Rn and r0 > 0, a continuous func-
tion f : Rn → R, a non-empty closed set S ⊂ Rn and a penalty
function ` for S.
Set k = 0.

(1) Compute an approximation xk for a local minimum of

p(x, rk) = f(x) + rk`(x).

(2) If xk ∈ S stop. Otherwise set

rk+1 = 2rk,

increase k by 1 and return to step (1).

Algorithm IV.3.3 has the following properties:

For sufficiently large r the function p(x, r) admits a local
minimum.
The sequence xk converges to a local minimum x∗ ∈ S of
the function f .

In order to take into account the particular structure of the non-
linear constrained optimization problem, we introduce the so-called
augmented Lagrange function associated with this problem:

Λ(x, y, r) = f(x) +

p∑
i=1

1

2
ri

[(
fi(x) +

yi
ri

)+
]2

+
m∑

j=p+1

1

2
rj

[
fj(x) +

yj
rj

]2

−
m∑
k=1

1

2

y2
k

rk
.

Using this function algorithm IV.3.3 takes the following particular
form:

Algorithm IV.3.4. (Penalty algorithm with augmented Lagrange
function)

(0) Given: a vector r ∈ (R∗+)m and an initial guess y0 ∈ (R+)p ×
Rm−p.
Set k = 0.

(1) Determine a local minimum xk of the augmented Lagrange
function x 7→ Λ(x, yk, r).

(2) If (xk, yk) satisfies the Karush-Kuhn-Tucker conditions IV.3.8
stop. Otherwise proceed with step (3).
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(3) Set

yk+1,i = (rifi(xk) + yk,i)
+ for 1 ≤ i ≤ p,

yk+1,j = rjfj(xk) + yk,j for p+ 1 ≤ j ≤ m.

Increase k by 1 and return to step (1).

Algorithm IV.3.4 has the following properties:

If r = (ρ, . . . , ρ)t with a sufficiently large ρ, the algorithm
converges to a saddle point of the Lagrange function L.
The convergence is linear.
The convergence speed improves with increasing ρ.

A function B : R→ R∪ {∞} is called barrier function if it has the
following properties:

B(t) =∞ for all t ≤ 0.
B is monotonically decreasing.
B is convex.
B is continuously differentiable on R∗+.
lim
t→0+

B(t) =∞.

lim
t→0+

B′(t) = −∞.

Example IV.3.5. The functions

B(t) =

{
− ln t for t > 0

∞ for t ≤ 0

B(t) =

{
t−α for t > 0

∞ for t ≤ 0

with α > 0 are barrier functions.

Algorithm IV.3.6. (Barrier algorithm for convex optimization)

(0) Given: convex functions f and f1, . . ., fp and affine functions
fp+1, . . ., fm, a barrier function B and an initial guess x0 ∈ Rn

with fj(x0) = 0 for p+ 1 ≤ j ≤ m.
Choose µ0 > 0 and d0 ∈ (R∗+)p with fi(x0) < di,0 for 1 ≤ i ≤ p.
Set k = 0.

(1) Choose λk ∈ (0, 1) with fi(xk) < λkdi,k for 1 ≤ i ≤ p. Set

µk+1 = λkµk, dk+1 = λkdk.

(2) Starting with xk apply a line search to the problem

min
x

{
f(x) + µ

p∑
i=1

B(di − fi(x)) : fj(x) = 0 , p+ 1 ≤ j ≤ m
}
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with result xk+1. Increase k by 1 and return to step (1).

IV.3.12. SQP method. The basic idea of the sequential qua-
dratic programming method or SQP method in short can be described
as follows:

• Replace the Lagrange Function L by a second order approxi-
mation.
• Linearize the constraints.
• Successively solve constrained optimization problems with a

quadratic object function and affine constraints.

This leads to the following algorithm.

Algorithm IV.3.7. (SQP algorithm)

(0) Given: initial guesses x0 ∈ Rn and y0 ∈ (R∗+)p × Rm−p.
Compute

B0 = D2f(x0) +
m∑
i=1

y0,iD
2fi(x0)

and set k = 0.
(1) Find a solution (s, y) for the Karush-Kuhn-Tucker conditions

of the auxiliary problem

min
s

{
Df(xk)s+

1

2
stBks :

fi(xk) +Dfi(xk)s ≤ 0, 1 ≤ i ≤ p,

fj(xk) +Dfj(xk)s = 0, p+ 1 ≤ j ≤ m
}
.

(2) Set

xk+1 = xk + s, yk+1 = yk + y.

(3) Compute

Bk+1 = D2f(xk+1) +
m∑
i=1

yk+1,iD
2fi(xk+1),

increase k by 1 and return to step (1).

