
On the constants in some inverse inequalities

for finite element functions

R. Verfürth

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

E-mail address: rv@silly.num1.ruhr-uni-bochum.de

Date: October 2004

Summary: We determine the constants in some inverse inequalities for finite element functions.
These constants are crucial for the correct calibration of a posteriori error estimators.

Key words: Inverse inequalities; finite element functions; a posteriori error estimates
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constantes sont importantes pour l’étalonnage des estimateurs d’erreur a posteriori.
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1. Introduction and main results

Adaptive finite element methods based on a posteriori error estimates have become an
undispensable tool in large scale scientific computing. Most known a posteriori error
estimates yield two-sided bounds on the error which contain multiplicative constants.
An explicit knowledge of these constants is mandatory for a correct calibration of the
a posteriori error estimates. The constants usually depend in a multiplicative way on
the norm of the differential operator and of its inverse, on the norm of suitable
quasi-interpolation operators, and on constants in certain inverse inequalities for
finite element functions. The norms of the quasi-interpolation operators have recently
been estimated explicitely [4]. It is the aim of the present analysis to determine the
constants in the inverse inequalties.

In order to describe our results, consider a d–dimensional simplex K and a
(d − 1)–dimensional face E thereof. Denote by hK and hE the diameters of K and
of E, respectively. Number the vertices of K from 0 to d such that the vertices of E
are numbered first. Denote by λK,0, . . . , λK,d the barycentric co-ordinates of K. I.e.,
λK,i is the affine function that takes the value 1 at the i-th vertex and that vanishes
at the other vertices. Set

ψK := (d+ 1)d+1
d∏

i=0

λK,i

ψE := dd
d−1∏
i=0

λK,i.

(1.1)
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The functions ψK and ψE attain their maximal value 1 at the barycentres of K and
of E, respectively.

There are constants γ1, . . . , γ5 such that the following inverse inequalities hold
for all polynomials v and σ of degree at most k in d resp. d− 1 variables defined on
K resp. E [3; Lemma 3.3]:

‖v‖L2(K) ≤ γ1 ‖ψ1/2
K v‖L2(K),

‖∇(ψKv)‖L2(K) ≤ γ2 h
−1
K ‖v‖L2(K),

‖σ‖L2(E) ≤ γ3 ‖ψ1/2
E σ‖L2(E),

‖∇(ψEσ)‖L2(K) ≤ γ4 h
−1/2
E ‖σ‖L2(E),

‖ψEσ‖L2(K) ≤ γ5 h
1/2
E ‖σ‖L2(E).

(1.2)

From the proof of (1.2) it follows that γ1, . . . , γ5 depend on the polynomial degree
k and that γ2, γ4, and γ5 in addition depend on the shape parameter hK/ρK of K.
Here, as usual, ρK denotes the diameter of the largest ball which may be inscribed
into K.

It is our aim to derive sharp bounds on the constants γ1, . . . , γ5 and to make
explicit their dependence on the parameters K, E, k, and d. To this end denote by K̂
the d–dimensional reference simplex, which has the origin and the end-points of the
unit vectors as its vertices, and by Ê the (d − 1)–dimensional face of K̂ which is in
the d-th co-ordinate plane {xd = 0}. With these notations we can prove the following
result:

1.1 Proposition. Denote by h⊥E the height of K above E. The constants γ1, . . . , γ5

in inequalities (1.2) can be bounded by

γ1 = γ̂1,

γ2 ≤
hK

ρK
γ̂2,

γ3 = γ̂3,

γ4 ≤


{

2hEh⊥E
ρ2

K

}1/2

γ̂4 if d = 2,{√
2hEh⊥E

ρ2
K

}1/2

γ̂4 if d ≥ 3,

γ5 =


{

h⊥E
hE

}1/2

γ̂5 if d = 2,{√
2h⊥E

hE

}1/2

γ̂5 if d ≥ 3.

