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Stress of critical illness is often accompanied by hyperglycaemia, whether orAbstract
not the patient has a history of diabetes mellitus. This has been considered to be
part of the adaptive metabolic response to stress. The level of hyperglycaemia in
patients with acute myocardial infarction (MI) or stroke upon admission to the
hospital has been related to the risk of adverse outcome. However, until recently,
there was no evidence of a causal relationship and thus stress-induced hypergly-
caemia was only treated with exogenous insulin when it exceeded 12 mmol/L
(220 mg/dL). In patients with known diabetes, even higher levels were often
tolerated. Recently, new data became available in support of another approach. In
this review, we focus on the new evidence and the clinical aspects of managing
hyperglycaemia with insulin in critically ill patients, drawing a parallel with
diabetes management. Particularly, the ‘Diabetes and Insulin-Glucose infusion in
Acute Myocardial Infarction (DIGAMI) study’ and the ‘insulin in intensive care
study’ have provided novel insights.

The DIGAMI study showed that in patients with diabetes, controlling blood
glucose levels below 12 mmol/L for 3 months after acute MI improves long-term
outcome. In the recent study of predominantly surgical intensive care patients, the
majority of whom did not previously have diabetes, it was shown that an even
tighter control of blood glucose with exogenous insulin, aiming for normogly-
caemia, dramatically improved outcome. Indeed, in this large prospective, ran-
domised, controlled study, 1548 intensive care patients had been randomly
allocated to either the conventional approach, with insulin infusion started only
when blood glucose levels exceeded 12 mmol/L, or intensive insulin therapy, with
insulin infused to maintain blood glucose at a level of 4.5–6.1 mmol/L (80–110
mg/dL).

Intensive insulin therapy reduced intensive care mortality by more than 40%
and also decreased a number of morbidity factors including acute renal failure,
polyneuropathy, ventilator-dependency and septicaemia.

Future studies will be needed to further unravel the mechanisms that explain
the beneficial effects of this simple and cost-saving intervention. Although
available evidence supports implementation of intensive insulin therapy in surgi-
cal intensive care, the benefit for other patient populations, such as patients on
medical intensive care units or hospitalised patients who do not require intensive
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care but who do present with stress-induced hyperglycaemia, remains to be
investigated.

With the discovery of insulin by Banting and mechanisms for hyperglycaemia during protracted
Best in 1922, it became possible to treat patients critical illness remain less clear. While in this more
with type 1 (insulin-dependent) diabetes mellitus, a chronic phase the changes in glucagon levels are not
previously lethal disorder as a result of the develop- well documented, growth hormone, cortisol, cat-
ment of ketoacidosis. At the end of the 19th century, echolamine and cytokine levels[8] are usually de-
Claude Bernard described the link between acute creased compared with the levels observed during
trauma and the development of hyperglycaemia irre- the acute phase of critical illness.[9] For detailed
spective of underlying diabetes, which was consid- discussions on normal glucose regulation[10] and
ered to be an adaptive stress response. As in trauma, mechanisms of hyperglycaemia[11,12] we would like
hyperglycaemia is commonly present during other to refer to some excellent reviews in the literature.
types of critical illness. Until recently, treatment of

2. Hyperglycaemia in the Critically Illhyperglycaemia during critical illness was only con-
sidered necessary when blood glucose levels be-

In a normal individual, blood glucose levels arecame excessively elevated, a strategy primarily
tightly regulated within the narrow range of 3.5–5.5based on anecdotal evidence. It was only lately that
mmol/L (63–100 mg/dL). Diabetic hyperglycaemiaevidence became available in favour of treating even
is defined by the WHO as fasting blood glucosemoderate hyperglycaemia in critically ill patients.[1]

levels between 6.1–7 mmol/L, and fed blood glu-In this review on the potential of insulin therapy in
cose levels between 8.1–11 mmol/L.critically ill patients, we focus on the published

