On the constants in some inverse inequalities for finite element functions

R. Verfürth
Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
E-mail address: rv@silly.num1.ruhr-uni-bochum.de

Date: October 2004

Abstract

Summary: We determine the constants in some inverse inequalities for finite element functions. These constants are crucial for the correct calibration of a posteriori error estimators.

Key words: Inverse inequalities; finite element functions; a posteriori error estimates
Résumé: Pour des éléments finis on calcule les constantes dans certaines inégalités inverses. Cettes constantes sont importantes pour l'étalonnage des estimateurs d'erreur a posteriori.
Mots clefs: Inégalités inverses; éléments finis; estimation d'erreur a posteriori
AMS Subject classification: 65N30, 65N15, 65J15

1. Introduction and main results

Adaptive finite element methods based on a posteriori error estimates have become an undispensable tool in large scale scientific computing. Most known a posteriori error estimates yield two-sided bounds on the error which contain multiplicative constants. An explicit knowledge of these constants is mandatory for a correct calibration of the a posteriori error estimates. The constants usually depend in a multiplicative way on the norm of the differential operator and of its inverse, on the norm of suitable quasi-interpolation operators, and on constants in certain inverse inequalities for finite element functions. The norms of the quasi-interpolation operators have recently been estimated explicitely [4]. It is the aim of the present analysis to determine the constants in the inverse inequalties.

In order to describe our results, consider a d-dimensional simplex K and a (d-1)-dimensional face E thereof. Denote by h_{K} and h_{E} the diameters of K and of E, respectively. Number the vertices of K from 0 to d such that the vertices of E are numbered first. Denote by $\lambda_{K, 0}, \ldots, \lambda_{K, d}$ the barycentric co-ordinates of K. I.e., $\lambda_{K, i}$ is the affine function that takes the value 1 at the i-th vertex and that vanishes at the other vertices. Set

$$
\begin{align*}
\psi_{K} & :=(d+1)^{d+1} \prod_{i=0}^{d} \lambda_{K, i} \tag{1.1}\\
\psi_{E} & :=d^{d} \prod_{i=0}^{d-1} \lambda_{K, i} .
\end{align*}
$$

The functions ψ_{K} and ψ_{E} attain their maximal value 1 at the barycentres of K and of E, respectively.

There are constants $\gamma_{1}, \ldots, \gamma_{5}$ such that the following inverse inequalities hold for all polynomials v and σ of degree at most k in d resp. $d-1$ variables defined on K resp. E [3; Lemma 3.3]:

$$
\begin{align*}
\|v\|_{L^{2}(K)} & \leq \gamma_{1}\left\|\psi_{K}^{1 / 2} v\right\|_{L^{2}(K)}, \\
\left\|\nabla\left(\psi_{K} v\right)\right\|_{L^{2}(K)} & \leq \gamma_{2} h_{K}^{-1}\|v\|_{L^{2}(K)}, \\
\|\sigma\|_{L^{2}(E)} & \leq \gamma_{3}\left\|\psi_{E}^{1 / 2} \sigma\right\|_{L^{2}(E)}^{-1 / 2}, \tag{1.2}\\
\left\|\nabla\left(\psi_{E} \sigma\right)\right\|_{L^{2}(K)} & \leq \gamma_{4} h_{E}^{-1 / 2}\|\sigma\|_{L^{2}(E)}, \\
\left\|\psi_{E} \sigma\right\|_{L^{2}(K)} & \leq \gamma_{5} h_{E}^{1 / 2}\|\sigma\|_{L^{2}(E)} .
\end{align*}
$$

From the proof of (1.2) it follows that $\gamma_{1}, \ldots, \gamma_{5}$ depend on the polynomial degree k and that γ_{2}, γ_{4}, and γ_{5} in addition depend on the shape parameter h_{K} / ρ_{K} of K. Here, as usual, ρ_{K} denotes the diameter of the largest ball which may be inscribed into K.

It is our aim to derive sharp bounds on the constants $\gamma_{1}, \ldots, \gamma_{5}$ and to make explicit their dependence on the parameters K, E, k, and d. To this end denote by \hat{K} the d-dimensional reference simplex, which has the origin and the end-points of the unit vectors as its vertices, and by \hat{E} the $(d-1)$-dimensional face of \hat{K} which is in the d-th co-ordinate plane $\left\{x_{d}=0\right\}$. With these notations we can prove the following result:
1.1 Proposition. Denote by h_{E}^{\perp} the height of K above E. The constants $\gamma_{1}, \ldots, \gamma_{5}$ in inequalities (1.2) can be bounded by

$$
\begin{align*}
& \gamma_{1}=\hat{\gamma}_{1}, \\
& \gamma_{2} \leq \frac{h_{K}}{\rho_{K}} \hat{\gamma}_{2}, \\
& \gamma_{3}=\hat{\gamma}_{3}, \\
& \gamma_{4} \leq \begin{cases}\left\{2 \frac{h_{E} h_{E}^{\perp}}{\rho_{K}^{2}}\right\}^{1 / 2} \hat{\gamma}_{4} \quad \text { if } d=2, \\
\left\{\sqrt{2} \frac{h_{E} h_{E}^{\perp}}{\rho_{K}^{2}}\right\}^{1 / 2} \hat{\gamma}_{4} \quad \text { if } d \geq 3,\end{cases} \tag{1.3}\\
& \gamma_{5}= \begin{cases}\left\{\frac{h_{E}^{\perp}}{h_{E}}\right\}^{1 / 2} \hat{\gamma}_{5} & \text { if } d=2, \\
\left\{\sqrt{2} \frac{h_{E}^{\perp}}{h_{E}}\right\}^{1 / 2} \hat{\gamma}_{5} & \text { if } d \geq 3 .\end{cases}
\end{align*}
$$