(1.3)

Here, γ̂1, . . . , γ̂5 are the corresponding constants for the reference simplex K̂ and its
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face Ê. They can be estimated by

γ̂1 ≤ [2(k + 2)]d
[(

d

d+ 1

)d+1

d!

]1/2

,

γ̂2 ≤ d
√

2d
(
d+ 1
d

)d+1 {
1 +

1
2

√
k(k + 1)

}
,

γ̂3 ≤ [2(k + 2)]d−1

[(
d− 1
d

)d

(d− 1)!

]1/2

,

γ̂4 ≤


{

352
27 + 8

3k(k + 1)
}1/2

if d = 2,

21/4
{

9d−7
8

(2d)2d

(2d−1)2d−1 + 1
6

d2d

(d−1)2d−3 k(k + 1)
}1/2

if d ≥ 3,

γ̂5 ≤


24
√

5
125 if d = 2,

2−1/4 3
2

(
2d

2d+1

)d
1√

2d+1
if d ≥ 3.

(1.4)

We will prove the first part of Proposition 1.1 in Section 2. In Section 3 we
establish a one-dimensional analogue of the first two inequalties in (1.2). Combining
this result with a dimension-reduction argument, we will prove the second part of
Proposition 1.1. in Section 4.

2. Transformation to the reference simplex

Given a d–dimensional simplex K and a (d − 1)–dimensional face E, there is an
orientation preserving affine transformation FK : x̂ −→ bK+BK x̂ which maps K̂ onto
K and its face Ê onto E. The transformations v −→ v̂ := v◦FK and σ −→ σ̂ := σ◦FK

yield a one-to-one correspondence between polynomials v and σ of degree k in d resp.
d− 1 variables defined on K resp. E and polynomials v̂ and σ̂ of degree k in d resp.
d− 1 variables defined on K̂ resp. Ê. Denote by measd the d–dimensional Lebesgue
measure. Since ψK̂ = ψK◦FK and ψÊ = ψE◦FK , the transformation rule for integrals
yields

‖v‖L2(K) =

{
measd(K)
measd(K̂)

}1/2

‖v̂‖L2(K̂)

≤ γ̂1

{
measd(K)
measd(K̂)

}1/2

‖ψ1/2

K̂
v̂‖L2(K̂)

= γ̂1‖ψ1/2
K v‖L2(K)

3



and

‖σ‖L2(E) =

{
measd−1(E)
measd−1(Ê)

}1/2

‖σ̂‖L2(Ê)

≤ γ̂3

{
measd−1(E)
measd−1(Ê)

}1/2

‖ψ1/2

Ê
σ̂‖L2(Ê)

= γ̂3‖ψ1/2
E σ‖2L(E).

This establishes the results of Proposition 1.1 concerning γ1 and γ3.

Denote by |||B−1
K ||| the spectral norm of B−1

K . The transformation rule for integrals
and the chain rule for differentiation yield

‖∇(ψKv)‖L2(K) =

{
measd(K)
measd(K̂)

}1/2

‖B−T
K ∇x̂(ψK̂ v̂)‖L2(K̂)

≤

{
measd(K)
measd(K̂)

}1/2

|||B−1
K ||| ‖∇x̂(ψK̂ v̂)‖L2(K̂)

≤ γ̂2

{
measd(K)
measd(K̂)

}1/2

|||B−1
K ||| h−1

K̂
‖v̂‖L2(K̂)

= γ̂2|||B−1
K ||| h−1

K̂
‖v‖L2(K).

Since [1; Theorem 3.1.3]

|||B−1
K ||| ≤

hK̂

ρK

this etablishes the estimate for γ2 given in Proposition 1.1.