Unlike the diagnostic criteria for diabetes, noevidence and the clinical aspects of managing
clear guidelines have been set for defining hypergly-hyperglycaemia by the use of insulin. Throughout
caemia in a critically ill patient. This explains thethe review we draw a parallel with management of
wide variations in the reported prevalence of hyper-diabetes mellitus, which has been studied in much
glycaemia in critically ill patients, ranging frommore detail.
3–71%.[13] Until recently, it was considered state of
the art to tolerate blood glucose levels up to 121. Altered Glucose Regulation in Stress
mmol/L (220 mg/dL) in fed, critically ill patients.[14]

The concept ‘stress diabetes’ or ‘diabetes of inju- Motivation for treatment of blood glucose levels
ry’ has been in the literature for almost 150 years. higher than 12 mmol/L was the occurrence of hyper-
The cause of this stress-induced hyperglycaemia glycaemia-induced osmotic diuresis and fluid shifts
lays in the impact of integrated hormonal, cytokine once glycaemia exceeds that threshold.
and nervous ‘counter-regulatory’ signals on glucose From the diabetes literature, it was also known
metabolic pathways. In the acute phase of critical that uncontrolled and pronounced hyperglycaemia
illness, it is assumed that increased levels of glu- predisposes to infectious complications.[15,16] It was
cagon,[2] cortisol[3] and growth hormone jointly in- commonly accepted that moderate hyperglycaemia
crease hepatic gluconeogenesis. (blood glucose levels up to 12 mmol/L) in critically

In addition, the catecholamines adrenaline and ill patients was beneficial for organs, such as the
noradrenaline, released in response to acute injury, brain and the blood cells, that solely rely on glucose
promote hepatic glycogenolysis.[4] The cytokines for their energy supply. This was an extrapolation
interleukin (IL)-1,[5,6] IL-6, and tumour necrosis fac- from the survival response of the human body to
tor (TNF)[7] may directly or indirectly enhance both acute injury, a concept suggested by Claude Ber-
these hyperglycaemic responses. The regulatory nard.
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With the development of intensive care medicine L. Strict blood glucose control below 6.1 mmol/L
over the last 3–4 decades, patients are able to survi- reduced intensive care mortality of critically ill pa-
ve conditions such as severe sepsis, multiple trauma tients by more than 40% (figure 1). The effect
and extensive burns. Hence, patients now frequently occurred particularly in the prolonged critically ill
enter the chronic phase of critical illness.[17] For this

patient population, where mortality was reduced
condition, nature possibly hasn’t been able to devel-

from 20.2% to 10.6% (p = 0.005). Even patients inop survival mechanisms.
the conventional insulin treatment schedule withIn the development of hyperglycaemia during
only moderate hyperglycaemia (6.1–11.1 mmol/L)critical illness the feeding should also be taken into
showed higher mortality compared with the patientsaccount. In the pre-intensive care era, an acute insult

such as a trauma or an illness was usually accompa- in the strict glycaemic control schedule.[18]

nied by temporary starvation. Hence, the body had
to rely on endogenous production in order to provide
the necessary nutrients for vital organs. With the
advent of intensive care medicine critically ill pa-
tients are able to survive much longer. To prevent
starvation when endogenous production becomes
insufficient, continuous feeding has been imple-
mented either entirely through enteral nutrition, total
parenteral nutrition (TPN) or a combination of en-
teral and parenteral feeding. A possible drawback of
this practice may be the induction or sustainment of
hyperglycaemia. Similarly to diabetic patients, pro-
longed hyperglycaemia in the critically ill patient
may lead to macro- and microvascular disease, neu-
ropathy, increased susceptibility to infections, dys-
lipidaemia, and deranged inflammatory and coagu-
lation responses.