Here, $\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{5}$ are the corresponding constants for the reference simplex \hat{K} and its
face \hat{E}. They can be estimated by

$$
\begin{align*}
& \hat{\gamma}_{1} \leq[2(k+2)]^{d}\left[\left(\frac{d}{d+1}\right)^{d+1} d!\right]^{1 / 2}, \\
& \hat{\gamma}_{2} \leq d \sqrt{2 d}\left(\frac{d+1}{d}\right)^{d+1}\left\{1+\frac{1}{2} \sqrt{k(k+1)}\right\}, \\
& \hat{\gamma}_{3} \leq[2(k+2)]^{d-1}\left[\left(\frac{d-1}{d}\right)^{d}(d-1)!\right]^{1 / 2}, \tag{1.4}\\
& \hat{\gamma}_{4} \leq\left\{\begin{array}{ll}
\left\{\frac{352}{27}+\frac{8}{3} k(k+1)\right\}^{1 / 2} & \text { if } d=2, \\
2^{1 / 4}\left\{\frac{9 d-7}{8} \frac{(2 d)^{2 d}}{(2 d-1)^{2 d-1}}+\frac{1}{6} \frac{d^{2 d}}{(d-1)^{2 d-3}} k(k+1)\right\}^{1 / 2} & \text { if } d \geq 3, \\
\hat{\gamma}_{5} \leq \begin{cases}\frac{24 \sqrt{5}}{125} & \text { if } d=2, \\
2^{-1 / 4} \frac{3}{2}\left(\frac{2 d}{2 d+1}\right)^{d} \frac{1}{\sqrt{2 d+1}} & \text { if } d \geq 3 .\end{cases}
\end{array} .\right.
\end{align*}
$$

We will prove the first part of Proposition 1.1 in Section 2. In Section 3 we establish a one-dimensional analogue of the first two inequalties in (1.2). Combining this result with a dimension-reduction argument, we will prove the second part of Proposition 1.1. in Section 4.

2. Transformation to the reference simplex

Given a d-dimensional simplex K and a $(d-1)$-dimensional face E, there is an orientation preserving affine transformation $F_{K}: \hat{x} \longrightarrow b_{K}+B_{K} \hat{x}$ which maps \hat{K} onto K and its face \hat{E} onto E. The transformations $v \longrightarrow \hat{v}:=v \circ F_{K}$ and $\sigma \longrightarrow \hat{\sigma}:=\sigma \circ F_{K}$ yield a one-to-one correspondence between polynomials v and σ of degree k in d resp. $d-1$ variables defined on K resp. E and polynomials \hat{v} and $\hat{\sigma}$ of degree k in d resp. $d-1$ variables defined on \hat{K} resp. \hat{E}. Denote by meas ${ }_{d}$ the d-dimensional Lebesgue measure. Since $\psi_{\hat{K}}=\psi_{K} \circ F_{K}$ and $\psi_{\hat{E}}=\psi_{E} \circ F_{K}$, the transformation rule for integrals yields

$$
\begin{aligned}
\|v\|_{L^{2}(K)} & =\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2}\|\hat{v}\|_{L^{2}(\hat{K})} \\
& \leq \hat{\gamma}_{1}\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2}\left\|\psi_{\hat{K}}^{1 / 2} \hat{v}\right\|_{L^{2}(\hat{K})} \\
& =\hat{\gamma}_{1}\left\|\psi_{K}^{1 / 2} v\right\|_{L^{2}(K)}
\end{aligned}
$$

and

$$
\begin{aligned}
\|\sigma\|_{L^{2}(E)} & =\left\{\frac{\operatorname{meas}_{d-1}(E)}{\operatorname{meas}_{d-1}(\hat{E})}\right\}^{1 / 2}\|\hat{\sigma}\|_{L^{2}(\hat{E})} \\
& \leq \hat{\gamma}_{3}\left\{\frac{\operatorname{meas}_{d-1}(E)}{\operatorname{meas}_{d-1}(\hat{E})}\right\}^{1 / 2}\left\|\psi_{\hat{E}}^{1 / 2} \hat{\sigma}\right\|_{L^{2}(\hat{E})} \\
& =\hat{\gamma}_{3}\left\|\psi_{E}^{1 / 2} \sigma\right\|_{L}^{2}(E) .
\end{aligned}
$$

This establishes the results of Proposition 1.1 concerning γ_{1} and γ_{3}.
Denote by $\left|\left|\left|B_{K}^{-1}\right|\right|\right|$ the spectral norm of B_{K}^{-1}. The transformation rule for integrals and the chain rule for differentiation yield

$$
\begin{aligned}
\left\|\nabla\left(\psi_{K} v\right)\right\|_{L^{2}(K)} & =\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2}\left\|B_{K}^{-T} \nabla_{\hat{x}}\left(\psi_{\hat{K}} \hat{v}\right)\right\|_{L^{2}(\hat{K})} \\
& \leq\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2}\left\|B_{K}^{-1}\right\|\| \| \nabla_{\hat{x}}\left(\psi_{\hat{K}} \hat{v}\right) \|_{L^{2}(\hat{K})} \\
& \leq \hat{\gamma}_{2}\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2}\left\|B_{K}^{-1}\right\| h_{\hat{K}}^{-1}\|\hat{v}\|_{L^{2}(\hat{K})} \\
& =\hat{\gamma}_{2}\| \| B_{K}^{-1}\left\|h_{\hat{K}}^{-1}\right\| v \|_{L^{2}(K)} .
\end{aligned}
$$

Since [1; Theorem 3.1.3]

$$
\left\|\left|B_{K}^{-1} \|\right| \leq \frac{h_{\hat{K}}}{\rho_{K}}\right.
$$

this etablishes the estimate for γ_{2} given in Proposition 1.1.
With the same arguments we conclude that

$$
\begin{aligned}
\left\|\nabla\left(\psi_{E} \sigma\right)\right\|_{L^{2}(K)} & \leq\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2}\left\|B_{K}^{-1}\right\|\| \| \nabla_{\hat{x}}\left(\psi_{\hat{E}} \hat{\sigma}\right) \|_{L^{2}(\hat{E})} \\
& \leq \hat{\gamma}_{4}\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2}\left\|B_{K}^{-1}\right\|\left\|h_{\hat{E}}^{-1 / 2}\right\| \hat{\sigma} \|_{L^{2}(\hat{E})} \\
& =\hat{\gamma}_{4}\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})} \frac{\operatorname{meas}_{d-1}(\hat{E})}{\operatorname{meas}_{d-1}(E)}\right\}^{1 / 2}\left\|B_{K}^{-1}\right\|\left\|h_{\hat{E}}^{-1 / 2}\right\| \sigma \|_{L^{2}(E)} \\
& \leq \hat{\gamma}_{4}\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})} \frac{\operatorname{meas}_{d-1}(\hat{E})}{\operatorname{meas}_{d-1}(E)} \frac{h_{\hat{K}}^{2}}{\rho_{K}^{2}} \frac{h_{E}}{h_{\hat{E}}}\right\}^{1 / 2} h_{E}^{-1 / 2}\|\sigma\|_{L^{2}(E)} .
\end{aligned}
$$

