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1. Introduction

We consider linear parabolic equations

∂u

∂t
− div(D∇u) + c · ∇u+ ru = f in Ω× (0, T ]

u = 0 on ΓD × (0, T ]

n ·D∇u = g on ΓN × (0, T ]

u = u0 in Ω

(1.1)

in a bounded space-time cylinder with a polygonal cross-section Ω ⊂ IRd, d ≥ 2,
having a Lipschitz boundary Γ consisting of two disjoint parts ΓD and ΓN . The final
time T is arbitrary, but kept fixed in what follows.
We assume that the data satisfy the following conditions:
(A1) The coefficients D ∈ IRd×d, c ∈ IRd, and r ∈ IR are constant.
(A2) The diffusion-coefficient D is symmetric positive definite and isotropic, i.e.

λ = min
z∈IRd\{0}

zTDz

zT z
> 0
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and

κ = λ−1 max
z∈IRd\{0}

zTDz

zT z
= O(1).

(A3) The reaction term r is non-negative.
(A4) The Dirichlet boundary ΓD has positive (d − 1)-dimensional measure and in-

cludes the inflow boundary {x ∈ Γ : c · n(x) < 0}.
Assumption (A1) is made to simplify the exposition. In Section 9 we will deal with
variable coefficients. Assumptions (A1) – (A4) guarantee that problem (1.1) is a well-
posed parabolic problem. The parameter κ is introduced in order to stress that the
ratio of the constants in the error estimates depends on the condition number of
the diffusion matrix. If this condition number is exceedingly large, length scales such
as element diameters must be measured in a diffusion-dependent metric in order to
recover robust estimates (cf. [3] in the context of elliptic equations). Assumptions
(A1) – (A4) cover a wide range of different regimes:
dominant diffusion: |c| ≤ ccλ and r ≤ crλ with constants cc, cr of order 1;
dominant reaction: |c| ≤ ccλ and r � λ with constant cc of order 1;
dominant convection: |c| � λ.
Thus the present analysis unifies the techniques of [11] and [12] which are devoted to
the diffusion-dominated and convection-dominated regimes, respectively.

We use the A-stable θ-schemes for the time-discretization of problem (1.1). The
spatial discretization is based on standard conforming finite element spaces using
the standard Galerkin formulation or a stabilized SUPG-scheme. For this space-time
discretization we analyze a residual error estimator and establish upper and lower
bounds for the error. The upper bounds are global with respect to space and time; the
lower bounds are global with respect to space and local with respect to time. The ratio
of upper and lower bounds is uniformly bounded with respect to any meshsize, to the
final time, and – most important – to ratios of the parameters λ, |c| and r. Thus the
error estimates are fully robust. When dealing with dominant convection, the present
estimator requires the solution of an auxiliary discrete stationary reaction-diffusion
problem at each time-level. This is the price that we must pay for obtaining bounds
that are uniform with respect to |c|/λ. The computational effort for evaluating the
error estimator then is comparable to an additional time-step for each time-level.

The error estimator consists of two ingredients: a spatial error indicator and a
temporal one. These can be used to monitor the space- and time-adaptivity seperately.
The spatial error indicator is a standard residual estimator corresponding to the semi-
discretization in time of (1.1). It could be replaced by any other reliable and efficient
error estimator for this type of problems such as, e.g., estimators based on the solution
of auxiliary local (in space) discrete problems.

The present results should be compared with older ones in [8]:
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(1) Here, we consider standard time discretizations which in particular cover the
implicit Euler and Crank-Nicolson schemes. In [8], we used a non-standard time
discretization which could be interpreted as an implicit Runge-Kutta method
and which covered the Crank-Nicolson scheme as method of lowest order.

(2) Here, the ratio of the upper and lower error bounds is independent of any mesh-
size in space or time and of any relation between these parameters. In [8], this
ration is proportional to 1+h2τ−1 +h−2τ where h and τ denote the local mesh-
sizes in space and time respectively.

(3) In [8], we considered genaral non-linear parabolic problems. Here we confine
ourselves to the linear case. An extension to non-linear parabolic equations is
under way [13].

The article is organized as follows. In Section 2 we introduce some function
spaces and norms. Section 3 is devoted to the finite element discretization. Using
energy estimates we prove in Section 4 that the error is equivalent to a residual
which is defined in a suitable dual space. This residual is split into three parts: one
corresponding to the approximation of the data, a contribution corresponding to a
spatial error, and a part corresponding to a temporal error. The latter can be further
decomposed into a diffusive and a convective part. In Section 5 we derive upper and
lower bounds for the spatial part of the residual. The temporal part is treated in
Section 6. Combining these results we obtain in Section 7 a first error estimator.
This estimator yields upper and lower bounds on the error and is fully robust in the
sense described above. However, it is not suited for practical computations since it
incorporates a dual norm of the convective derivative of the finite element solution.
This contribution is due to the convective part of the temporal residual. The results
of Section 7 show that sharp upper and lower bounds with parameter independent
constants for this term are mandatory for obtaining a robust and computable a
posteriori error estimator. This task is achieved in Section 8. As long as the convection
is not dominant we can simply bound the dual norm by a standard L2-norm that is
computable. This leads to Theorem 8.1 that covers the cases of dominant diffusion
and of dominant reaction. In the case of dominant convection, we bound the critical
dual norm by computable quantites based on the solution of a discrete stationary
reaction-diffusion problem at each time-level. This leads to Theorem 8.3. In Section
9 we finally present the modifications that are necessary to treat variable coefficients.

2. Function spaces

For any bounded open subset ω of Ω with Lipschitz boundary γ, we denote by Hk(ω),
k ∈ IN, L2(ω) = H0(ω), and L2(γ) the usual Sobolev and Lebesgue spaces equipped
with the standard norms ‖.‖k;ω = ‖.‖Hk(ω) and ‖.‖0;γ = ‖.‖L2(γ) (cf. [1]). Similarly,
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(., .)ω and (., .)γ denote the scalar products of L2(ω) and L2(γ), respectively. If ω = Ω,
we will omit the index Ω.

Set
H1

D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. (2.1)

We equip H1
D(Ω) with the norm

|||v||| =
{
λ‖∇v‖2

0 + r‖v‖2
0

}1/2
, (2.2)

where λ is the smallest eigenvalue of the diffusion matrix D defined in Assumption
(A2) of §1. Due to Assumptions (A2) – (A4) this is the natural energy norm of
problem (1.1). The dual space of H1

D(Ω) is denoted by H−1(Ω) and is equipped with
the norm

|||ϕ|||∗ = sup
v∈H1

D
(Ω)\{0}

〈ϕ, v〉
|||v|||

, (2.3)

where 〈., .〉 denotes the corresponding duality pairing.

H1/2(ΓN ) denotes the space of ΓN -traces of H1-functions and is equipped with
the trace norm induced by the energy norm, i.e.

‖ϕ‖H1/2(ΓN ) = inf
{
|||v||| : v ∈ H1

D(Ω) , v = ϕ on ΓN

}
.

H−1/2(ΓN ) denotes the dual space of H1/2(ΓN ) and is equipped with the correspond-
ing dual norm. Thus the norms of H1/2(ΓN ) and H−1/2(ΓN ) depend on the energy
norm and consequently on the parameters λ and r.