With the same arguments we conclude that

‖∇(ψEσ)‖L2(K) ≤

{
measd(K)
measd(K̂)

}1/2

|||B−1
K ||| ‖∇x̂(ψÊ σ̂)‖L2(Ê)

≤ γ̂4

{
measd(K)
measd(K̂)

}1/2

|||B−1
K ||| h−1/2

Ê
‖σ̂‖L2(Ê)

= γ̂4

{
measd(K)
measd(K̂)

measd−1(Ê)
measd−1(E)

}1/2

|||B−1
K ||| h−1/2

Ê
‖σ‖L2(E)

≤ γ̂4

{
measd(K)
measd(K̂)

measd−1(Ê)
measd−1(E)

h2
K̂

ρ2
K

hE

hÊ

}1/2

h
−1/2
E ‖σ‖L2(E).
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Since
dmeasd(K) = h⊥Emeasd−1(E),

dmeasd(K̂) = measd−1(Ê),

hK̂ =
√

2,

hÊ =
{

1 if d = 2,√
2 if d ≥ 3,

(2.1)

this proves the estimate for γ4 of Proposition 1.1.
The transformation rule for integrals finally yields

‖ψEσ‖L2(K) =

{
measd(K)
measd(K̂)

}1/2

‖ψÊ σ̂‖L2(Ê)

≤ γ̂5

{
measd(K)
measd(K̂)

}1/2

h
1/2

Ê
‖σ̂‖L2(Ê)

≤ γ̂5

{
measd(K)
measd(K̂)

measd−1(Ê)
measd−1(E)

hÊ

hE

}1/2

h
1/2
E ‖σ‖L2(E).

Together with (2.1) this establishes the estimate of γ5 given in Proposition 1.1.

3. Some inverse inequalities for univariate polynomials

Denote by Lk the k-th Legendre polynomial with leading coefficient 1. Consider two
integers 0 < ` ≤ k. Since (1 − x2)L′`(x) vanishes at x = ±1, integration by parts
yields ∫ 1

−1

(1− x2)L′k(x)L′`(x)dx = −
∫ 1

−1

Lk(x)
[
(1− x2)L′`(x)

]′
dx.

Since
[
(1− x2)L′`(x)

]′ is a polynomial of degree ` with leading coefficient −`(`+ 1),
the orthogonality of the Legendre polynomials implies that∫ 1

−1

(1− x2)L′k(x)L′`(x)dx =
{
k(k + 1)‖Lk‖2L2((−1,1)) if ` = k,
0 if ` < k.

(3.1)

Now consider a polynomial p of degree k. It may be written in the form

p =
k∑

`=0

α`L`.

The orthogonality of the Legendre polynomials and equation (3.1) imply that

‖p‖2L2((−1,1)) =
k∑

`=0

α2
` ‖L`‖2L2((−1,1))
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and

‖(1− x2)1/2p′‖2L2((−1,1)) =
∫ 1

−1

(1− x2)p′(x)2dx

=
k∑

`=0

α2
` `(`+ 1) ‖L`‖2L2((−1,1))

≤ k(k + 1) ‖p‖2L2((−1,1)).

This establishes:

3.1 Proposition. The following inverse inequality holds for all univariate polyno-
mials p of degree k and all integers k

‖(1− x2)1/2p′‖L2((−1,1)) ≤
√
k(k + 1) ‖p‖L2((−1,1)).

Since any open, non-void interval (a, b) may be transformed affinely to (−1, 1)
via x −→ −1 + 2x−a

b−a , we obtain from Proposition 3.1:

3.2 Corollary. The following inverse inequality holds for all intervals (a, b), all
univariate polynomials p of degree k, and all integers k

‖(x− a)1/2(b− x)1/2p′‖L2((a,b)) ≤
√
k(k + 1) ‖p‖L2((a,b)).

Denote by 1 > x1,` > . . . > x`,` > −1 the zeros of L` and by ω1,`, . . . , ω`,` the
weights of the corresponding Gaussian quadrature formula. Consider a non-negative
polynomial q of degree k. Denote by

`(k) :=
⌈
k + 3

2

⌉
the smallest integer greater than or equal to k+3

2 . Since 2`(k)− 1 ≥ k + 2, we have

∫ 1

−1

q(x)dx =
`(k)∑
i=1

ωi,`(k) q(xi,`(k)),

∫ 1

−1

(1− x2)q(x)dx =
`(k)∑
i=1

ωi,`(k) (1− x2
i,`(k)) q(xi,`(k)).