Since

$$
\begin{align*}
d \operatorname{meas}_{d}(K) & =h_{E}^{\perp} \operatorname{meas}_{d-1}(E), \\
d \operatorname{meas}_{d}(\hat{K}) & =\operatorname{meas}_{d-1}(\hat{E}), \\
h_{\hat{K}} & =\sqrt{2}, \tag{2.1}\\
h_{\hat{E}} & = \begin{cases}1 & \text { if } d=2, \\
\sqrt{2} & \text { if } d \geq 3,\end{cases}
\end{align*}
$$

this proves the estimate for γ_{4} of Proposition 1.1.
The transformation rule for integrals finally yields

$$
\begin{aligned}
\left\|\psi_{E} \sigma\right\|_{L^{2}(K)} & =\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2}\left\|\psi_{\hat{E}} \hat{\sigma}\right\|_{L^{2}(\hat{E})} \\
& \leq \hat{\gamma}_{5}\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})}\right\}^{1 / 2} h_{\hat{E}}^{1 / 2}\|\hat{\sigma}\|_{L^{2}(\hat{E})} \\
& \leq \hat{\gamma}_{5}\left\{\frac{\operatorname{meas}_{d}(K)}{\operatorname{meas}_{d}(\hat{K})} \frac{\operatorname{meas}_{d-1}(\hat{E})}{\operatorname{meas}_{d-1}(E)} \frac{h_{\hat{E}}}{h_{E}}\right\}^{1 / 2} h_{E}^{1 / 2}\|\sigma\|_{L^{2}(E)}
\end{aligned}
$$

Together with (2.1) this establishes the estimate of γ_{5} given in Proposition 1.1.

3. Some inverse inequalities for univariate polynomials

Denote by L_{k} the k-th Legendre polynomial with leading coefficient 1. Consider two integers $0<\ell \leq k$. Since $\left(1-x^{2}\right) L_{\ell}^{\prime}(x)$ vanishes at $x= \pm 1$, integration by parts yields

$$
\int_{-1}^{1}\left(1-x^{2}\right) L_{k}^{\prime}(x) L_{\ell}^{\prime}(x) d x=-\int_{-1}^{1} L_{k}(x)\left[\left(1-x^{2}\right) L_{\ell}^{\prime}(x)\right]^{\prime} d x
$$

Since $\left[\left(1-x^{2}\right) L_{\ell}^{\prime}(x)\right]^{\prime}$ is a polynomial of degree ℓ with leading coefficient $-\ell(\ell+1)$, the orthogonality of the Legendre polynomials implies that

$$
\int_{-1}^{1}\left(1-x^{2}\right) L_{k}^{\prime}(x) L_{\ell}^{\prime}(x) d x= \begin{cases}k(k+1)\left\|L_{k}\right\|_{L^{2}((-1,1))}^{2} & \text { if } \ell=k, \tag{3.1}\\ 0 & \text { if } \ell<k\end{cases}
$$

Now consider a polynomial p of degree k. It may be written in the form

$$
p=\sum_{\ell=0}^{k} \alpha_{\ell} L_{\ell} .
$$

The orthogonality of the Legendre polynomials and equation (3.1) imply that

$$
\|p\|_{L^{2}((-1,1))}^{2}=\sum_{\ell=0}^{k} \alpha_{\ell}^{2}\left\|L_{\ell}\right\|_{L^{2}((-1,1))}^{2}
$$

and

$$
\begin{aligned}
\left\|\left(1-x^{2}\right)^{1 / 2} p^{\prime}\right\|_{L^{2}((-1,1))}^{2} & =\int_{-1}^{1}\left(1-x^{2}\right) p^{\prime}(x)^{2} d x \\
& =\sum_{\ell=0}^{k} \alpha_{\ell}^{2} \ell(\ell+1)\left\|L_{\ell}\right\|_{L^{2}((-1,1))}^{2} \\
& \leq k(k+1)\|p\|_{L^{2}((-1,1))}^{2} .
\end{aligned}
$$

This establishes:
3.1 Proposition. The following inverse inequality holds for all univariate polynomials p of degree k and all integers k

$$
\left\|\left(1-x^{2}\right)^{1 / 2} p^{\prime}\right\|_{L^{2}((-1,1))} \leq \sqrt{k(k+1)}\|p\|_{L^{2}((-1,1))}
$$

Since any open, non-void interval (a, b) may be transformed affinely to $(-1,1)$ via $x \longrightarrow-1+2 \frac{x-a}{b-a}$, we obtain from Proposition 3.1:
3.2 Corollary. The following inverse inequality holds for all intervals (a, b), all univariate polynomials p of degree k, and all integers k

$$
\left\|(x-a)^{1 / 2}(b-x)^{1 / 2} p^{\prime}\right\|_{L^{2}((a, b))} \leq \sqrt{k(k+1)}\|p\|_{L^{2}((a, b))}
$$

Denote by $1>x_{1, \ell}>\ldots>x_{\ell, \ell}>-1$ the zeros of L_{ℓ} and by $\omega_{1, \ell}, \ldots, \omega_{\ell, \ell}$ the weights of the corresponding Gaussian quadrature formula. Consider a non-negative polynomial q of degree k. Denote by

$$
\ell(k):=\left\lceil\frac{k+3}{2}\right\rceil
$$

the smallest integer greater than or equal to $\frac{k+3}{2}$. Since $2 \ell(k)-1 \geq k+2$, we have

$$
\begin{aligned}
\int_{-1}^{1} q(x) d x & =\sum_{i=1}^{\ell(k)} \omega_{i, \ell(k)} q\left(x_{i, \ell(k)}\right), \\
\int_{-1}^{1}\left(1-x^{2}\right) q(x) d x & =\sum_{i=1}^{\ell(k)} \omega_{i, \ell(k)}\left(1-x_{i, \ell(k)}^{2}\right) q\left(x_{i, \ell(k)}\right) .
\end{aligned}
$$

Since the weights $\omega_{1, \ell}, \ldots, \omega_{\ell, \ell}$ and the polynomial q are non-negative, we conclude that

$$
\begin{aligned}
\int_{-1}^{1}\left(1-x^{2}\right) q(x) d x & \geq\left(1-x_{1, \ell(k)}^{2}\right) \sum_{i=1}^{\ell(k)} \omega_{i, \ell(k)} q\left(x_{i, \ell(k)}\right) \\
& =\left(1-x_{1, \ell(k)}^{2}\right) \int_{-1}^{1} q(x) d x
\end{aligned}
$$

or - equivalently -

$$
\int_{-1}^{1} q(x) d x \leq \frac{1}{1-x_{1, \ell(k)}^{2}} \int_{-1}^{1}\left(1-x^{2}\right) q(x) d x .
$$