For any seperable Banach space V and any two numbers a < b we denote by
L2(a, b;V ) and L∞(a, b;V ) the spaces of measurable functions u defined on (a, b) with
values in V such that the function t → ‖u(., t)‖V is square integrable respectively
essentially bounded. These are Banach spaces equipped with the norms

‖u‖L2(a,b;V ) =
{∫ b

a

‖u(., t)‖2
V dt

}1/2

,

‖u‖L∞(a,b;V ) =ess.sup
a<t<b

‖u(., t)‖V

(cf. [4, Vol. 5, Chap. XVIII, §1]). For abbreviation we introduce the space

X(a, b) =
{
u ∈ L2(a, b;H1

D(Ω)) ∩ L∞(a, b;L2(Ω)) :

∂tu+ c · ∇u ∈ L2(a, b;H−1(Ω))
} (2.4)

and equip it with its graph norm

‖u‖X(a,b) =
{

ess.sup
a<t<b

‖u(., t)‖2
0 +

∫ b

a

|||u(., t)|||2dt

+
∫ b

a

|||(∂tu+ c · ∇u)(., t)|||2∗dt
}1/2

.

(2.5)
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Here the derivative ∂tu has to be understood in the distributional sense [4, loc. cit.].

The weak form of problem (1.1) consists in finding u ∈ L2(0, T ;H1
D(Ω)) such

that ∂tu ∈ L2(0, T ;H−1(Ω)), u(., 0) = u0 in H−1(Ω), and for almost every t ∈ (0, T )
and all v ∈ H1

D(Ω)

(∂tu, v) + (D∇u,∇v) + (c · ∇u, v) + (ru, v) = (f, v) + (g, v)ΓN
. (2.6)

Assumptions (A1) – (A4) imply that problem (2.6) admits a unique solution (cf. e.g.
[2], [4]).

For later use we note that integration by parts and Assumptions (A1) – (A4)
imply

(D∇v,∇v) + (c · ∇v, v) + (rv, v) ≥ |||v|||2 ∀v ∈ H1
D(Ω). (2.7)

Similarly, Assumptions (A1) and (A2) and definition (2.2) yield

(D∇v,∇w) + (rv, w) ≤ κ|||v||| |||w||| ∀v, w ∈ H1
D(Ω). (2.8)

3. Finite element discretization

For the discretization we choose an integer N ≥ 1 and intermediate times 0 = t0 <

t1 < . . . < tN = T and set τn = tn − tn−1, 1 ≤ n ≤ N . With each intermediate time
tn, 0 ≤ n ≤ N , we associate a partition Th,n of Ω and a corresponding finite element
space Xh,n. These have to satisfy the following conditions:
(1) Affine equivalence: every element K ∈ Th,n can be mapped by an invertible affine

mapping onto the standard reference d-simplex or the standard unit cube in IRd.
(2) Admissibility: any two elements are either disjoint or share a vertex, or a complete

edge, or (if d = 3) a complete face.
(3) Shape-regularity: for any element K the ratio of its diameter hK to the diameter

ρK of the largest inscribed ball is bounded uniformly with respect to all partitions
Th,n and to N .

(4) Transition condition: for 1 ≤ n ≤ N there is an affinely equivalent, admissible,
and shape-regular partition T̃h,n such that it is a refinement of both Th,n and
Th,n−1 and such that

sup
1≤n≤N

sup
K∈T̃h,n

sup
K′∈Th,n;K⊂K′

hK′

hK
<∞.

(5) Each Xh,n is a subset of H1
D(Ω) and consists of continuous functions which are

piecewise polynomials, the degrees being bounded uniformly with respect to all
partitions Th,n and to N .
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(6) Each Xh,n contains the space of continuous, piecewise linear finite elements cor-
responding to Th,n.

Condition (1) restricts quadrilateral elements to parallelograms and cubic elements
to parallelepipeds. In two dimensions, triangular and quadrilateral elements may
be mixed. In three dimensions this is also possible if one adds prismatic elements.
Condition (2) excludes hanging nodes. Condition (3) is a standard one and allows
for highly refined meshes. However, it excludes anisotropic elements. Condition (4) is
due to the simultaneous presence of finite element functions defined on different grids.
In practice the partition Th,n is usually obtained from Th,n−1 by a combination of
refinement and of coarsening. In this case Condition (4) only restricts the coarsening.
It must not be too abrupt nor too strong. Condition (4) is not needed when using
the implicit Euler scheme, i.e. θ = 1.

We choose a parameter θ ∈ [ 12 , 1] and keep it fixed in what follows. For every
time-level n ≥ 1 we introduce the abbreviation

fnθ = θf(., tn) + (1− θ)f(., tn−1) , gnθ = θg(., tn) + (1− θ)g(., tn−1).

Then the space-time discretization of problem (1.1) consists in finding un
h ∈ Xh,n,

0 ≤ n ≤ N , such that
u0

h = π0u0 (3.1)

and, for n = 1, . . . , N , and all vh ∈ Xh,n

(
un

h − un−1
h

τn
, vh)+(D∇(θun

h + (1− θ)un−1
h ),∇vh)

+(c · ∇(θun
h + (1− θ)un−1

h ), vh)

+(r(θun
h + (1− θ)un−1

h ), vh)

+
∑

K∈T̃h,n

δK(
un

h − un−1
h

τn
− div(D∇(θun

h + (1− θ)un−1
h ))

+ c · ∇(θun
h + (1− θ)un−1

h )

+ r(θun
h + (1− θ)un−1

h ) , c · ∇vh)K

=(fnθ, vh) + (gnθ, vh)ΓN
+

∑
K∈T̃h,n

δK(fnθ, c · ∇vh)K .

(3.2)

Here, π0 denotes the L2-projection onto Xh,0. The δK are non-negative stabilization
parameters. The choice δK = 0 for all K yields the standard Galerkin discretization;
the choice δK > 0 for all K corresponds to the SUPG-discretizations (cf., e.g., [5],
[6]). In what follows we will always assume that

δK |c| ≤ hK ∀K ∈ T̃h,n, 0 ≤ n ≤ N. (3.3)
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This condition is satisfied for all choices of δK used in practice.

Assumptions (A2) – (A4), and (3.3) and standard arguments for SUPG-discre-
tizations (cf., e.g., [5], [6]) imply that problems (3.1), (3.2) admit a unique solution
(un

h)0≤n≤N . With this sequence we associate the function uh,τ which is piecewise
affine on the time-intervals [tn−1, tn], 1 ≤ n ≤ N , and which equals un

h at time tn,
0 ≤ n ≤ N .

For abbreviation we denote by fh,τ and gh,τ functions that are piecewise constant
on the time-intervals (tn−1, tn], 1 ≤ n ≤ N , and which equal the L2-projection of
fnθ onto the space Xh,n and the L2-projection of gnθ onto the space of traces of
Xh,n-functions respectively. With this notation we can replace in (3.2) the functions
fnθ and gnθ by fh,τ and gh,τ , respectively.

4. The equivalence of error and residual

With the function uh,τ defined by the solution of problems (3.1), (3.2) we associate
the residual R(uh,τ ) ∈ L2(0, T ;H−1(Ω)) via

〈R(uh,τ ), v〉 =(f, v) + (g, v)ΓN
− (∂tuh,τ , v)− (D∇uh,τ ,∇v)

− (c · ∇uh,τ , v)− (ruh,τ , v)
(4.1)

for all v ∈ H1
D(Ω). The following lemma shows that this residual and the error

u− uh,τ are equivalent. Its proof is based on standard energy estimates. Recall that
H1

D(Ω) and H−1(Ω) are equipped with the energy-norm |||.||| and the dual norm |||.|||∗
respectively.