Since the weights ω1,`, . . . , ω`,` and the polynomial q are non-negative, we conclude
that ∫ 1

−1

(1− x2)q(x)dx ≥ (1− x2
1,`(k))

`(k)∑
i=1

ωi,`(k) q(xi,`(k))

= (1− x2
1,`(k))

∫ 1

−1

q(x)dx
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or – equivalently – ∫ 1

−1

q(x)dx ≤ 1
1− x2

1,`(k)

∫ 1

−1

(1− x2)q(x)dx.

Since [2; Theorem VI.6.21.3]

x1,`(k) ≤ cos
(

π

2`(k)

)
and since

sin z ≥ 2
π
z on [0,

π

2
],

this establishes:

3.3 Proposition. The following inverse inequality holds for all univariate non-
negative polynomials q of degree k and all integers k∫ 1

−1

q(x)dx ≤
⌈
k + 3

2

⌉2 ∫ 1

−1

(1− x2)q(x)dx.

Invoking the affine transformation of a given interval (a, b) to (−1, 1), Proposition
3.3 leads to:

3.4 Corollary. The following inverse inequality holds for all intervals (a, b), all
univariate non-negative polynomials q of degree k, and all integers k∫ b

a

q(x)dx ≤
⌈
k + 3

2

⌉2 ( 2
b− a

)2 ∫ b

a

(x− a)(b− x)q(x)dx.

Since the square of a polynomial of degree k is a non-negative polynomial of
degree 2k and since ⌈

2k + 3
2

⌉
= k + 2,

Corollary 3.4 finally implies:

3.5 Corollary. The following inverse inequality holds for all intervals (a, b), all
univariate polynomials p of degree k, and all integers k

‖p‖L2((a,b)) ≤
2

b− a
(k + 2) ‖(x− a)1/2(b− x)1/2p‖L2((a,b)).
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4. Inverse inequalities on the reference simplex

In this section we want to establish the second part of Proposition 1.1. Since our main
tool is a dimension-reduction argument, we will sometimes label quantities with an
index d in order to stress their dependence on the space dimension. Throughout this
section v and σ denote generic polynomials of degree k in d resp. d − 1 variables
defined on K̂ resp. Ê. We decompose vectors x ∈ IRd in the form x = (x′, xd) with
x′ ∈ IRd−1.

In order to estimate γ̂1, we first observe that the interval [0, 1] is the 1–dimen-
sional reference simplex K̂1 and that the function 4x(1 − x) is the corresponding
function ψK̂1

of (1.1). Corollary 3.5 therefore yields

γ̂1,1 ≤ k + 2. (4.1)

Now, fix a d ≥ 2. For any point x ∈ K̂d we have

1 ≥
d∑

i=1

xi ≥ d min
1≤i≤d

xi.

This implies that

K̂d ⊂
d⋃

i=1

K̂d,i (4.2)

where

K̂d,i := K̂d ∩
{
x ∈ IRd : xi ≤

1
d

}
.

Assume that we dispose of a constant δd such that

‖v‖L2(K̂d,d) ≤ δd‖ψ1/2

K̂d
v‖L2(K̂d) (4.3)

holds for all polynomials v. Since the right-hand side of (4.3) is invariant under
permutations of the co-ordinates, Equations (4.2) and (4.3) imply that

‖v‖L2(K̂d) ≤

{
d∑

i=1

‖v‖2
L2(K̂d,i)

}1/2

≤

{
d∑

i=1

δ2d ‖ψ
1/2

K̂d
v‖2

L2(K̂d)

}1/2

=
√
d δd ‖ψ1/2

K̂d
v‖L2(K̂d)

holds for all polynomials v. This yields

γ̂1,d ≤
√
d δd. (4.4)
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In order to determine δd we invoke Fubini’s theorem:

‖v‖2
L2(K̂d,d)

=
∫ 1/d

0

{∫
K̂d∩{xd=t}

v(x)2dx

}
dt.