Since [2; Theorem VI.6.21.3]

$$
x_{1, \ell(k)} \leq \cos \left(\frac{\pi}{2 \ell(k)}\right)
$$

and since

$$
\sin z \geq \frac{2}{\pi} z \quad \text { on }\left[0, \frac{\pi}{2}\right]
$$

this establishes:
3.3 Proposition. The following inverse inequality holds for all univariate nonnegative polynomials q of degree k and all integers k

$$
\int_{-1}^{1} q(x) d x \leq\left\lceil\frac{k+3}{2}\right\rceil^{2} \int_{-1}^{1}\left(1-x^{2}\right) q(x) d x .
$$

Invoking the affine transformation of a given interval (a, b) to $(-1,1)$, Proposition 3.3 leads to:
3.4 Corollary. The following inverse inequality holds for all intervals (a, b), all univariate non-negative polynomials q of degree k, and all integers k

$$
\int_{a}^{b} q(x) d x \leq\left\lceil\frac{k+3}{2}\right\rceil^{2}\left(\frac{2}{b-a}\right)^{2} \int_{a}^{b}(x-a)(b-x) q(x) d x
$$

Since the square of a polynomial of degree k is a non-negative polynomial of degree $2 k$ and since

$$
\left\lceil\frac{2 k+3}{2}\right\rceil=k+2,
$$

Corollary 3.4 finally implies:
3.5 Corollary. The following inverse inequality holds for all intervals (a, b), all univariate polynomials p of degree k, and all integers k

$$
\|p\|_{L^{2}((a, b))} \leq \frac{2}{b-a}(k+2)\left\|(x-a)^{1 / 2}(b-x)^{1 / 2} p\right\|_{L^{2}((a, b))} .
$$

4. Inverse inequalities on the reference simplex

In this section we want to establish the second part of Proposition 1.1. Since our main tool is a dimension-reduction argument, we will sometimes label quantities with an index d in order to stress their dependence on the space dimension. Throughout this section v and σ denote generic polynomials of degree k in d resp. $d-1$ variables defined on \hat{K} resp. \hat{E}. We decompose vectors $x \in \mathbb{R}^{d}$ in the form $x=\left(x^{\prime}, x_{d}\right)$ with $x^{\prime} \in \mathbb{R}^{d-1}$.

In order to estimate $\hat{\gamma}_{1}$, we first observe that the interval $[0,1]$ is the 1 -dimensional reference simplex \hat{K}_{1} and that the function $4 x(1-x)$ is the corresponding function $\psi_{\hat{K}_{1}}$ of (1.1). Corollary 3.5 therefore yields

$$
\begin{equation*}
\hat{\gamma}_{1,1} \leq k+2 \tag{4.1}
\end{equation*}
$$

Now, fix a $d \geq 2$. For any point $x \in \hat{K}_{d}$ we have

$$
1 \geq \sum_{i=1}^{d} x_{i} \geq d \min _{1 \leq i \leq d} x_{i}
$$

This implies that

$$
\begin{equation*}
\hat{K}_{d} \subset \bigcup_{i=1}^{d} \hat{K}_{d, i} \tag{4.2}
\end{equation*}
$$

where

$$
\hat{K}_{d, i}:=\hat{K}_{d} \cap\left\{x \in \mathbb{R}^{d}: x_{i} \leq \frac{1}{d}\right\} .
$$

Assume that we dispose of a constant δ_{d} such that

$$
\begin{equation*}
\|v\|_{L^{2}\left(\hat{K}_{d, d}\right)} \leq \delta_{d}\left\|\psi_{\hat{K}_{d}}^{1 / 2} v\right\|_{L^{2}\left(\hat{K}_{d}\right)} \tag{4.3}
\end{equation*}
$$

holds for all polynomials v. Since the right-hand side of (4.3) is invariant under permutations of the co-ordinates, Equations (4.2) and (4.3) imply that

$$
\begin{aligned}
\|v\|_{L^{2}\left(\hat{K}_{d}\right)} & \leq\left\{\sum_{i=1}^{d}\|v\|_{L^{2}\left(\hat{K}_{d, i}\right)}^{2}\right\}^{1 / 2} \\
& \leq\left\{\sum_{i=1}^{d} \delta_{d}^{2}\left\|\psi_{\hat{K}_{d}}^{1 / 2} v\right\|_{L^{2}\left(\hat{K}_{d}\right)}^{2}\right\}^{1 / 2} \\
& =\sqrt{d} \delta_{d}\left\|\psi_{\hat{K}_{d}}^{1 / 2} v\right\|_{L^{2}\left(\hat{K}_{d}\right)}
\end{aligned}
$$

holds for all polynomials v. This yields

$$
\begin{equation*}
\hat{\gamma}_{1, d} \leq \sqrt{d} \delta_{d} . \tag{4.4}
\end{equation*}
$$

In order to determine δ_{d} we invoke Fubini's theorem:

$$
\|v\|_{L^{2}\left(\hat{K}_{d, d}\right)}^{2}=\int_{0}^{1 / d}\left\{\int_{\hat{K}_{d} \cap\left\{x_{d}=t\right\}} v(x)^{2} d x\right\} d t
$$

Fix a $t \in\left[0, \frac{1}{d}\right]$. Since $\hat{K}_{d} \cap\left\{x_{d}=t\right\}$ is the image of the $(d-1)$-dimensional reference simplex \hat{K}_{d-1} under the transformation $\mathbb{R}^{d-1} \ni x^{\prime} \longrightarrow\left((1-t) x^{\prime}, t\right) \in \mathbb{R}^{d}$, we have

$$
\int_{\hat{K}_{d} \cap\left\{x_{d}=t\right\}} v(x)^{2} d x=(1-t)^{d-1} \int_{\hat{K}_{d-1}} v\left((1-t) x^{\prime}, t\right)^{2} d x^{\prime} .
$$

Since $w\left(x^{\prime}\right):=v\left((1-t) x^{\prime}, t\right)$ is a polynomial of degree k in $d-1$ variables on \hat{K}_{d-1}, we may apply Proposition 1.1 in dimension $d-1$ and obtain

$$
\int_{\hat{K}_{d-1}} v\left((1-t) x^{\prime}, t\right)^{2} d x^{\prime} \leq \hat{\gamma}_{1, d-1}^{2} \int_{\hat{K}_{d-1}} \psi_{\hat{K}_{d-1}}\left(x^{\prime}\right) v\left((1-t) x^{\prime}, t\right)^{2} d x^{\prime} .
$$