3. Maintenance of Normoglycaemia in
the Critically Ill

Recently, a large prospective, randomised, con-
trolled trial[1] was the first to challenge the classical
dogma of beneficial stress hyperglycaemia and to
examine the effect of strict glycaemic control below
6.1 mmol/L with exogenous insulin on mortality and
morbidity of critically ill patients. Over a 1-year
period, 1548 mechanically ventilated patients ad-
mitted to the intensive care unit (ICU) predom-
inantly after extensive surgery or trauma, were ran-
domly allocated to either intensive insulin therapy
with blood glucose levels kept tightly between
4.5–6.1 mmol/L (80–110 mg/dL) or the convention-
al approach, which only recommended insulin ther-
apy when blood glucose levels exceeded 12 mmol/
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Fig. 1. Kaplan-Meier cumulative survival plots for intensive care
and in-hospital survival, showing the effect of intensive insulin treat-
ment in a study of 1548 critically ill patients. Patients discharged
alive from intensive care (a) and hospital (b), respectively, were
considered survivors. P-values were obtained by logrank (Mantel-
Cox) significance testing. The difference between the intensive in-
sulin group and the conventional group was significant for intensive
care survival (unadjusted p = 0.005; adjusted p < 0.04) and for
hospital survival (unadjusted p = 0.01) [reproduced from Van den
Berghe et al.,[1] with permission].
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This is the first intervention since the introduc- significant decrease in retinopathy, nephropathy,
tion of mechanical ventilation to have such a pro- and peripheral and autonomic neuropathy.[19] Simi-
nounced beneficial effect on intensive care mor- larly, evidence for the importance of tight glycaemic
tality. Intensive insulin therapy also had a major control in patients with type 2 (non-insulin depend-
effect on morbidity. It decreased the duration of ent) diabetes mellitus became available with the
ventilatory support and intensive care stay, reduced publication of the United Kingdom Prospective Dia-
the need for blood transfusions, and lowered the betes Study (UKPDS) in the late 1990s.[20] This trial
incidence of septicaemia and excessive inflamma- showed that a 0.7% decrease in glycosylated
tion. Even more striking, intensive insulin therapy haemoglobin (HbA1c) lowered the incidence of reti-
caused a highly significant decrease in the develop- nopathy by 21%, microalbuminuria by 33%, cata-
ment of critical illness polyneuropathy and of acute racts by 24%, myocardial infarction (MI) by 16%,
renal failure. and resulted in a non-significant 5% decrease in the

incidence of cerebrovascular accident. Although theThe exact underlying mechanisms of this dramat-
UKPDS showed a trend to decreased mortality,ic improvement of outcome in the critically ill are as
neither study was appropriately powered to detect ayet not known. In addition, it remains unclear to
significant decrease in diabetes-related mortality.what extent the benefits are brought about by insu-

lin, by the prevention of high blood glucose levels or
both. 4.1 Metabolic Control and

Macrovascular Disease
4. Complications of Deranged Glucose
Regulation In Diabetes Mellitus and Patients with diabetes have a 1.5–2-fold in-
Critical Illness creased risk of mortality following an acute MI

compared with non-diabetic acute MI patients.[21]

The long-term complications of diabetes have Furthermore, in acute MI patients without previous-
been well described, and can roughly be classified as ly diagnosed diabetes, hyperglycaemia on ad-
macrovascular, microvascular and other complica- mission has been associated with increased volume
tions (table I). of cardiac damage (i.e. larger infarcts), a higher

The publication of the Diabetes Control and incidence of cardiac failure and decreased 1-year
Complications Trial (DCCT) in 1993 settled the survival.[22] To what extent this association simply
previously vigorous debate about whether tight gly- reflected the severity of illness and the accompany-
caemic control was beneficial for individuals with ing stress response, or was explained by pre-existing
type 1 diabetes. The study was powered to detect a but non-diagnosed diabetes remained unclear from
significant difference in the rates of progression of these data.
diabetic retinopathy, which is the most prevalent A number of studies have examined the outcome
complication in type 1 diabetes, but showed a highly benefits of tightening glycaemic control in diabetic

patients with MI. The largest study, with the longest
follow-up period was the DIGAMI Study (Diabetes
and Insulin-Glucose infusion in Acute Myocardial
Infarction). In that study, diabetic patients admitted
to the hospital with an acute MI were randomly
assigned to standard treatment (at the physician’s
discretion) or to ‘intensive insulin therapy’, which
comprised an infusion of glucose and insulin, started
as soon as possible and continued for 48 hours.
Thereafter, the intensive insulin therapy patients
were submitted to a ‘stricter’ blood glucose control