4.1 Lemma. For all w ∈ L2(0, T ;H1
D(Ω)) the following lower bound on the error

holds ∫ T

0

〈R(uh,τ ), w〉dt ≤
√

1 + κ2‖u− uh,τ‖X(0,T )‖w‖L2(0,T ;H1
D

(Ω)), (4.2)

where κ is the constant of Assumption (A2). Conversely, for all n between 1 and N ,
the error can be bounded from above by

‖u− uh,τ‖X(0,tn) ≤
{

2(1 + κ2)‖u0 − π0u0‖2
0

+ 2(2 + κ2)‖R(uh,τ )‖2
L2(0,tn;H−1(Ω))

}1/2

.
(4.3)

Proof. Equations (2.6) and (3.2) imply for all v ∈ H1
D(Ω) that

(∂t(u− uh,τ ), v)+(D∇(u− uh,τ ),∇v)
+(c · ∇(u− uh,τ ), v) + (r(u− uh,τ ), v) = 〈R(uh,τ ), v〉.

(4.4)
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This identity, definitions (2.2) and (2.3) of the norms |||.||| and |||.|||∗, and inequality
(2.8) yield for all 0 < t < T and all v ∈ H1

D(Ω) the estimate

〈R(uh,τ ), v〉 ≤|||(∂t(u− uh,τ ) + c · ∇(u− uh,τ ))(., t)|||∗|||v|||
+ κ|||(u− uh,τ )(., t)||| |||v|||.

Taking into account the definitions (2.4), (2.5) of X(0;T ) and of its norm, this esti-
mate proves the bound (4.2).
To prove estimate (4.3) we choose an integer n between 1 and N and a time t between
0 and tn and insert v = (u−uh,τ )(., t) in equation (4.4). Taking into account inequality
(2.7), this gives

1
2
d

dt
‖(u− uh,τ )(., t)‖2

0 + |||(u− uh,τ )(., t)|||2

≤(∂t(u− uh,τ )(., t), (u− uh,τ )(., t)) + (D∇(u− uh,τ )(., t),∇(u− uh,τ )(., t))

+ (c · ∇(u− uh,τ )(., t), (u− uh,τ )(., t)) + (r(u− uh,τ )(., t), (u− uh,τ )(., t))

=〈R(uh,τ )(., t), (u− uh,τ )(., t)〉
≤|||R(uh,τ )(., t)|||∗|||(u− uh,τ )(., t)|||

≤1
2
|||R(uh,τ )(., t)|||2∗ +

1
2
|||(u− uh,τ )(., t)|||2

and thus

d

dt
‖(u− uh,τ )(., t)‖2

0 + |||(u− uh,τ )(., t)|||2 ≤ |||R(uh,τ )(., t)|||2∗.

Integrating this estimate from 0 to t implies

‖(u− uh,τ )(., t)‖2
0−‖u0 − π0u0‖2

0 +
∫ t

0

|||(u− uh,τ )(., s)|||2 ds

≤‖R(uh,τ )‖2
L2(0,t;H−1(Ω))

≤‖R(uh,τ )‖2
L2(0,tn;H−1(Ω)).

Since t ∈ (0, tn] was arbitrary, this yields

‖u− uh,τ‖2
L∞(0,tn;L2(Ω)) ≤ ‖u0 − π0u0‖2

0 + ‖R(uh,τ )‖2
L2(0,tn;H−1(Ω)) (4.5)

and

‖u− uh,τ‖2
L2(0,tn;H1

D
(Ω)) ≤ ‖u0 − π0u0‖2

0 + ‖R(uh,τ )‖2
L2(0,tn;H−1(Ω)). (4.6)

Equation (4.4) and estimate (2.8), on the other hand, imply

|||∂t(u− uh,τ ) + c · ∇(u− uh,τ )|||∗ ≤ |||R(uh,τ )|||∗ + κ|||u− uh,τ |||.
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Taking the square of this inequality, integrating from 0 to tn, and inserting estimate
(4.6) we arrive at

‖∂t(u− uh,τ ) + c · ∇(u− uh,τ )‖2
L2(0,tn;H−1(Ω))

≤2‖R(uh,τ )‖2
L2(0,tn;H−1(Ω)) + 2κ2‖u− uh,τ‖2

L2(0,tn;H1
D

(Ω))

≤2κ2‖u0 − π0u0‖2
0

+ 2(1 + κ2)‖R(uh,τ )‖2
L2(0,tn;H−1(Ω)).

(4.7)

Combining estimates (4.5) – (4.7) proves the bound (4.3).

The subsequent analysis relies on an appropriate decomposition of the residual
R(uh,τ ). To this end we recall the definition of the functions fh,τ and gh,τ at the end of
§3 and define a temporal residual Rτ (uh,τ ) ∈ L2(0, T ;H−1(Ω)) and a spatial residual
Rh(uh,τ ) ∈ L2(0, T ;H−1(Ω)) by setting – for all v ∈ H1

D(Ω) and all 1 ≤ n ≤ N –

〈Rτ (uh,τ ), v〉 =(D∇(θun
h + (1− θ)un−1

h − uh,τ ),∇v)
+ (c · ∇(θun

h + (1− θ)un−1
h − uh,τ ), v)

+ (r(θun
h + (1− θ)un−1

h − uh,τ ), v) on (tn−1, tn]

(4.8)

and

〈Rh(uh,τ ), v〉 =(fh,τ , v) + (gh,τ , v)ΓN
− (

un
h − un−1

h

τn
, v)

− (D∇(θun
h + (1− θ)un−1

h ),∇v)
− (c · ∇(θun

h + (1− θ)un−1
h ), v)

− (r(θun
h + (1− θ)un−1

h ), v) on (tn−1, tn].

(4.9)

The discretization of the data is taken into account by a data-residual RD(uh,τ )
∈ L2(0, T ;H−1(Ω)) which is defined by

〈RD(uh,τ ), v〉 = (f − fh,τ , v) + (g − gh,τ , v)ΓN
. (4.10)

Since ∂tuh,τ is piecewise constant and equals un
h−un−1

h

τn
on (tn−1, tn], we obtain the

decomposition
R(uh,τ ) = RD(uh,τ ) +Rτ (uh,τ ) +Rh(uh,τ ). (4.11)

5. Estimation of the spatial residual

For the estimation of the spatial residual Rh(uh,τ ) we need some additional notations.
We denote by Ẽh,n, 1 ≤ n ≤ N , the set of all edges (if d = 2) respectively faces (if
d = 3) of T̃h,n. With each edge or face E ∈ Ẽh,n we associate a unit vector nE
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orthogonal to E such that it points to the outward of Ω if E lies on the boundary.
For every edge or face E that is not contained in the boundary Γ we denote by
[.]E the jump across E in direction nE . The quantity [.]E of course depends on the
orientation of nE , but quantities of the form [nE · .]E are independent thereof. With
each edge respectively face we associate the set ωE which is the union of the elements
that share E.

We recall the definition of the functions fh,τ and gh,τ at the end of §3 and define
element residuals RK , K ∈ T̃h,n, 1 ≤ n ≤ N , by

RK =fh,τ −
un

h − un−1
h

τn
+ div(D∇(θun

h + (1− θ)un−1
h ))

− c · ∇(θun
h + (1− θ)un−1

h )− r(θun
h + (1− θ)un−1

h ),
(5.1)

and edge respectively face residuals RE , E ∈ Ẽh,n, 1 ≤ n ≤ N , by

RE =

−
[
nE ·D∇(θun

h + (1− θ)un−1
h )

]
E

if E 6⊂ Γ,
gh,τ − nE ·D∇(θun

h + (1− θ)un−1
h ) if E ⊂ ΓN ,

0 if E ⊂ ΓD.
(5.2)

Here, of course, (un
h)0≤n≤N denotes the solution of problems (3.1) and (3.2).