Since

$$
\begin{aligned}
\psi_{\hat{K}_{d-1}}\left(x^{\prime}\right) & =d^{d} \prod_{i=0}^{d-1} \lambda_{\hat{K}_{d-1}, i}\left(x^{\prime}\right) \\
& =d^{d} \prod_{i=0}^{d-1}\left\{\lambda_{\hat{K}_{d}, i}\left((1-t) x^{\prime}, t\right) \frac{1}{1-t}\right\},
\end{aligned}
$$

we arrive at

$$
\|v\|_{L^{2}\left(\hat{K}_{d, d}\right)}^{2} \leq \hat{\gamma}_{1, d-1}^{2} d^{d} \int_{0}^{1 / d}\left\{\int_{\hat{K}_{d} \cap\left\{x_{d}=t\right\}}(1-t)^{-d} v(x)^{2} \prod_{i=0}^{d-1} \lambda_{\hat{K}_{d}, i}(x) d x\right\} d t
$$

Since

$$
p(t):=\int_{\hat{K}_{d} \cap\left\{x_{d}=t\right\}}(1-t)^{-d} v(x)^{2} \prod_{i=0}^{d-1} \lambda_{\hat{K}_{d}, i}(x) d x
$$

is a positive univariate polynomial of degree $2 k$, we obtain from Corollary 3.4

$$
\begin{aligned}
\int_{0}^{1 / d} p(t) d t & \leq\left\lceil\frac{2 k+3}{2}\right\rceil^{2} \int_{0}^{1 / d}(2 d)^{2} t\left(\frac{1}{d}-t\right) p(t) d t \\
& \leq(k+2)^{2}(2 d)^{2} \frac{1}{d} \int_{0}^{1 / d} t p(t) d t
\end{aligned}
$$

Since $t=\lambda_{\hat{K}_{d} \mid\left\{x_{d}=t\right\}}$, this leads to

$$
\begin{aligned}
& \|v\|_{L^{2}\left(\hat{K}_{d, d}\right)}^{2} \\
\leq & \hat{\gamma}_{1, d-1}^{2} d^{d}(k+2)^{2} 4 d \int_{0}^{1 / d}\left\{\int_{\hat{K}_{d} \cap\left\{x_{d}=t\right\}}(1-t)^{-d} v(x)^{2} t \prod_{i=0}^{d-1} \lambda_{\hat{K}_{d}, i}(x) d x\right\} d t \\
\leq & \hat{\gamma}_{1, d-1}^{2} d^{d}(k+2)^{2} 4 d\left(\frac{d}{d-1}\right)^{d} \int_{\hat{K}_{d}} v(x)^{2} \prod_{i=0}^{d} \lambda_{\hat{K}_{d, i}}(x) d x \\
= & \hat{\gamma}_{1, d-1}^{2} d^{d}(k+2)^{2} 4 d\left(\frac{d}{d-1}\right)^{d} \frac{1}{(d+1)^{d+1}} \int_{\hat{K}_{d}} v(x)^{2} \psi_{\hat{K}_{d}}(x) d x .
\end{aligned}
$$

Hence, we have shown that

$$
\delta_{d} \leq 2(k+2) \hat{\gamma}_{1, d-1}\left[\frac{d^{d+1} d^{d}}{(d-1)^{d}(d+1)^{d+1}}\right]^{1 / 2}
$$

Together with (4.4) this yields the recursion

$$
\begin{equation*}
\hat{\gamma}_{1, d} \leq 2(k+2) \hat{\gamma}_{1, d-1}\left[\frac{d^{2 d+2}}{(d-1)^{d}(d+1)^{d+1}}\right]^{1 / 2} \tag{4.5}
\end{equation*}
$$

From estimates (4.1) and (4.5) we conclude by induction that

$$
\hat{\gamma}_{1, d} \leq[2(k+2)]^{d}\left[\left(\frac{d}{d+1}\right)^{d+1} d!\right]^{1 / 2}
$$

This establishes the first inequality in (1.4)
Since $\hat{E}_{d} \simeq \hat{K}_{d-1}$ and since $\psi_{\hat{E}_{d} \mid \hat{E}_{d}}=\psi_{\hat{K}_{d-1}}$, we have

$$
\hat{\gamma}_{3, d}=\hat{\gamma}_{1, d-1} .
$$

This establishes the third inequality in (1.4).
We now turn to the constant $\hat{\gamma}_{2}$. From the triangle inequality we have

$$
\begin{equation*}
\left\|\partial_{d}\left(\psi_{\hat{K}_{d}} v\right)\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq\left\|\psi_{\hat{K}_{d}} \partial_{d} v\right\|_{L^{2}\left(\hat{K}_{d}\right)}+\left\|v \partial_{d} \psi_{\hat{K}_{d}}\right\|_{L^{2}\left(\hat{K}_{d}\right)} . \tag{4.6}
\end{equation*}
$$

Here, ∂_{i} denotes the partial derivative w.r.t. the i-th variable.
Consider first the first term on the right-hand side of (4.6). The function

$$
\varphi(x)=\left(1-\sum_{i=1}^{d} x_{i}\right) x_{d} \prod_{i=1}^{d-1} x_{i}^{2}
$$

is non-negative on \hat{K}_{d} and vanishes on the boundary $\partial \hat{K}_{d}$. Hence it attains its maximum at an interior point of \hat{K}_{d}. The partial derivatives of φ are

$$
\begin{aligned}
& \partial_{i} \varphi=\left(2-3 x_{i}-\sum_{\substack{j=1 \\
j \neq i}}^{d} 2 x_{j}\right) x_{i} x_{d} \prod_{\substack{j=1 \\
j \neq i}}^{d-1} x_{j}^{2} \quad, 1 \leq i \leq d-1, \\
& \partial_{d} \varphi=\left(1-\sum_{j=1}^{d-1} x_{j}-2 x_{d}\right) \prod_{j=1}^{d-1} x_{j}^{2} .
\end{aligned}
$$

By symmetry all critical point of φ are therefore of the form (a, \ldots, a, b) and must satisfy

$$
\begin{aligned}
& 0=2-2 b-(2 d-1) a \\
& 0=1-2 b-(d-1) a .
\end{aligned}
$$

This yields

$$
a=\frac{1}{d}, b=\frac{1}{2 d}
$$

and therefore

$$
\max _{x \in \hat{K}_{d}}|\varphi(x)|=\frac{1}{4 d^{2 d}} .
$$

Since

$$
\begin{aligned}
\psi_{\hat{K}_{d}}^{2} & =(d+1)^{2(d+1)}\left(1-\sum_{i=1}^{d} x_{i}\right)^{2} \prod_{i=1}^{d} x_{i}^{2} \\
& =(d+1)^{2(d+1)} \varphi(x) x_{d}\left(1-\sum_{i=1}^{d} x_{i}\right)
\end{aligned}
$$

this estimate implies that

$$
\begin{aligned}
\left\|\psi_{\hat{K}_{d}} \partial_{d} v\right\|_{L^{2}\left(\hat{K}_{d}\right)}^{2} & =(d+1)^{2(d+1)} \int_{\hat{K}_{d}} \varphi(x) x_{d}\left(1-\sum_{i=1}^{d} x_{i}\right)\left|\partial_{d} v\right|^{2} d x \\
& \leq \frac{(d+1)^{2(d+1)}}{4 d^{2 d}} \int_{\hat{K}_{d}} x_{d}\left(1-\sum_{i=1}^{d} x_{i}\right)\left|\partial_{d} v\right|^{2} d x .
\end{aligned}
$$