Table I. Long-term complications of diabetes mellitus

Macrovascular Myocardial infarction

Stroke

Peripheral vascular disease

Microvascular Nephropathy

Neuropathy

Retinopathy

Other Infections

Hepatic steatosis

Cholelithiasis

Cataract, etc.
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regimen (below 12 mmol/L) with subcutaneous in- Different factors play a part in the development
sulin continued for at least 3 months after discharge. of this form of acute renal failure:[30] decreased
Patients in the intensive treatment arm had improved glomerular permeability, back-leak of glomerular
30-day and long-term survival (29% relative risk filtrate, tubular obstruction, and medulla hypoperfu-
reduction at 1 year).[23,24] Also, there was a signifi- sion and ischaemia. The only therapeutic option at
cant decrease in re-infarction and new cardiac fai- the present time is bridging time to spontaneous
lure.[25] A meta-analysis of all published randomised recovery by extracorporeal haemofiltration or dialy-
trials investigating the effect of glucose-insulin-po- sis, with the continuous veno-venous mode being
tassium (GIK) infusion in previously non-diabetic the preferred method for unstable critically ill pa-
individuals with acute MI supports the concept that tients.[31] Hence, preventive strategies are crucial
this intervention indeed may be life-saving.[26] and these include maintaining or optimising renal

perfusion, diligence with monitoring of nephrotoxicFor other disease states such as cerebrovascular
therapies, such as aminoglycosides, and limiting theischaemic insults, adverse outcome was shown to be
use of non-ionic radiocontrast materials. Evidencesignificantly related to on-admission hypergly-
for specific preventative measures for acute renalcaemia. Indeed, high blood glucose levels were as-
failure in the critically ill patient was not availablesociated with increased mortality and poorer neuro-
until the recently published study of intensive insu-logical recovery. Also in patients with traumatic
lin therapy.[1] This large, prospective, randomisedhead injuries, postoperative hyperglycaemia was
trial revealed a 42% reduction in the occurrence offound to be an independent  predictor of mor-
acute renal failure requiring extracorporeal replace-tality.[27] Again, these studies did not specifically
ment therapy.investigate the effect of lowering glycaemia and

The DCCT trial revealed that better metabolicthus did not provide conclusive evidence as to
control of type I diabetes was associated with awhether the degree of hyperglycaemia simply re-
reduction in the development of retinopathy, with-flects the severity of illness or is actually contribut-
out a cut-off value for blood glucose level belowing to adverse outcome of neurological insults. The
which no further risk reduction occurred.[32] Thereonly intervention study in patients with stroke, the
are no data on the incidence of retinopathy in criti-Glucose-Insulin in Stroke Trial (GIST) examined
cally ill patients.the effect of glucose-insulin treatment. This trial, in

which acute stroke patients were allocated to stan-
dard therapy or a 24-hour infusion of GIK, did not

4.3 Metabolic Control and Neuropathy
significantly lower glycaemia or mortality.[28] It
should be noted that studies on the benefits of GIK

In the diabetic patient, distal sensory neuropathyinfusions in either cardiac or neurological ischaemic
with the classic stocking distribution is the mostinsults never targeted normoglycaemia.
frequent presentation of neuropathies.[33] It starts
gradually as a sensory neuropathy, which over time