For every n between 1 and N we denote by Nh,n the set of all element vertices
in Th,n that do not lie on the Dirichlet boundary ΓD. With every vertex x ∈ Nh,n we
associate the nodal bases function λx which is uniquely defined by the properties

λx|K ∈ R1(K) ∀K ∈ Th,n, λx(y) = 0 ∀y ∈ Nh,n\{x}, λx(x) = 1.

Here, as usual, Rk(K) denotes the set of all polynomials of total degree k, if K is a
simplex, and of maximal degree k, if K is a parallelepiped. The support of a nodal
bases function λx is denoted by ωx and consists of all elements in Th,n that share
the vertex x. With this notation we can define a Clément-type interpolation operator
Ih,n : L1(Ω) −→ {ϕ ∈ C(Ω) : ϕ|K ∈ R1(K) for all K ∈ Th,n, ϕ = 0 on ΓD} by (cf.
[10])

Ih,nv =
∑

x∈Nh,n

{
1
|ωx|

∫
ωx

v

}
λx. (5.3)

Here |ωx| denotes the d-dimensional Lebesgue-measure of ωx. Due to Condition (6)
of Section 3 the image of Ih,n is contained in Xh,n.

5.1 Lemma. For every S ∈ T̃h,n ∪ Ẽh,n, 1 ≤ n ≤ N , denote by hS its diameter and
set

αS = min{hSλ
−1/2, r−1/2}. (5.4)
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Then the following estimates hold for all n between 1 and N , all elements K ∈ T̃h,n,
all edges respectively faces E of K, and all function v ∈ H1

D(Ω)

‖v − Ihv‖0;K ≤ c1αK |||v|||ω̃K
,

‖v − Ihv‖0;E ≤ c2λ
−1/4α

1/2
E |||v|||ω̃K

,

|||Ihv|||K ≤ c3|||v|||ω̃K
.

Here, ω̃K is the union of all elements in Th,n that share at least a vertex with the
element K ′ ∈ Th,n that contains K and |||.|||A denotes the restriction of |||.||| to the
measurable set A.
Proof. Taking into account Condition (4) of §3, the proof of Lemma 5.1 follows from
Lemma 3.1 in [9] and Proposition 2.1 in [10] with the arguments used in the proof of
Lemma 3.2 in [9].

5.2 Remark. In the case r = 0 the minimum in (5.4) of course yields αS = λ−1/2hS

for all S.

For every element K ∈ T̃h,n, 1 ≤ n ≤ N , we denote by NK the set of its vertices
and set

ψK = γK

∏
x∈NK

λx, (5.5)

where the constant γK is choosen such that ψK equals 1 at the barycentre of K. Note
that the support of ψK is contained in K and that ‖ψK‖L∞(K) = 1.
For every edge respectively face E ∈ Ẽh,n, 1 ≤ n ≤ N , we set

θE = min{λ1/2r−1/2h−1
E , 1} = h−1

E λ1/2αE (5.6)

and denote by NE the set of its vertices. (Note that θE = 1 in the case r = 0.)
Consider first an edge respectively face E that is not contained in the boundary. It
is shared by exactly two elements KE,1 and KE,2. For i = 1, 2 we define an affine
transformation Fi : IRd −→ IRd as follows: We first map KE,i onto the reference
element such that the image of E is contained in the hyperplane {xd = 0}; then we
apply the transformation (x1, . . . , xd−1, xd) −→ (x1, . . . , xd−1, θExd); and finally we
transform back with the inverse of the affine transformation of the first step. With
this definition we set

ψE = γE

∏
x∈NE

λx ◦ F−1
i on KE,i , i = 1, 2, (5.7)

where the constant γE is choosen such that ψE equals 1 at the barycentre of E. Note
that the support of ψE is contained in F1(KE,1) ∪ F2(KE,2) ⊂ KE,1 ∪ KE,2 = ωE

and that ‖ψE‖L∞(E) = 1.
If an edge respectively face E is contained in the Neumann boundary ΓN the defintion
of ψE is modified in the obvious way taking into account that now E is the face of
exactly one element KE .
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5.3 Lemma. The following estimates hold for all n between 1 and N , all elements
K ∈ T̃h,n, all polynomials v ∈ Rk(K), all edges respectively faces E ∈ Ẽh,n, and all
polynomials σ ∈ Rk(E)

(v, ψKv)K ≥ c4‖v‖2
0;K ,

|||ψKv|||K ≤ c5α
−1
K ‖v‖0;K ,

(σ, ψEσ)E ≥ c6‖σ‖2
0;E ,

|||ψEσ|||ωE
≤ c7λ

1/4α
−1/2
E ‖σ‖0;E ,

‖ψEσ‖0;ωE
≤ c8λ

1/4α
1/2
E ‖σ‖0;E .

Here, a polynomial σ defined on an edge respectively face E is continued in the canon-
ical way to a polynomial defined on IRd. The constants c4, . . . , c8 only depend on the
polynomial degree k and on the ratio hK/ρK .
Proof. The estimates are proven with the same arguments as in the proof of Lemma 3.3
in [9]. For parallelepipeds one only has to take into account that the transformation
to the unit cube is affine and thus has a constant Jacobian.

With these preparations we are now ready to bound the spatial residual.

5.4 Lemma. For every n between 1 and N define a spatial error indicator ηn
h by

ηn
h =


∑

K∈T̃h,n

α2
K‖RK‖2

L2(K) +
∑

E∈Ẽh,n

λ−1/2αE‖RE‖2
L2(E)


1/2

. (5.8)

Then, on each interval (tn−1, tn], the spatial residual is bounded from above by

|||Rh(uh,τ )|||∗ ≤ c†ηn
h . (5.9)

Moreover, there are functions wn ∈ H1
D(Ω) such that on each interval (tn−1, tn] the

spatial residual is bounded from below by

(ηn
h)2 ≤ 〈Rh(uh,τ ), wn〉,

|||wn||| ≤ c†η
n
h .

(5.10)

The constants c† and c† depend on the ratios hK/ρK in Condition (3) of §3. The
constant c† in addition depends on the ratios hK′/hK in Condition (4) of §3. The
constant c† in addition depends on the maximum of the polynomial degrees of the
finite element functions.
Proof. Choose an integer n between 1 and N and keep it fixed in what follows.
Since T̃h,n is a common refinement of Th,n and Th,n−1, the functions un

h and un−1
h are

piecewise polynomials on the elements of T̃h,n. Therefore we may integrate by parts

12



on the elements in T̃h,n and obtain the following L2-representation of the spatial
residual

〈Rh(uh,τ ), v〉 =
∑

K∈T̃h,n

(RK , v)K +
∑

E∈Ẽh,n

(RE , v)E . (5.11)

Lemma 5.1 and the Cauchy-Schwarz inequality therefore imply for all v ∈ H1
D(Ω)

〈Rh(uh,τ ),v − Ih,nv〉

≤c|||v|||

{ ∑
K∈T̃h,n

α2
K‖RK‖2

0;K +
∑

E∈Ẽh,n

λ−1/2αE‖RE‖2
0;E

}1/2

.
(5.12)

The constant c only depends on the constants c1 and c2 of Lemma 5.1 and on the
ratios hK/ρK .
From the definition of problem (3.2) and the definiton (4.9) of the spatial residual we
conclude that

〈Rh(uh,τ ), Ih,nv〉 =
∑

K∈T̃h,n

δK(RK , c · ∇Ih.nv)K .