Denote by $|.|_{1}$ the ℓ^{1}-norm on \mathbb{R}^{d}. From Fubini's theorem and Corollary 3.2 we conclude that

$$
\begin{aligned}
& \int_{\hat{K}_{d}} x_{d}\left(1-\sum_{i=1}^{d} x_{i}\right)\left|\partial_{d} v\right|^{2} d x \\
= & \int_{\hat{K}_{d-1}}\left\{\int_{0}^{1-\left|x^{\prime}\right|_{1}} x_{d}\left(1-\left|x^{\prime}\right|_{1}-x_{d}\right)\left|\partial_{d} v\left(x^{\prime}, x_{d}\right)\right|^{2} d x_{d}\right\} d x^{\prime} \\
\leq & \int_{\hat{K}_{d-1}}\left\{k(k+1) \int_{0}^{1-\left|x^{\prime}\right|_{1}} v\left(x^{\prime}, x_{d}\right)^{2} d x_{d}\right\} d x^{\prime} \\
\leq & k(k+1) \int_{\hat{K}_{d}} v(x)^{2} d x .
\end{aligned}
$$

Combining the last two estimates, we obtain

$$
\begin{equation*}
\left\|\psi_{\hat{K}_{d}} \partial_{d} v\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq \frac{(d+1)^{d+1}}{2 d^{d}} \sqrt{k(k+1)}\|v\|_{L^{2}\left(\hat{K}_{d}\right)} \tag{4.7}
\end{equation*}
$$

Now we turn to the second term on the right-hand side of (4.6). Consider the function

$$
\varphi(x)=\left(1-2 x_{d}-\sum_{i=1}^{d-1} x_{i}\right) \prod_{i=1}^{d-1} x_{i}
$$

Since

$$
\partial_{d} \varphi=-2 \prod_{i=1}^{d-1} x_{i}
$$

the function φ attains its extrema on $\partial \hat{K}_{d}$. Obviously it vanishes on the faces $\hat{K}_{d} \cap$ $\left\{x_{i}=0\right\}$ with $1 \leq i \leq d-1$. On the face $\hat{E}_{d}=\hat{K}_{d} \cap\left\{x_{d}=0\right\}$ it obviously coincides with $d^{-d} \psi_{\hat{E}_{d}}$ and is therefore bounded in absolute value by d^{-d}. On the face $\hat{K}_{d} \cap\left\{|x|_{1}=1\right\}$ we finally have $\varphi=-d^{-d} \psi_{\hat{E}_{d}}$. Therefore, $|\varphi|$ does not exceed d^{-d} on this face, too. In conclusion we have

$$
\max _{x \in \hat{K}_{d}}|\varphi(x)|=d^{-d}
$$

Since

$$
\partial_{d} \psi_{\hat{K}_{d}}=(d+1)^{d+1} \varphi,
$$

this proves that

$$
\begin{equation*}
\left\|v \partial_{d} \psi_{\hat{K}_{d}}\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq \frac{(d+1)^{d+1}}{d^{d}}\|v\|_{L^{2}\left(\hat{K}_{d}\right)} . \tag{4.8}
\end{equation*}
$$

From (4.6) - (4.8) we obtain

$$
\left\|\partial_{d}\left(\psi_{\hat{K}_{d}} v\right)\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq \frac{(d+1)^{d+1}}{d^{d}}\left\{1+\frac{1}{2} \sqrt{k(k+1)}\right\}\|v\|_{L^{2}\left(\hat{K}_{d}\right)} .
$$

Since the ratio $\left\|\nabla\left(\psi_{\hat{K}_{d}} v\right)\right\|_{L^{2}\left(\hat{K}_{d}\right)} /\|v\|_{L^{2}\left(\hat{K}_{d}\right)}$ is invariant under permutations of the co-ordinates and since $h_{\hat{K}_{d}}=\sqrt{2}$, this proves that

$$
\hat{\gamma}_{2} \leq \sqrt{2 d} \frac{(d+1)^{d+1}}{d^{d}}\left\{1+\frac{1}{2} \sqrt{k(k+1)}\right\}
$$

and thus establishes the second inequality of (1.4).
Next we estimate the constant $\hat{\gamma}_{4}$. Here, we must treat the derivative ∂_{d} and the remaining derivatives seperately.
Since σ and the barycentric co-ordinates $\lambda_{\hat{K}_{d}, 1}, \ldots, \lambda_{\hat{K}_{d}, d-1}$ do not depend on x_{d}, we obtain

$$
\begin{aligned}
\partial_{d}\left(\psi_{\hat{E}_{d}} \sigma\right) & =d^{d}\left(\partial_{d} \lambda_{\hat{K}_{d}, 0}\right) \prod_{i=1}^{d-1} \lambda_{\hat{K}_{d}, i} \sigma \\
& =-d^{d} \prod_{i=1}^{d-1} \lambda_{\hat{K}_{d}, i} \sigma .
\end{aligned}
$$

Together with Fubini's theorem this yields

$$
\begin{aligned}
\left\|\partial_{d}\left(\psi_{\hat{E}_{d}} \sigma\right)\right\|_{L^{2}\left(\hat{K}_{d}\right)}^{2} & =d^{2 d} \int_{\hat{E}_{d}}\left\{\int_{0}^{1-\left|x^{\prime}\right|_{1}} \prod_{i=1}^{d-1} \lambda_{\hat{K}_{d}, i}^{2} \sigma^{2} d x_{d}\right\} d x^{\prime} \\
& =d^{2 d} \int_{\hat{E}_{d}}\left(1-\left|x^{\prime}\right|_{1}\right) \prod_{i=1}^{d-1} \lambda_{\hat{K}_{d}, i}^{2} \sigma^{2} d x^{\prime} .
\end{aligned}
$$