Fix a t ∈
[
0, 1

d

]
. Since K̂d∩{xd = t} is the image of the (d−1)–dimensional reference

simplex K̂d−1 under the transformation IRd−1 3 x′ −→ ((1− t)x′, t) ∈ IRd, we have∫
K̂d∩{xd=t}

v(x)2dx = (1− t)d−1

∫
K̂d−1

v((1− t)x′, t)2dx′.

Since w(x′) := v((1− t)x′, t) is a polynomial of degree k in d− 1 variables on K̂d−1,
we may apply Proposition 1.1 in dimension d− 1 and obtain∫

K̂d−1

v((1− t)x′, t)2dx′ ≤ γ̂2
1,d−1

∫
K̂d−1

ψK̂d−1
(x′) v((1− t)x′, t)2dx′.

Since

ψK̂d−1
(x′) = dd

d−1∏
i=0

λK̂d−1,i(x
′)

= dd
d−1∏
i=0

{
λK̂d,i((1− t)x′, t)

1
1− t

}
,

we arrive at

‖v‖2
L2(K̂d,d)

≤ γ̂2
1,d−1 d

d

∫ 1/d

0

{∫
K̂d∩{xd=t}

(1− t)−d v(x)2
d−1∏
i=0

λK̂d,i(x)dx

}
dt.

Since

p(t) :=
∫

K̂d∩{xd=t}
(1− t)−d v(x)2

d−1∏
i=0

λK̂d,i(x)dx

is a positive univariate polynomial of degree 2k, we obtain from Corollary 3.4∫ 1/d

0

p(t)dt ≤
⌈

2k + 3
2

⌉2 ∫ 1/d

0

(2d)2 t (
1
d
− t) p(t)dt

≤ (k + 2)2 (2d)2
1
d

∫ 1/d

0

t p(t)dt.

Since t = λK̂d|{xd=t}, this leads to

‖v‖2
L2(K̂d,d)

≤ γ̂2
1,d−1 d

d (k + 2)2 4d
∫ 1/d

0

{∫
K̂d∩{xd=t}

(1− t)−d v(x)2 t
d−1∏
i=0

λK̂d,i(x)dx

}
dt

≤ γ̂2
1,d−1 d

d (k + 2)2 4d
(

d

d− 1

)d ∫
K̂d

v(x)2
d∏

i=0

λK̂d,i(x)dx

= γ̂2
1,d−1 d

d (k + 2)2 4d
(

d

d− 1

)d 1
(d+ 1)d+1

∫
K̂d

v(x)2 ψK̂d
(x)dx.
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Hence, we have shown that

δd ≤ 2(k + 2) γ̂1,d−1

[
dd+1 dd

(d− 1)d (d+ 1)d+1

]1/2

.

Together with (4.4) this yields the recursion

γ̂1,d ≤ 2(k + 2) γ̂1,d−1

[
d2d+2

(d− 1)d (d+ 1)d+1

]1/2

. (4.5)

From estimates (4.1) and (4.5) we conclude by induction that

γ̂1,d ≤
[
2(k + 2)

]d [( d

d+ 1

)d+1

d!

]1/2

.

This establishes the first inequality in (1.4)

Since Êd ' K̂d−1 and since ψÊd|Êd
= ψK̂d−1

, we have

γ̂3,d = γ̂1,d−1.

This establishes the third inequality in (1.4).

We now turn to the constant γ̂2. From the triangle inequality we have

‖∂d(ψK̂d
v)‖L2(K̂d) ≤ ‖ψK̂d

∂dv‖L2(K̂d) + ‖v ∂dψK̂d
‖L2(K̂d). (4.6)

Here, ∂i denotes the partial derivative w.r.t. the i-th variable.
Consider first the first term on the right-hand side of (4.6). The function

ϕ(x) =

(
1−

d∑
i=1

xi

)
xd

d−1∏
i=1

x2
i

is non-negative on K̂d and vanishes on the boundary ∂K̂d. Hence it attains its max-
imum at an interior point of K̂d. The partial derivatives of ϕ are

∂iϕ =

2− 3xi −
d∑

j=1
j 6=i

2xj

 xi xd

d−1∏
j=1
j 6=i

x2
j , 1 ≤ i ≤ d− 1,

∂dϕ =

1−
d−1∑
j=1

xj − 2xd

 d−1∏
j=1

x2
j .