4.2 Metabolic Control and can evolve to some motor dysfunction with muscle
Microvascular Disease wasting.

A wide array of factors are involved in the patho-
The pathophysiology of diabetic[29] and critical genesis of diabetic neuropathy.[34,35] It comprises,

illness[30] nephropathy is substantially different. Di- amongst others, elevated oxidative stress with in-
abetic nephropathy is mainly a glomerular disease creased reactive oxygen species and decreased scav-
with substantial thickening of the basolateral mem- engers, microangiopathy with platelet activation and
brane, eventually leading to glomerulosclerosis. On endothelial cell dysfunction, changes in the polyol
the other hand, renal failure in critically ill patients pathway, and the formation of advanced glycosyla-
is most commonly due to acute tubular necrosis. tion end products.
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The DCCT[36] and UKPDS[20] trials showed that activity could be improved by tight glycaemic con-
tight glycaemic control lowers the incidence of dia- trol.[44,45]

betic polyneuropathy. This was independent of the In critically ill patients with preexisting diabetes,
method to achieve stable glycaemia. such as those after open-heart surgery, an associa-

tion between higher risk of infectious complica-Chronically critically ill patients often develop a
tions[46] and blood glucose levels higher than 11diffuse axonal polyneuropathy.[37] It presents as a
mmol/L (>200 mg/dL) has been documented. In atetraparesis with muscle atrophy but the diagnosis
follow-up study, Furnary et al. showed that continu-should be confirmed by electromyography. In most
ous intravenous insulin infusion reduced the inci-patients, the course is self-limited and good recov-
dence of post-cardiac surgery deep sternal woundsery should be expected if the underlying critical
(0.8 vs 2% for subcutaneous insulin injections).[47]illness resolves. However, this critical illness poly-
Uncontrolled hyperglycaemia in burn patients alsoneuropathy severely impairs weaning from the ven-
has been associated with failure of skin graft taketilator and early mobilisation.[38] Factors that are
and outcome.[48] Again, the causal link betweenknown to contribute to the development of critical
hyperglycaemia and higher risk of serious infec-illness polyneuropathy include sepsis, the use of
tions, regardless of a history of diabetes, was onlyhigh-dose corticosteroids and the use of neuromus-
provided recently by a large prospective, random-cular blocking agents. However, the exact pathogen-
ised, controlled trial.[1] Indeed, strict maintenance ofesis is not understood and, until recently, specific
normoglycaemia using exogenous insulin duringprevention of or treatment for critical illness poly-
critical illness was found to reduce the incidence ofneuropathy was unavailable.[39] Bolton described a
bacteraemia to almost half and to largely preventstrong link between the risk of critical illness poly-
sepsis-associated mortality.neuropathy and increased blood glucose levels and

decreased serum albumin levels, both metabolic
4.5 Metabolic Control and Dyslipidaemiamanifestations of multiple organ failure and sepsis.

Sepsis, and the accompanying release of cytokines,
Insulin resistance and type 2 diabetes are associ-was considered to be the causal factor.[40] Cytokines

ated with significant changes in the lipid metabo-may indeed induce microangiopathy which may
lism, hallmarked by a proatherogenic lipoproteinplay a role, as in diabetic polyneuropathy.
profile of increased low-density lipoprotein parti-The study by Van den Berghe et al.[1] showed an
cles, which are thought to be more atherogenic,important preventive effect of strict glycaemic con-
increased very low-density lipoprotein and trig-trol with insulin on the occurrence of critical illness
lycerides, together with decreased high-density lipo-polyneuropathy, which was associated with a de-
proteins.[49]

crease in duration of mechanical ventilation of pro-
The increased free fatty acid flux towards thetracted critically ill patients.

liver may lead to hepatic steatosis.[50] The free fatty
acids can be derived from triglyceride hydrolysis in