Invoking a standard inverse estimate we obtain for all elements K that

‖c · ∇Ih,nv‖0;K ≤|c|min{‖∇Ih,nv‖0;K , cIh
−1
K ‖Ih,nv‖0;K}

≤cI |c|h−1
K αK |||Ih,nv|||K ,

where the constant cI depends on hK/ρK . Lemma 5.1, condition (3.3) and the
Cauchy-Schwarz inequality therefore imply

〈Rh(uh,τ ), Ih,nv〉 ≤ c|||v|||

{ ∑
K∈T̃h,n

α2
K‖RK‖2

0;K

}1/2

. (5.13)

Equation (5.11) and estimates (5.12) and (5.13) prove the upper bound (5.9).
For the proof of the lower bound (5.10) we proceed as in the proof of [11, Lemma
5.1] and define the function wn by

wn = γ1

∑
K∈T̃h,n

α2
KψKRK + γ2

∑
E∈Ẽh,n

λ−1/2αEψERE . (5.14)

The constants γ1 and γ2 are arbitrary at present and will be determined below. The
subsequent arguments are based on the following observations:

– the supports of the ψK are mutually disjoint,
– the support of a ψK intersects the support of at most 2d different ψE ’s,
– the support of a ψE intersects the support of at most two ψK ’s,
– the support of a ψE intersects the support of at most 2d− 2 other ψE ’s.
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Lemma 5.3 therefore yields

|||wh|||2 ≤γ2
1

∑
K∈T̃h,n

α4
K |||ψKRK |||2K

+ 2γ1γ2

∑
K∈T̃h,n

 ∑
E;ωE∩K 6=∅

α2
Kλ

−1/2αE |||ψKRK |||K |||ψERE |||K


+ γ2

2

∑
E∈Ẽh,n

 ∑
E′;ωE∩ωE′ 6=∅

λ−1αEαE′ |||ψERE |||ωE
|||ψE′RE′ |||ωE′


≤(2d+ 1)max{γ2

1 , γ
2
2}max{c5, c7} (ηn

h)2 .

(5.15)

Since hE ≤ hK for all edges respectively faces E of any element K, Lemma 5.3 also
implies that∑

K∈T̃h,n

(RK ,wn)K +
∑

E∈Ẽh,n

(RE , wn)E

=γ1

∑
K∈T̃h,n

α2
K(RK , ψKRK)K + γ2

∑
E∈Ẽh,n

λ−1/2αE(RE , ψERE)E

+ γ2

∑
E∈Ẽh,n

 ∑
K;K∩ωE 6=∅

λ−1/2αE(RK , ψERE)K


≥γ1

∑
K∈T̃h,n

c4α
2
K‖RK‖2

0;K + γ2

∑
E∈Ẽh,n

c6λ
−1/2αE‖RE‖2

0;E

− γ2

∑
E∈Ẽh,n

 ∑
K;K∩ωE 6=∅

c8λ
−1/4α

1/2
E αK‖RK‖0;K‖ψERE‖0;E


≥(γ1c4 − 2dγ2c

2
8c
−1
6 )

∑
K∈T̃h,n

α2
K‖RK‖2

0;K

+
1
2
γ2c6

∑
E∈Ẽh,n

λ−1/2αE‖RE‖2
0;E

≥min
{
γ1c4 − 2dγ2c

2
8c
−1
6 ,

1
2
γ2c6

}
(ηn

h)2 .

(5.16)

Now we choose

γ2 =
2
c6

and γ1 =
1
c4

(
1 +

4dc28
c26

)
.

This choice gives

min
{
γ1c4 − 2dγ2c

2
8c
−1
6 ,

1
2
γ2c6

}
= 1.

Estimates (5.16) and (5.15) and equation (5.11) now imply the lower bound (5.10).
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6. Estimation of the temporal residual

The following lemma provides us with sharp upper and lower bounds for the temporal
residual.

6.1 Lemma. For every integer n between 1 and N the temporal residual is bounded
from above by{∫ tn

tn−1

|||Rτ (uh,τ )(., s)|||2∗ds
}1/2

≤
√

1
3
(1 + κ2)τ1/2

n

{
|||un

h − un−1
h |||2 + |||c · ∇(un

h − un−1
h )|||2∗

}1/2

.

(6.1)

For every interval (tn−1, tn] and every real number δ larger than 0 and less than 1
there is a function zn,δ ∈ L2(0, T ;H1

D(Ω)) such that the temporal residual is bounded
from below by∫ tn

tn−1

〈Rτ (uh,τ )(., s), zn,δ(., s)〉ds

≥ δ

12(δ + κ2)
τn

{
|||un

h − un−1
h |||2 + δ|||c · ∇(un

h − un−1
h )|||2∗

}
,{∫ tn

tn−1

|||zn,δ(., s)|||2ds
}1/2

≤
√

2
3
τ1/2
n

{
|||un

h − un−1
h |||2 + |||c · ∇(un

h − un−1
h )|||2∗

}1/2

.

(6.2)

Here, κ is the constant of Assumption (A2) of §1.
Proof. Since the function uh,τ is piecewise affine with respect to time, we have on
each time interval [tm−1, tm]

θum
h + (1− θ)um−1

h − uh,τ =
[
θ − t− tm−1

τm

]
(um

h − um−1
h ).

For abbreviation we define for each m between 1 and N the quantity rm ∈ H−1(Ω)
by

〈rm, v〉 =(D∇(um
h − um−1

h ),∇v) + (c · ∇(um
h − um−1

h ), v)

+ (r(um
h − um−1

h ), v) ∀v ∈ H1
D(Ω).

Then we obtain the following representation of the temporal residual

Rτ (uh,τ ) =
[
θ − t− tm−1

τm

]
rm on (tm−1, tm], 1 ≤ m ≤ N. (6.3)

A straightforward calculation gives∫ tm

tm−1

[
θ − t− tm−1

τm

]2

dt = τm
1
3

[
θ3 + (1− θ)3

]
15



and consequently

1
12
τm ≤

∫ tm

tm−1

[
θ − t− tm−1

τm

]2

dt ≤ 1
3
τm. (6.4)

From inequality (2.8) we conclude that

|||rm|||∗ ≤κ|||u
m
h − um−1

h |||+ |||c · ∇(um
h − um−1

h )|||∗

≤
√

1 + κ2
{
|||um

h − um−1
h |||2 + |||c · ∇(um

h − um−1
h )|||2∗

}1/2

.
(6.5)

Equation (6.3) and inequalities (6.4) and (6.5) prove the upper bound (6.1).
Due to the definition (2.3) of |||.|||∗ there is for each δ ∈ (0, 1) a function ϕm,δ ∈ H1

D(Ω)
with

|||ϕm,δ||| = |||c · ∇(um
h − um−1

h )|||∗,
(c · ∇(um

h − um−1
h ), ϕm,δ) ≥ δ|||c · ∇(um

h − um−1
h )|||2∗.

We set
ζm,δ = (um

h − um−1
h ) + γϕm,δ, (6.6)

where γ is a constant that will be fixed below. Obviously we have

|||ζm,δ||| ≤ max{1, γ}
{
|||um

h − um−1
h |||+ |||c · ∇(um

h − um−1
h )|||∗

}
.