By symmetry all critical point of ϕ are therefore of the form (a, . . . , a, b) and must
satisfy

0 = 2− 2b− (2d− 1)a

0 = 1− 2b− (d− 1)a.
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This yields

a =
1
d
, b =

1
2d

and therefore
max
x∈K̂d

|ϕ(x)| = 1
4d2d

.

Since

ψ2
K̂d

= (d+ 1)2(d+1)

(
1−

d∑
i=1

xi

)2 d∏
i=1

x2
i

= (d+ 1)2(d+1)ϕ(x) xd

(
1−

d∑
i=1

xi

)
,

this estimate implies that

‖ψK̂d
∂dv‖2L2(K̂d)

= (d+ 1)2(d+1)

∫
K̂d

ϕ(x) xd

(
1−

d∑
i=1

xi

)
|∂dv|2dx

≤ (d+ 1)2(d+1)

4d2d

∫
K̂d

xd

(
1−

d∑
i=1

xi

)
|∂dv|2dx.

Denote by |.|1 the `1-norm on IRd. From Fubini’s theorem and Corollary 3.2 we
conclude that ∫

K̂d

xd

(
1−

d∑
i=1

xi

)
|∂dv|2dx

=
∫

K̂d−1

{∫ 1−|x′|1

0

xd (1− |x′|1 − xd) |∂dv(x′, xd)|2dxd

}
dx′

≤
∫

K̂d−1

{
k(k + 1)

∫ 1−|x′|1

0

v(x′, xd)2dxd

}
dx′

≤ k(k + 1)
∫

K̂d

v(x)2dx.

Combining the last two estimates, we obtain

‖ψK̂d
∂dv‖L2(K̂d) ≤

(d+ 1)d+1

2dd

√
k(k + 1) ‖v‖L2(K̂d). (4.7)

Now we turn to the second term on the right-hand side of (4.6). Consider the function

ϕ(x) =

(
1− 2xd −

d−1∑
i=1

xi

)
d−1∏
i=1

xi.
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Since

∂dϕ = −2
d−1∏
i=1

xi,

the function ϕ attains its extrema on ∂K̂d. Obviously it vanishes on the faces K̂d ∩
{xi = 0} with 1 ≤ i ≤ d − 1. On the face Êd = K̂d ∩ {xd = 0} it obviously
coincides with d−dψÊd

and is therefore bounded in absolute value by d−d. On the
face K̂d ∩ {|x|1 = 1} we finally have ϕ = −d−dψÊd

. Therefore, |ϕ| does not exceed
d−d on this face, too. In conclusion we have

max
x∈K̂d

|ϕ(x)| = d−d.

Since
∂dψK̂d

= (d+ 1)d+1ϕ,

this proves that

‖v ∂dψK̂d
‖L2(K̂d) ≤

(d+ 1)d+1

dd
‖v‖L2(K̂d). (4.8)

From (4.6) – (4.8) we obtain

‖∂d(ψK̂d
v)‖L2(K̂d) ≤

(d+ 1)d+1

dd

{
1 +

1
2

√
k(k + 1)

}
‖v‖L2(K̂d).

Since the ratio ‖∇(ψK̂d
v)‖L2(K̂d)/‖v‖L2(K̂d) is invariant under permutations of the

co-ordinates and since hK̂d
=
√

2, this proves that

γ̂2 ≤
√

2d
(d+ 1)d+1

dd

{
1 +

1
2

√
k(k + 1)

}
and thus establishes the second inequality of (1.4).