Consider the function

$$
\varphi\left(x^{\prime}\right)=\left(1-\left|x^{\prime}\right|_{1}\right) \prod_{i=1}^{d-1} \lambda_{\hat{K}_{d}, i}^{2}=\left(1-\sum_{i=1}^{d-1} x_{i}\right) \prod_{i=1}^{d-1} x_{i}^{2}
$$

on $\hat{E}_{d} \simeq \hat{K}_{d-1}$. It is non-negative and vanishes on the boundary $\partial \hat{K}_{d-1}$. Hence it attains its maximum at an interior point of \hat{K}_{d-1}. The derivatives of φ are

$$
\partial_{i} \varphi=\left(2-2 \sum_{\substack{j=1 \\ j \neq i}}^{d-1} x_{j}-3 x_{i}\right) x_{i} \prod_{\substack{j=1 \\ j \neq i}}^{d-1} x_{j}^{2} \quad, 1 \leq i \leq d-1 .
$$

By symmetry, any critical point of φ therefore is of the form (a, \ldots, a) and satisfies

$$
2-(2 d-1) a=0
$$

This yields

$$
a=\frac{2}{2 d-1}
$$

and therefore

$$
\max _{x^{\prime} \in \hat{K}_{d-1}}\left|\varphi\left(x^{\prime}\right)\right|=\frac{2 d-1}{4}\left(\frac{2}{2 d-1}\right)^{2 d} .
$$

Hence, we obtain

$$
\begin{equation*}
\left\|\partial_{d}\left(\psi_{\hat{E}_{d}} \sigma\right)\right\|_{L^{2}\left(\hat{K}_{d}\right)}^{2} \leq \frac{2 d-1}{4}\left(\frac{2 d}{2 d-1}\right)^{2 d}\|\sigma\|_{L^{2}\left(\hat{E}_{d}\right)}^{2} . \tag{4.9}
\end{equation*}
$$

For the estimation of the remaining derivatives it suffices to consider the derivative w.r.t. x_{1} since the ratio $\left\|\nabla\left(\psi_{\hat{E}_{d}} \sigma\right)\right\|_{L^{2}\left(\hat{K}_{d}\right)} /\|\sigma\|_{L^{2}\left(\hat{E}_{d}\right)}$ is invariant under permutations of the first $d-1$ co-ordinates.
From the triangle inequality we have

$$
\begin{equation*}
\left\|\partial_{1}\left(\psi_{\hat{E}_{d}} \sigma\right)\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq\left\|\psi_{\hat{E}_{d}} \partial_{1} \sigma\right\|_{L^{2}\left(\hat{K}_{d}\right)}+\left\|\sigma \partial_{1} \psi_{\hat{E}_{d}}\right\|_{L^{2}\left(\hat{K}_{d}\right)} . \tag{4.10}
\end{equation*}
$$

For the first term on the right-hand side of (4.10) we obtain from Fubini's theorem

$$
\begin{aligned}
\left\|\psi_{\hat{E}_{d}} \partial_{1} \sigma\right\|_{L^{2}\left(\hat{K}_{d}\right)}^{2} & =d^{2 d} \int_{\hat{E}_{d}}\left\{\int_{0}^{1-\left|x^{\prime}\right|_{1}}\left(1-\left|x^{\prime}\right|_{1}-x_{d}\right)^{2} \prod_{i=1}^{d-1} x_{i}^{2}\left|\partial_{1} \sigma\left(x^{\prime}\right)\right|^{2} d x_{d}\right\} d x^{\prime} \\
& =\frac{1}{3} d^{2 d} \int_{\hat{E}_{d}}\left(1-\left|x^{\prime}\right|_{1}\right)^{3} \prod_{i=1}^{d-1} x_{i}^{2}\left|\partial_{1} \sigma\left(x^{\prime}\right)\right|^{2} d x^{\prime} .
\end{aligned}
$$

Since $\hat{E}_{d} \simeq \hat{K}_{d-1}$ and since

$$
d^{2 d}\left(1-\left|x^{\prime}\right|_{1}\right)^{3} \prod_{i=1}^{d-1} x_{i}^{2} \leq \psi_{\hat{K}_{d-1}}\left(x^{\prime}\right)^{2} \quad \text { on } \hat{E}_{d}
$$

we may apply estimate (4.7) in dimension $d-1$ and get

$$
\begin{equation*}
\left\|\psi_{\hat{E}_{d}} \partial_{1} \sigma\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq \frac{\sqrt{3}}{6} \frac{d^{d}}{(d-1)^{d-1}} \sqrt{k(k+1)}\|\sigma\|_{L^{2}\left(\hat{E}_{d}\right)} \tag{4.11}
\end{equation*}
$$

Since

$$
\partial_{1} \psi_{\hat{E}_{d}}=d^{d}\left(1-\left|x^{\prime}\right|_{1}-x_{1}-x_{d}\right) \prod_{i=2}^{d-1} x_{i}
$$

we obtain by Fubini's theorem for the second term on the right-hand side of (4.10)

$$
\begin{aligned}
\left\|\sigma \partial_{1} \psi_{\hat{E}_{d}}\right\|_{L^{2}\left(\hat{K}_{d}\right)}^{2} & =d^{2 d} \int_{\hat{E}_{d}}\left\{\int_{0}^{1-\left|x^{\prime}\right|_{1}}\left(1-\left|x^{\prime}\right|_{1}-x_{1}-x_{d}\right)^{2} \prod_{i=2}^{d-1} x_{i}^{2} \sigma\left(x^{\prime}\right)^{2} d x_{d}\right\} d x^{\prime} \\
& =\frac{1}{3} d^{2 d} \int_{\hat{E}_{d}}\left[\left(1-\left|x^{\prime}\right|_{1}-x_{1}\right)^{3}+x_{1}^{3}\right] \prod_{i=2}^{d-1} x_{i}^{2} \sigma\left(x^{\prime}\right)^{2} d x^{\prime}
\end{aligned}
$$

Define the function φ on $[0,1]$ by

$$
\varphi(t)=(1-2 t)^{3}+t^{3} .
$$

An elementary calculation yields

$$
0<\varphi(t) \leq 1 \quad \forall t \in[0,1] .
$$

If $d=2$, we therefore have

$$
\left(1-\left|x^{\prime}\right|_{1}-x_{1}\right)^{3}+x_{1}^{3}=\varphi\left(x_{1}\right) \leq 1 \quad \text { on } \hat{E}_{2} .
$$