Inequalities (2.7) and (2.8) on the other hand yield

〈rm, ζm,δ〉 ≥|||um
h − um−1

h |||2 + γδ|||c · ∇(um
h − um−1

h )|||2∗
− γκ|||um

h − um−1
h ||| |||c · ∇(um

h − um−1
h )|||∗

≥
{

1− 1
2
γδ−1κ2

}
|||um

h − um−1
h |||2

+
1
2
γδ|||c · ∇(um

h − um−1
h )|||2∗.

Now we choose
γ =

2δ
δ + κ2

and obtain

|||ζm,δ||| ≤|||um
h − um−1

h |||+ |||c · ∇(um
h − um−1

h )|||∗,

〈rm, ζm,δ〉 ≥
δ

δ + κ2

{
|||um

h − um−1
h |||2 + δ|||c · ∇(um

h − um−1
h )|||2∗

}
.

(6.7)

Equation (6.3) and estimates (6.4), (6.7) show that the function

zm,δ =
[
θ − t− tm−1

τm

]
ζm,δ

yields the lower bounds (6.2).
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6.2 Remark. The arguments used to prove estimates (6.7) yield the inf-sup condi-
tion

inf
v∈H1

D
(Ω)

sup
w∈H1

D
(Ω)

(D∇v,∇w) + (c · ∇v, w) + (rv, w)
{|||v|||2 + |||c · ∇v|||2∗}1/2|||w|||

≥ 1√
2

1
1 + κ2

.

A similar result is established in [7]. There, however, the infimum and supremum are
both taken with respect to the same norm which is defined by interpolation between
|||.||| and |||.|||+ |||c · ∇.|||∗. But the present result is better suited for our purposes.

7. A preliminary a posteriori error estimate

The following lemma provides us with a posteriori error bounds which are robust in
the sense described in the Introduction. However, they are not suited for practical
computations since they involve terms of the form |||c · ∇(un

h − un−1
h )|||∗. In the next

section we will bound these terms by computable quantities. Recall that H−1(Ω) is
equipped with |||.|||∗.

7.1 Lemma. The error between the solution u of problem (2.6) and the solution
uh,τ of problems (3.1), (3.2) is bounded from above by

‖u−uh,τ‖X(0,T ) ≤

c∗

{
‖u0 − π0u0‖2

0

+
N∑

n=1

τn

[
(ηn

h)2 + |||un
h − un−1

h |||2 + |||c · ∇(un
h − un−1

h )|||2∗
]

+
∥∥f − fh,τ

∥∥2

L2(0,T ;H−1(Ω))
+

∥∥g − gh,τ

∥∥2

L2(0,T ;H−1/2(ΓN ))

}1/2

(7.1)

and on each interval (tn−1, tn], 1 ≤ n ≤ N , from below by

τ1/2
n

{
(ηn

h)2 + |||un
h − un−1

h |||2 + |||c · ∇(un
h − un−1

h )|||2∗
}1/2

≤c∗
{
‖u− uh,τ‖2

X(tn−1,tn)

+
∥∥f − fh,τ

∥∥2

L2(tn−1,tn;H−1(Ω))
+

∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}1/2

.

(7.2)

The quantity ηn
h is defined in equation (5.8). The constants c∗ and c∗ depend on

the ratios hK/ρK . The constant c∗ in addition depends on the ratios hK′/hK . The
constant c∗ in addition depends on the maximum of the polynomial degrees of the finite
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element functions and on the constant κ of Assumption (A2) of §1. All constants are
independent of the final time T , and the parameters λ, |c|, and r.
Proof. The upper bound (7.1) follows from estimates (4.3), (5.9), and (6.1) and the
decomposition (4.11) of the residual.
For the proof of the lower bound (7.2) we choose an integer n between 1 and N and
a real number δ larger than 0 and less than 1. First we insert the function zn,δ of
Lemma 6.1 into the representation (4.11) of the residual. Estimates (6.2), (5.9), and
(4.2) then imply

δ

12(δ + κ2)
τn

{
|||un

h − un−1
h |||2 + δ|||c · ∇(un

h − un−1
h )|||2∗

}
≤

∫ tn

tn−1

〈Rτ (uh,τ )(., s), zn,δ(., s)〉ds

=
∫ tn

tn−1

〈R(uh,τ )(., s)−RD(uh,τ )(., s)−Rh(uh,τ )(., s), zn,δ(., s)〉ds

and ∫ tn

tn−1

〈R(uh,τ )(., s)−RD(uh,τ )(., s)−Rh(uh,τ )(., s), zn,δ(., s)〉ds

≤
√

2
3
τ1/2
n

{
|||un

h − un−1
h |||2 + |||c · ∇(un

h − un−1
h )|||2∗

}1/2

·
{√

1 + κ2‖u− uh,τ‖X(tn−1,tn) +
∥∥f − fh,τ

∥∥
L2(tn−1,tn;H−1(Ω))

+
∥∥g − gh,τ

∥∥
L2(tn−1,tn;H−1/2(ΓN ))

+ c†τ1/2
n ηn

h

}
.

Since δ ∈ (0, 1) was arbitrary and since
√

2
3 ≤ 1 this yields the estimate

τ1/2
n

{
|||un

h − un−1
h |||2 + |||c · ∇(un

h − un−1
h )|||2∗

}1/2

≤c′
{√

1 + κ2‖u− uh,τ‖X(tn−1,tn) +
∥∥f − fh,τ

∥∥
L2(tn−1,tn;H−1(Ω))

+
∥∥g − gh,τ

∥∥
L2(tn−1,tn;H−1/2(ΓN ))

+ c†τ1/2
n ηn

h

} (7.3)

with c′ = 12(1 + κ2).

Next we insert the function (α+1)
(

t−tn−1
τn

)α

wn into the representation (4.11) of the
residual. Here wn is the function of Lemma 5.4 and α denotes a non-negative constant
that will be determined below. Estimate (5.10) and the decomposition (4.11) of the
residual then yield

τn (ηn
h)2 ≤

∫ tn

tn−1

(α+ 1)
(
t− tn−1

τn

)α

〈Rh(uh,τ ), wn〉dt

=
∫ tn

tn−1

(α+ 1)
(
t− tn−1

τn

)α

〈R(uh,τ )−RD(uh,τ )−Rτ (uh,τ ), wn〉dt.
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Since ∫ tn

tn−1

(α+ 1)2
(
t− tn−1

τn

)2α

dt =
(α+ 1)2

2α+ 1
τn ≤ (2α+ 1)τn,

estimates (4.2) and (5.10) imply that∫ tn

tn−1

(α+ 1)
(
t− tn−1

τn

)α

〈R(uh,τ )−RD(uh,τ ), wn〉dt

≤
√

2α+ 1c†τ1/2
n ηn

h

{√
1 + κ2‖u− uh,τ‖X(tn−1,tn)

+
∥∥f − fh,τ

∥∥
L2(tn−1,tn;H−1(Ω))

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}
.

Since ∫ tn

tn−1

(α+ 1)
(
t− tn−1

τn

)α [
θ − t− tn−1

τn

]
dt =

(
θ − α+ 1

α+ 2

)
τn

and
√

1
3 (1 + κ2) ≤ κ, we conclude from estimates (5.10) and (6.1) that

∫ tn

tn−1

(α+ 1)
(
t− tn−1

τn

)α

〈Rτ (uh,τ ), wn〉dt

≤
∣∣∣∣θ − α+ 1

α+ 2

∣∣∣∣κc†ηn
hτn

{
|||un

h − un−1
h |||+ |||c · ∇(un

h − un−1
h )|||∗

}
.