Next we estimate the constant γ̂4. Here, we must treat the derivative ∂d and the
remaining derivatives seperately.
Since σ and the barycentric co-ordinates λK̂d,1, . . . , λK̂d,d−1 do not depend on xd, we
obtain

∂d(ψÊd
σ) = dd (∂dλK̂d,0)

d−1∏
i=1

λK̂d,i σ

= − dd
d−1∏
i=1

λK̂d,i σ.

Together with Fubini’s theorem this yields

‖∂d(ψÊd
σ)‖2

L2(K̂d)
= d2d

∫
Êd

{∫ 1−|x′|1

0

d−1∏
i=1

λ2
K̂d,i

σ2dxd

}
dx′

= d2d

∫
Êd

(1− |x′|1)
d−1∏
i=1

λ2
K̂d,i

σ2dx′.
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Consider the function

ϕ(x′) = (1− |x′|1)
d−1∏
i=1

λ2
K̂d,i

=

(
1−

d−1∑
i=1

xi

)
d−1∏
i=1

x2
i

on Êd ' K̂d−1. It is non-negative and vanishes on the boundary ∂K̂d−1. Hence it
attains its maximum at an interior point of K̂d−1. The derivatives of ϕ are

∂iϕ =

2− 2
d−1∑
j=1
j 6=i

xj − 3xi

 xi

d−1∏
j=1
j 6=i

x2
j , 1 ≤ i ≤ d− 1.

By symmetry, any critical point of ϕ therefore is of the form (a, . . . , a) and satisfies

2− (2d− 1)a = 0.

This yields

a =
2

2d− 1
and therefore

max
x′∈K̂d−1

|ϕ(x′)| = 2d− 1
4

(
2

2d− 1

)2d

.

Hence, we obtain

‖∂d(ψÊd
σ)‖2

L2(K̂d)
≤ 2d− 1

4

(
2d

2d− 1

)2d

‖σ‖2
L2(Êd)

. (4.9)

For the estimation of the remaining derivatives it suffices to consider the derivative
w.r.t. x1 since the ratio ‖∇(ψÊd

σ)‖L2(K̂d)/‖σ‖L2(Êd) is invariant under permutations
of the first d− 1 co-ordinates.
From the triangle inequality we have

‖∂1(ψÊd
σ)‖L2(K̂d) ≤ ‖ψÊd

∂1σ‖L2(K̂d) + ‖σ∂1ψÊd
‖L2(K̂d). (4.10)

For the first term on the right-hand side of (4.10) we obtain from Fubini’s theorem

‖ψÊd
∂1σ‖2L2(K̂d)

= d2d

∫
Êd

{∫ 1−|x′|1

0

(1− |x′|1 − xd)2
d−1∏
i=1

x2
i |∂1σ(x′)|2dxd

}
dx′

=
1
3
d2d

∫
Êd

(1− |x′|1)3
d−1∏
i=1

x2
i |∂1σ(x′)|2dx′.

Since Êd ' K̂d−1 and since

d2d (1− |x′|1)3
d−1∏
i=1

x2
i ≤ ψK̂d−1

(x′)2 on Êd
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we may apply estimate (4.7) in dimension d− 1 and get

‖ψÊd
∂1σ‖L2(K̂d) ≤

√
3

6
dd

(d− 1)d−1

√
k(k + 1) ‖σ‖L2(Êd). (4.11)

Since

∂1ψÊd
= dd (1− |x′|1 − x1 − xd)

d−1∏
i=2

xi

we obtain by Fubini’s theorem for the second term on the right-hand side of (4.10)

‖σ∂1ψÊd
‖2

L2(K̂d)
= d2d

∫
Êd

{∫ 1−|x′|1

0

(1− |x′|1 − x1 − xd)2
d−1∏
i=2

x2
i σ(x′)2dxd

}
dx′

=
1
3
d2d

∫
Êd

[
(1− |x′|1 − x1)3 + x3

1

] d−1∏
i=2

x2
i σ(x′)2dx′.