4.4 Metabolic Control and Infections the peripheral adipocytes, from dietary sources and
through endogenous synthesis. The latter may be of
significant importance in TPN-fed critically ill pa-It has been known for a long time that hypergly-
tients. Carbohydrate overfeeding results in a satura-caemia of diabetes predisposes to infection.[15] Pos-
tion of the hepatic glycogen stores, which shiftssible mechanisms include the hyperglycaemia-in-
acetyl-CoA into the lipogenic pathway.[51,52] In theduced inhibition of IL-1 release from macrophages
past these practices frequently lead to the ‘fatty liverand of the release of oxygen radicals from neutro-
syndrome’.phils.[41] Hyperglycaemia also impairs phagocytosis

by the macrophages.[42,43] Importantly, the impair- Contrary to the situation in the diabetic patient,
ment of leucocyte oxidative burst and phagocytotic the lipaemic profile in the critically ill patient con-
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sists of high triglyceride levels combined with low bosis with multiple organ failure. Amongst triggers
cholesterol levels.[53] This hypocholesterolaemia ap- such as major trauma, hypovolaemic shock, obstet-
parently relates to the severity of illness but the ric complications, malignancies and ABO-incom-
exact cause remains unclear.[54] The increased risk patible blood transfusions and sepsis, the latter ap-
of septic shock in patients with hypocholestero- pears to be the most prominent one. In a recent study
laemia may be related to decreased endotoxin trans- by Bernard et al.[74] it was shown that the adminis-
port in the serum by lipoproteins[55] and hence infu- tration of activated protein C (drotrecogin alfa) to
sions with high-density lipoproteins could be a treat- septic patients improves the 28-day survival by 6%.
ment.[56] As the pathophysiology of the divergence In view of the powerful preventive effect of
of cholesterol and triglyceride levels during critical intensive insulin therapy on septicaemia, multiple
illness is largely unknown,[57,58] the impact of feed- organ failure and mortality,[1] the effect of this sim-
ing and strict glycaemic control with insulin on ple and cheap metabolic intervention on the balance
these lipids is worth investigating. between coagulation and fibrinolysis in the critically

ill should be investigated.[75,76]

4.6 Metabolic Control and Inflammation/
Coagulation 5. Hyper-, Normo- or

Hypocaloric Nutrition?As mentioned in section 4.4, diabetes is a condi-
tion of immunosuppression with impaired leucocyte

It has been well documented that providingand macrophage function. It has also been clearly
hypercaloric nutrition to critically ill patients,shown that intensive insulin treatment in critically ill
‘hyperalimentation’ (35–40 kcal/kg),[77] can lead topatients prevented excessive inflammation.[1] This
infections and severe metabolic complications.was reflected in a reduced duration of leukocytoses/
These range from hyperglycaemia, hypertriglycer-leucopenia and hypo-/hyperthermia. Intensive insu-
idaemia and azotaemia to hepatic steatosis, fat-over-lin treatment also suppressed the acute phase re-
load syndrome and hypertonic dehydration.[78] Sincesponses of C-reactive protein and mannose-binding
the introduction of more accurate means to estimatelectin.[59] The exact underlying mechanisms of insu-
energy expenditure and a cautious approach towardslin-induced anti-inflammatory effects have not yet
obese or highly oedematous patients, serious com-been unravelled,[60] but it has been suggested that
plications of feeding have been dramatically re-insulin may suppress the secretion and antagonises
duced.the harmful effects of TNFα,[61,62] macrophage mi-

gration-inhibitory factor[63] and superoxide anion.[64] On the other hand, in order to decrease hypergly-
Furthermore, diabetes is a hypercoagulable caemia and hence infectious complications, Mc-

state,[65] leading to an increase in thrombotic mor- Cowen et al.[79] evaluated the efficacy of hypocalor-
tality (acute MI, peripheral vascular disease and ic TPN feeding (14 kcal/kg) compared with a stan-
stroke).[66] Putative causes for this state include vas- dard weight-based regimen (18 kcal/kg). Contrary to
cular endothelium dysfunction,[67] increased blood expectation, the hypocaloric TPN did not lower the
levels of several clotting factors,[68,69] elevated plate- incidence of hyperglycaemia or infections. Caloric
let activation[70,71] and inhibition of the fibrinolytic restriction only seems to be effective in conjunction
system.[69] Levels of the anticoagulant protein C are with a hyperproteinic approach (about 1.8g protein
also decreased.[72] In critically ill patients, a per kg ideal bodyweight [IBW] compared with 1.2
procoagulable state is present, most dramatically so g/kg IBW).[80] This was also shown in a hypocaloric
in ‘disseminated intravascular coagulation’ parental regimen with 2g protein/kg IBW in patients
(DIC).[73] It involves a global activation of haemos- with morbid obesity.[81] Overall, however, there
tasis and the formation of fibrin within the circula- doesn’t appear to be a clear-cut benefit of hypo-
tion, resulting in a widespread microvascular throm- caloric over normocaloric nutrition. This might be
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attributed to the ineffectiveness of hypocaloric nu- inherent intensive care treatments such as sedation
trition to lower blood glucose levels. and mechanical ventilation. Brain damage could be