Combining these estimates and inserting inequality (7.3) we arrive at the estimate

τn (ηn
h)2 ≤

∣∣∣∣θ − α+ 1
α+ 2

∣∣∣∣ c†c′′τn (ηn
h)2

+ τ1/2
n ηn

hc†c
′′′

[√
2α+ 1 +

∣∣∣∣θ − α+ 1
α+ 2

∣∣∣∣]
·
{
‖u− uh,τ‖X(tn−1,tn)

+
∥∥f − fh,τ

∥∥
L2(tn−1,tn;H−1(Ω))

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}
(7.4)

with constants c′′ and c′′′ that only depend on the constants κ, c†, and c†.
Now we choose the parameter α such that the first term on the right-hand side of
inequality (7.4) is balanced by the term on the left-hand side. In case of the Crank-
Nicolson scheme, i.e. θ = 1

2 , this is obvious: We have to choose α = 0. In the remaining
cases 1

2 < θ ≤ 1 we set

α =
2c†c′′(2θ − 1)

2c†c′′(1− θ) + 1
.
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Since we may assume that c†c′′ ≥ 1 this implies

α+ 1
α+ 2

≤ θ and
∣∣∣∣θ − α+ 1

α+ 2

∣∣∣∣ c†c′′ ≤ 1
2
.

Estimate (7.4) therefore takes the form

τ1/2
n ηn

h ≤c
{
‖u− uh,τ‖X(tn−1,tn)

+
∥∥f − fh,τ

∥∥
L2(tn−1,tn;H−1(Ω))

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

} (7.5)

with a constant c that only depends on the constants κ, c†, and c†. Estimates (7.3)
and (7.5) obviously imply the lower bound (7.2).

8. A robust a posteriori error estimator

In this section we derive computable and robust bounds for the terms |||c · ∇(un
h −

un−1
h )|||∗ in Lemma 7.1. To this end we must distinguish two cases:

small convection: |c| ≤ ccλ
1/2 max{λ, r}1/2 with a constant cc of moderate size;

large convection: |c| � λ1/2 max{λ, r}1/2.

In the first case the situation is quite simple since we can bound |||c · ∇(un
h −

un−1
h )|||∗ by |||un

h −u
n−1
h ||| times a constant of moderate size. To be precise denote by

cΩ the constant in the Poincaré inequality

‖w‖0 ≤ cΩ‖∇w‖0 ∀w ∈ H1
D(Ω).

This estimate and the definition (2.2) of the energy norm yield for all v, w ∈ H1
D(Ω)

the estimate

(c · ∇v, w) ≤|c|‖∇v‖0‖w‖0

≤|c|λ−1/2|||v|||min{r−1/2, cΩλ
−1/2}|||w|||

≤max{1, cΩ}|c|λ−1/2 min{r−1/2, λ−1/2}|||v||| |||w|||
=max{1, cΩ}|c|λ−1/2 max{r, λ}−1/2|||v||| |||w|||
≤max{1, cΩ}cc|||v||| |||w|||.

Recalling the definition (2.3) of the dual norm this implies that

|||c · ∇(un
h − un−1

h )|||∗ ≤ max{1, cΩ}cc|||un
h − un−1

h |||. (8.1)

When bounding the convection term in (7.1) using estimate (8.1) and dropping the
convection term in (7.2), we arrive at the following result for the case of small con-
vection:
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8.1 Theorem. Assume that |c| ≤ ccλ
1/2 max{λ, r}1/2 with a constant cc of moderate

size. Then the error between the solution u of problem (2.6) and the solution uh,τ of
problems (3.1), (3.2) is bounded from above by

‖u−uh,τ‖X(0,T ) ≤

ĉ∗

{
‖u0 − π0u0‖2

0

+
N∑

n=1

τn

[
(ηn

h)2 + |||un
h − un−1

h |||2
]

+
∥∥f − fh,τ

∥∥2

L2(0,T ;H−1(Ω))
+

∥∥g − gh,τ

∥∥2

L2(0,T ;H−1/2(ΓN ))

}1/2

(8.2)

and on each interval (tn−1, tn], 1 ≤ n ≤ N , from below by

τ1/2
n

{
(ηn

h)2 +|||un
h − un−1

h |||2
}1/2

≤c∗
{
‖u− uh,τ‖2

X(tn−1,tn)

+
∥∥f − fh,τ

∥∥2

L2(tn−1,tn;H−1(Ω))

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}1/2

.

(8.3)

The quantity ηn
h is defined in equation (5.8). The constants ĉ∗ and c∗ depend on

the ratios hK/ρK . The constant ĉ∗ in addition depends on the ratios hK′/hK and
on the constants cc and cΩ. The constant c∗ in addition depends on the maximum
of the polynomial degrees of the finite element functions and on the constant κ of
Assumption (A2) of §1. All constants are independent of the final time T , and the
parameters λ, |c|, and r.

In the case of large convection, estimate (8.1) incorporates too large a con-
stant. In this case we must bound the dual norms of the convection terms in a more
sophisticated way. The idea is as follows: Due to the definition of the dual norm,
these quantities equal the energy norm of the weak solutions of suitable station-
ary reaction-diffusion equations. These solutions are approximated by suitable finite
element functions. The error of the approximations is estimated by robust error esti-
mators for reaction-diffusion equations.

8.2 Lemma. For every integer n between 1 and N set

X̃h,n = {v ∈ C(Ω) : v|K ∈ R1(K) for all K ∈ T̃h,n, v = 0 on ΓD}
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and denote by ũn
h ∈ X̃h,n the unique solution of the discrete reaction-diffusion prob-

lem

λ(∇ũn
h,∇vh) + r(ũn

h, vh) = (c · ∇(un
h − un−1

h ), vh) ∀vh ∈ X̃h,n. (8.4)

Define the error indicator η̃n
h by

η̃n
h =

{ ∑
K∈T̃h,n

α2
K‖c · ∇(un

h − un−1
h ) + λ∆ũn

h − rũn
h‖2

0;K

+
∑

E∈Ẽh,n\ΓD

λ−1/2αE‖[nE · ∇ũn
h]E‖2

0;E

}1/2

.
(8.5)

Then there are two constants c̃† and c̃† which only depend on the ratios hK/ρK such
that the following estimates are valid

c̃† {|||ũn
h|||+ η̃n

h} ≤ |||c · ∇(un
h − un−1

h )|||∗ ≤ c̃† {|||ũn
h|||+ η̃n

h} . (8.6)

Proof. We choose an integer n between 1 and N and keep it fixed in what follows.
Denote by Ũn ∈ H1

D(Ω) the unique solution of the stationary reaction-diffusion equa-
tion

λ(∇Ũn,∇v) + r(Ũn, v) = (c · ∇(un
h − un−1

h ), v) ∀v ∈ H1
D(Ω).

The definitions (2.2) and (2.3) of the energy norm |||.||| and of the dual norm |||.|||∗
respectively imply that

|||Ũn||| = |||c · ∇(un
h − un−1

h )|||∗.

Inserting vh = ũn
h as a test function in the discrete problem (8.4) we obtain

|||ũn
h||| ≤ |||c · ∇(un

h − un−1
h )|||∗.

The triangle inequality therefore yields

1
3

{
|||ũn

h|||+ |||Ũn − ũn
h|||

}
≤ |||c · ∇(un

h − un−1
h )|||∗ ≤

{
|||ũn

h|||+ |||Ũn − ũn
h|||

}
.

Since c·∇(un
h−u

n−1
h ) is a piecewise polynomial, we know from [9] that η̃n

h yields upper
and lower bounds for |||Ũn − ũn

h||| with multiplicative constants that only depend on
the ratios hK/ρK . This proves estimate (8.6).