Algorithm IV.3.7 has the following properties:

It is locally quadratically convergent.
If the Bk are replaced by approximations in a suitable quasi
Newton type, the convergence still is linear.
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IV.3.13. The simplex method of Nelder and Mead. The ba-
sic idea of the simplex method of Nelder and Mead can be described as
follows:

• Minimize a function f over Rn.
• Take into account eventual constraints by setting f(x) =∞ if
x violates the constraints.
• Choose n+ 1 points x0, . . . , xn generating Rn.
• Sort these points by increasing size of f .
• Reflect xn at the barycentre of x0, . . . , xn−1 and eventually

expand or contract the image x′ depending on the values f(x0),
. . ., f(xn) and f(x′).
• Replace an appropriate member of the list x0, . . ., xn by x′.

Note that the label ‘simplex’ for this algorithm does not imply any rela-
tion to the simplex algorithm for linear optimization problems. Further
notice that n+ 1 points x0, . . . , xn generate Rn if and only if the n vec-
tors x1 − x0, . . . , xn − x0 are linearly independent.

Algorithm IV.3.8. (Simplex method of Nelder and Mead)

(0) Given: n + 1 points x0, . . . , xn ∈ Rn generating Rn sorted by
increasing size of f and a tolerance ε.

(1) Compute the mean value

f =
1

n+ 1

n∑
i=0

f(xi)

and the standard deviation

d =
1

n+ 1

n∑
i=0

(
f(xi)− f

)2
.

If d ≤ ε stop.
(2) Compute

c =
1

n

n−1∑
i=0

xi, xr = 2c− xn

and f(xr).
(3) Distinguish the following cases:

(a) If f(x0) ≤ f(xr) ≤ f(xn−1)
replace xn by xr (reflection).

(b) If f(xr) < f(x0)
compute

xe = 2xr − c
and f(xe).
If f(xe) < f(xr)
replace xr by xe.
Replace xn by xr (expansion).
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(c) If f(xr) > f(xn−1)
compute

xc =

{
c+ 1

2
(xn − c) if f(xr) ≥ f(xn)

c+ 1
2
(xr − c) if f(xr) < f(xn)

and f(xc).
If f(xc) < min{f(xn), f(xr)}
replace xn by xc,
otherwise compute

xi =
1

2
(x0 + xi)

for 1 ≤ i ≤ n (contraction).
(4) Re-sort x0, . . . , xn by increasing size of f and return to step

(1).

Algorithm IV.3.8 has the following properties:

It is very cheap since it does not require the computation
of any derivative.
It is very slow.
It is very robust.
It may yield suitable initial guesses for the algorithms pre-
sented previously.
There is no convergence proof.

IV.4. Global Optimization Problems

All algorithms considered so far at best yield a local minimum. In
some situations, however, we must find a global minimum or even all of
them. Note, that this difficulty only arises for non-convex optimization
problems since a convex function has at most one local minimum which
is the global minimum.

IV.4.1. Structure of global optimization algorithms. All al-
gorithms for global optimization have the following basic structures in
common:

• Try several candidates for a global minimum.
• Eventually replace candidates by the result of a local search,

i.e. apply one of the previously described algorithms with a
given candidate as initial guess.
• Eventually iterate on lists of candidates.
• Eventually perturb candidates.

The algorithms differ by

• the initial choice of candidates,
• the method for updating the list of candidates,
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• the form of perturbation,
• the amount of randomness,
• the work invested in local searches.

In what follows we will shortly address these topics.

IV.4.2. Initial choice of candidates. There two variants for
choosing initial candidates: deterministic and random.

In the deterministic variant one covers the domain S ⊂ Rn of ad-
missible points x by a uniform mesh (see the left part of figure IV.4.1).

In the random variant one covers the domain S ⊂ Rn of admissible
points x by a random mesh according to a chosen probability measure,
e.g. uniform distribution (see the right part of figure IV.4.1).

In both approaches one eventually constructs several lists of candi-
dates by iteratively reducing the mesh size.

•

•

•

•

•
•

Figure IV.4.1. Deterministic (left) and random (right)
mesh for an admissible domain S

IV.4.3. Updating lists of candidates. There are several possi-
bilities for updating lists of candidates:

• Replace candidates by the result of a local search using one of
the algorithms described in section IV.3.
• Replace candidates by a perturbation as described below.
• With a small probability also accept candidates with a larger

value of f . In the method of simulated annealing, e.g., a point
x′ with f(x′) > f(x) is allowed to replace x with probability

e
f(x)−f(x′)

T where the so-called cooling time T is chosen adap-
tively based on various heuristic criteria.
• Update lists by branch and bound techniques.

IV.4.4. Perturbation of candidates. We first normalize all
points such that all their co-ordinates can be represented by an N -
bit string. Then for a given candidate we pick one of its components
by random and flip one of its bits by random. This creates pertur-
bations which may be far off with respect to the standard Euclidean
distance.
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Example IV.4.1. Choose N = 4 and

x = 15 = 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20.

Then
x′ = 11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

and
x′′ = 7 = 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

are perturbations of x whereas

x̃ = 9 = 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

is not a perturbation of x.

IV.4.5. Concluding remarks. One always should keep in mind
that each algorithm has its own benefits and drawbacks. The choice of
an efficient algorithm requires knowledge of the particular structure of
the given optimization problem. There is no efficient black-box algo-
rithm solving all kind of problems.
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