If $d \geq 3$, we set for abreviation

$$
z:=\sum_{i=2}^{d-1} x_{i} \quad \text { and } \quad t:=\frac{x_{1}}{1-z}
$$

For any interior (w.r.t. \mathbb{R}^{d-1}) point of \hat{E}_{d}, we then conclude that

$$
\left(1-\left|x^{\prime}\right|_{1}-x_{1}\right)^{3}+x_{1}^{3}=(1-z)^{3} \varphi(t) \leq(1-z)^{3} .
$$

By continuity this also holds on the boundary of \hat{E}_{d}. Hence, we arrive at

$$
\begin{equation*}
\left\|\sigma \partial_{1} \psi_{\hat{E}_{d}}\right\|_{L^{2}\left(\hat{K}_{d}\right)}^{2}=\frac{1}{3} d^{2 d} \int_{\hat{E}_{d}}\left(1-\sum_{i=2}^{d-1} x_{i}\right)^{3} \prod_{i=2}^{d-1} x_{i}^{2} \sigma\left(x^{\prime}\right)^{2} d x^{\prime} \tag{4.12}
\end{equation*}
$$

If $d=2$, we obviously have

$$
\left(1-\sum_{i=2}^{d-1} x_{i}\right)^{3} \prod_{i=2}^{d-1} x_{i}^{2}=1
$$

If $d \geq 3$, we must consider the function

$$
\varphi(y)=\left(1-\sum_{i=1}^{d-2} y_{i}\right)^{3} \prod_{i=1}^{d-2} y_{i}^{2}
$$

on \hat{K}_{d-2}. Since φ vanishes on the boundary $\partial \hat{K}_{d-2}$, it attains its maximum at an interior point. Since its derivatives are

$$
\partial_{j} \varphi=\left(2-2 \sum_{i=1}^{d-2} y_{i}-3 y_{j}\right)\left(1-\sum_{i=1}^{d-2} y_{i}\right)^{2} y_{j} \prod_{\substack{i=1 \\ i \neq j}}^{d-2} y_{i}^{2} \quad, 1 \leq j \leq d-2,
$$

all critical points are of the form (a, \ldots, a) and satisfy

$$
0=2-(2 d-1) a .
$$

Hence, we obtain

$$
\begin{equation*}
\max _{y \in \hat{K}_{d-2}}|\varphi(y)|=\frac{27}{16}\left(\frac{2}{2 d-1}\right)^{2 d}(2 d-1) . \tag{4.13}
\end{equation*}
$$

Obviously, this estimate also holds for $d=2$.
Combining this with inequality (4.12), we obtain

$$
\begin{equation*}
\left\|\sigma \partial_{1} \psi_{\hat{E}_{d}}\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq \frac{3}{4}\left(\frac{2 d}{2 d-1}\right)^{d} \sqrt{2 d-1}\|\sigma\|_{L^{2}\left(\hat{E}_{d}\right)} \tag{4.14}
\end{equation*}
$$

From estimates (4.9) - (4.11) and (4.14) and the inequality $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$ we finally conclude that

$$
\begin{aligned}
\left\|\nabla\left(\psi_{\hat{E}_{d}} \sigma\right)\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq & \left\{\frac{2 d-1}{4}\left(\frac{2 d}{2 d-1}\right)^{2 d}\right. \\
& +(d-1)\left[\frac{\sqrt{3}}{6} \frac{d^{d}}{(d-1)^{d-1}} \sqrt{k(k+1)}\right. \\
& \left.\left.+\frac{3}{4}\left(\frac{2 d}{2 d-1}\right)^{d} \sqrt{2 d-1}\right]^{2}\right\}^{1 / 2}\|\sigma\|_{L^{2}\left(\hat{E}_{d}\right)} \\
\leq & \left\{\frac{9 d-7}{8}(2 d-1)\left(\frac{2 d}{2 d-1}\right)^{2 d}\right. \\
& \left.+\frac{(d-1)^{3}}{6}\left(\frac{d}{d-1}\right)^{2 d} k(k+1)\right\}^{1 / 2}\|\sigma\|_{L^{2}\left(\hat{E}_{d}\right)}
\end{aligned}
$$

Since

$$
h_{\hat{E}_{d}}= \begin{cases}1 & \text { if } d=2, \\ \sqrt{2} & \text { if } d \geq 3\end{cases}
$$

This proves the estimate of $\hat{\gamma}_{4}$ of Proposition 1.1.
Finally, we turn to the constant $\hat{\gamma}_{5}$. From Funbini's theorem we have

$$
\begin{aligned}
\left\|\psi_{\hat{E}_{d}} \sigma\right\|_{L^{2}\left(\hat{K}_{d}\right)}^{2} & =d^{2 d} \int_{\hat{E}_{d}}\left\{\int_{0}^{1-\left|x^{\prime}\right|_{1}}\left(1-\left|x^{\prime}\right|_{1}-x_{d}\right)^{2} \prod_{i=1}^{d-1} x_{i}^{2} \sigma\left(x^{\prime}\right)^{2} d x_{d}\right\} d x^{\prime} \\
& =\frac{1}{3} d^{2 d} \int_{\hat{E}_{d}}\left(1-\left|x^{\prime}\right|_{1}\right)^{3} \prod_{i=1}^{d-1} x_{i}^{2} \sigma\left(x^{\prime}\right)^{2} d x^{\prime}
\end{aligned}
$$

From estimate (4.13) we conclude that

$$
\max _{x^{\prime} \in \tilde{E}_{d}}\left(1-\left|x^{\prime}\right|_{1}\right)^{3} \prod_{i=1}^{d-1} x_{i}^{2}=\frac{27}{16}\left(\frac{2}{2 d+1}\right)^{2 d+2}(2 d+1)
$$

This implies that

$$
\left\|\psi_{\hat{E}_{d}} \sigma\right\|_{L^{2}\left(\hat{K}_{d}\right)} \leq \frac{3}{2}\left(\frac{2 d}{2 d+1}\right)^{d} \frac{1}{\sqrt{2 d+1}}\|\sigma\|_{L^{2}\left(\hat{E}_{d}\right)} .
$$

Recalling the size of $h_{\hat{E}_{d}}$ this proves the last estimate of Proposition 1.1.

References

[1] Ph. G. Ciarlet: The Finite Element Method for Elliptic Problems. North Holland, 1980
[2] G. Szegö: Orthogonal Ploynomials. AMS Colloquium Publications, 1959
[3] R. Verfürth: A Review of A Posteriori Error Estimation and Adaptive MeshRefinement Techniques. Wiley-Teubner, 1996
[4] ——: Error estimates for some quasi-interpolation operators. Bericht Nr. 227, Ruhr-Universität Bochum, 1997 (to appear in Modél. Math. et Anal. Numér.)