Combining Lemmas 7.1 and 8.2 we obtain the following result:
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8.3 Theorem. Assume that |c| � λ1/2 max{λ, r}1/2. Then the error between the
solution u of problem (2.6) and the solution uh,τ of problems (3.1), (3.2) is bounded
from above by

‖u−uh,τ‖X(0,T ) ≤

c̃∗

{
‖u0 − π0u0‖2

0

+
N∑

n=1

τn

[
(ηn

h)2 + |||un
h − un−1

h |||2 + (η̃n
h)2 + |||ũn

h|||
2
]

+
∥∥f − fh,τ

∥∥2

L2(0,T ;H−1(Ω))

+
∥∥g − gh,τ

∥∥2

L2(0,T ;H−1/2(ΓN ))

}1/2

(8.7)

and on each interval (tn−1, tn], 1 ≤ n ≤ N , from below by

τ1/2
n

{
(ηn

h)2 +|||un
h − un−1

h |||2 + (η̃n
h)2 + |||ũn

h|||
2
}1/2

≤c̃∗
{
‖u− uh,τ‖2

X(tn−1,tn)

+
∥∥f − fh,τ

∥∥2

L2(tn−1,tn;H−1(Ω))

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}1/2

.

(8.8)

The quantity ηn
h is defined in equation (5.8). The constants c̃∗ and c̃∗ depend on

the ratios hK/ρK . The constant c̃∗ in addition depends on the ratios hK′/hK . The
constant c̃∗ in addition depends on the maximum of the polynomial degrees of the finite
element functions and on the constant κ of Assumption (A2) of §1. All constants are
independent of the final time T , and the parameters λ, |c|, and r.

8.4 Remark. Theorem 8.3 shows that the quantity τ1/2
n

{
(ηn

h)2 + |||un
h − un−1

h |||2 +

(η̃n
h)2 + |||ũn

h|||
2
}1/2

is a robust error indicator in the sense described in the Introduc-
tion. The remaining terms on the right-hand side of estimates (8.7) and (8.8) are data
errors. The term τ

1/2
n ηn

h can be interpreted as a spatial error indicator and can be used

to monitor the space-adaptivity. The terms τ1/2
n

{
|||un

h−u
n−1
h |||2 +(η̃n

h)2 + |||ũn
h|||

2
}1/2

on the other hand can be viewed as temporal error indicators and can be used to
monitor the time-adaptivity. Theorem 8.1 shows that in the case of small convection
the terms involving η̃n

h and ũn
h can be dropped without loosing robustness. Thus the

evaluation of the error estimator is much simpler in this case.
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9. Variable coefficients

In this section we present the modifications that are necessary to adapt the previous
analysis to equations with variable coefficients.

Assumptions (A1) – (A3) of §1 must be replaced by the following conditons on
the coefficients:
(A1’) The coefficients satisfy D ∈ C(0, T ;L∞(Ω)d×d), c ∈ C(0, T ;W 1,∞(Ω)d), r ∈

C(0, T ;L∞(Ω)).
(A2’) The diffusion-coefficient D is symmetric, uniformly positive definite and uni-

formly isotropic, i.e.

λ = inf
0<t≤T,x∈Ω

min
z∈IRd\{0}

zTD(x, t)z
zT z

> 0

and

κ = λ−1 sup
0<t≤T,x∈Ω

max
z∈IRd\{0}

zTD(x, t)z
zT z

= O(1).

(A3’) There is a constant β ≥ 0 such that r − 1
2 div c ≥ β for almost all x ∈ Ω and

0 < t ≤ T . Moreover there is a constant cr ≥ 0 of moderate size such that
‖r‖L∞(0,T ;L∞(Ω)) ≤ crβ.

With these assumptions the various regimes mentioned in §1 can now be characterized
by:
dominant diffusion: |c|L∞(0,T ;W 1,∞(Ω)) ≤ ccλ and β ≤ c′rλ with constants of order 1;
dominant reaction: |c|L∞(0,T ;W 1,∞(Ω)) ≤ ccλ and β � λ with constant cc of order 1;
dominant convection: β � λ.

In the definition (2.2) of the energy norm the quantity r must be replaced by
the constant β. This definition of the energy norm is then used in the definition (2.3)
of the dual norm and in the definitons of the norms of H1/2(ΓN ) and H−1/2(ΓN ).
With these modifications estimates (2.7) and (2.8) remain valid.

In the finite element discretization (3.2) the coefficients must now be discretized
in time by replacing D, c, and r by Dnθ = θD(., tn) + (1 − θ)D(., tn−1), cnθ =
θc(., tn) + (1− θ)c(., tn−1), and rnθ = θr(., tn) + (1− θ)r(., tn−1) respectively.

Lemma 4.1 remains unchanged. But in the definitions (4.8) and (4.9) of the
temporal and spatial residuals the coefficients D, c, and r are replaced by their time-
discretizations Dnθ, cnθ, and rnθ respectively. This gives rise to additional terms

((Dnθ −D)∇uh,τ ,∇v) + ((cnθ − c) · ∇uh,τ , v) + ((rnθ − r)uh,τ , v)

in the definition (4.10) of the data residual. These terms introduce additional data
errors

λ−1‖(Dnθ −D)∇uh.τ‖L2(a,b;H1
D

(Ω)) + ‖(cnθ − c) · ∇uh.τ + (rnθ − r)uh,τ‖L2(a,b;H−1(Ω))
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with appropriate values of a and b on the right-hand sides of estimates (7.1), (7.2),
(8.2), (8.3), (8.7), and (8.8).

In the definition (5.4) of the weights αS the quantity r must be replaced by
the constant β. In the definition (5.8) of the spatial error indicator ηn

h the coeffi-
cients D, c, and r must be replaced by finite element approximations Dnθ

h , cnθ
h , and

rnθ
h of the time-discretizations Dnθ, cnθ, and rnθ. These finite element approxima-

tions are arbitrary; the simplest choice is the correponding L2-projection onto the
space of piecewise constant finite element functions. The spatial discretization of the
coefficients gives rise to additonal elementwise data errors

DK =
{
− div((Dnθ

h −Dnθ)∇(θun
h + (1− θ)un−1

h ))

+ (cnθ
h − cnθ)∇ · (θun

h + (1− θ)un−1
h )

+ (rnθ
h − rnθ)(θun

h + (1− θ)un−1
h )

}
|K ,

for all K ∈ T̃h,n, 1 ≤ n ≤ N , and edge- respectively facewise data errors

DE =
[
nE · ((Dnθ

h −Dnθ)∇(θun
h + (1− θ)un−1

h ))
]
E

for all E ∈ Ẽh,n, 1 ≤ n ≤ N . These data errors introduce an additional data error
indicator

Θn
h =


∑

K∈T̃h,n

α2
K‖DK‖2

L2(K) +
∑

E∈Ẽh,n

ε−1/2αE‖DE‖2
L2(E)


1/2

on the right-hand side of estimates (5.9) and (5.10). This data error indicator intro-
duces an additional term

N∑
n=1

τn
(
Θn

h

)2

on the right-hand sides of estimates (7.1), (8.2), and (8.7) and an additional term

τn
(
Θn

h

)2

on the right-hand sides of estimates (7.2), (8.3), and (8.8).

In equations (8.4) and (8.5) the quantities r and c must be replaced by β and
cnθ
h , respectively.

25



10. References

[1] R. A. Adams: Sobolev Spaces. Academic Press, New York, 1975
[2] H. Amann: Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory.
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