Define the function ϕ on [0, 1] by

ϕ(t) = (1− 2t)3 + t3.

An elementary calculation yields

0 < ϕ(t) ≤ 1 ∀t ∈ [0, 1].

If d = 2, we therefore have

(1− |x′|1 − x1)3 + x3
1 = ϕ(x1) ≤ 1 on Ê2.

If d ≥ 3, we set for abreviation

z :=
d−1∑
i=2

xi and t :=
x1

1− z
.

For any interior (w.r.t. IRd−1) point of Êd, we then conclude that

(1− |x′|1 − x1)3 + x3
1 = (1− z)3 ϕ(t) ≤ (1− z)3.

By continuity this also holds on the boundary of Êd. Hence, we arrive at

‖σ∂1ψÊd
‖2

L2(K̂d)
=

1
3
d2d

∫
Êd

(
1−

d−1∑
i=2

xi

)3 d−1∏
i=2

x2
i σ(x′)2dx′. (4.12)
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If d = 2, we obviously have (
1−

d−1∑
i=2

xi

)3 d−1∏
i=2

x2
i = 1.

If d ≥ 3, we must consider the function

ϕ(y) =

(
1−

d−2∑
i=1

yi

)3 d−2∏
i=1

y2
i

on K̂d−2. Since ϕ vanishes on the boundary ∂K̂d−2, it attains its maximum at an
interior point. Since its derivatives are

∂jϕ =

(
2− 2

d−2∑
i=1

yi − 3yj

) (
1−

d−2∑
i=1

yi

)2

yj

d−2∏
i=1
i6=j

y2
i , 1 ≤ j ≤ d− 2,

all critical points are of the form (a, . . . , a) and satisfy

0 = 2− (2d− 1)a.

Hence, we obtain

max
y∈K̂d−2

|ϕ(y)| = 27
16

(
2

2d− 1

)2d

(2d− 1). (4.13)

Obviously, this estimate also holds for d = 2.
Combining this with inequality (4.12), we obtain

‖σ∂1ψÊd
‖L2(K̂d) ≤

3
4

(
2d

2d− 1

)d √
2d− 1 ‖σ‖L2(Êd). (4.14)

From estimates (4.9) – (4.11) and (4.14) and the inequality (a+ b)2 ≤ 2a2 + 2b2 we
finally conclude that

‖∇(ψÊd
σ)‖L2(K̂d) ≤

{
2d− 1

4

(
2d

2d− 1

)2d

+ (d− 1)
[√3

6
dd

(d− 1)d−1

√
k(k + 1)

+
3
4

(
2d

2d− 1

)d√
2d− 1

]2}1/2

‖σ‖L2(Êd)

≤

{
9d− 7

8
(2d− 1)

(
2d

2d− 1

)2d

+
(d− 1)3

6

(
d

d− 1

)2d

k(k + 1)

}1/2

‖σ‖L2(Êd).
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Since

hÊd
=
{

1 if d = 2,√
2 if d ≥ 3.

This proves the estimate of γ̂4 of Proposition 1.1.

Finally, we turn to the constant γ̂5. From Funbini’s theorem we have

‖ψÊd
σ‖2

L2(K̂d)
= d2d

∫
Êd

{∫ 1−|x′|1

0

(1− |x′|1 − xd)2
d−1∏
i=1

x2
i σ(x′)2dxd

}
dx′

=
1
3
d2d

∫
Êd

(1− |x′|1)3
d−1∏
i=1

x2
i σ(x′)2dx′.

From estimate (4.13) we conclude that

max
x′∈Êd

(1− |x′|1)3
d−1∏
i=1

x2
i =

27
16

(
2

2d+ 1

)2d+2

(2d+ 1).

This implies that

‖ψÊd
σ‖L2(K̂d) ≤

3
2

(
2d

2d+ 1

)d 1√
2d+ 1

‖σ‖L2(Êd).

Recalling the size of hÊd
this proves the last estimate of Proposition 1.1.
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