an irreversible complication of severe hypogly-Potential benefit of hypercaloric feeding combin-
caemia (<1.67 mmol/L). Another insidious compli-ed with insulin infusions to enhance the anabolic
cation of hypoglycaemia is the induction of cardiaceffects of insulin still has to be assessed. This strate-
arrhythmias ranging from dispersed QT-seg-gy would be quite similar to GIK infusions, in which
ments[82] and sinus bradycardias[83] to ventricularhigh doses of insulin (0.1–1 IU/kg/h) and glucose
tachycardias.[84] To prevent hypoglycaemia in the(30–80 g/h) are combined. However, so far these
critically ill, insulin should be administered togetherGIK infusions should be seen as a distinct interven-
with carbohydrates, either dextrose or feeds, andtion, as infusion of GIK is not targeted to maintain
blood glucose levels should be measured frequentlynormoglycaemia. The primary aim of GIK is to
and regularly. In the study by Van den Berghe etenhance myocardial metabolism of glucose instead
al.[1] blood glucose levels were measured 1–2 hourlyof fatty acids when oxygen supply is compromised.
during the first 12–24 hours of the patient’s ad-
mission to the ICU. Once the targeted blood glucose6. Does a History of Diabetes Imply a
level was reached on a stable insulin dose, measure-Specific Metabolic Management During
ments were scaled down to every 4 hours. However,Critical Illness?
hypoglycaemia usually occurred after the first week

The effect of intensive insulin therapy on mor- of ICU stay when blood glucose levels were stable.
bidity and mortality of critically ill patients was Inadequate insulin dose reduction during interrup-
equally present among those with and without pre- tion of enteral feeding was often the precipitating
viously diagnosed diabetes.[1] Independent of a his- factor for the hypoglycaemias. Evidently, the hazard
tory of diabetes, blood glucose control during inten- of hypoglycaemia warrants a strict and detailed in-
sive care is best achieved with a continuous insulin sulin titration protocol,[85] combined with sufficient
infusion and oral agents should be discontinued training of the nursing and medical staff.
during critical illness. As nutrition of critically ill
patients is continuous in nature, either with TPN or 7. Focus on Insulin or
with a combination of parenteral and enteral feed- Glycaemic Control?
ing, it is indeed quite logical to also administer
insulin in a continuous fashion. In addition, intrave- Whether the effects of intensive insulin therapy
nous administration is also more reliable and consis- during critical illness[1] were due to maintenance of
tent than subcutaneous injections. Titrating a contin- normoglycaemia or rather to a direct insulin effect
uous insulin infusion is preferred to sliding scales as remains speculative. It is conceivable that insulin
the former not only provides a baseline insulin level, may have had a direct role in the functional im-
but is also more easily and precisely titrated in provement of the insulin-sensitive organs. In a nor-
response to the actual blood glucose levels. Insulin mal individual, the bulk of the insulin-stimulated
has a half-life of 3 minutes, which allows rapid glucose uptake is situated in the heart and skeletal
cessation of effect if the patient develops hypogly- muscles. Also, muscle catabolism is aggravated in
caemia. hyperglycaemic conditions. This could partially ex-

plain the beneficial effects of intensive insulin ther-This risk of hypoglycaemia is a major concern on
apy on duration of mechanical ventilation of theintensive insulin therapy during critical illness.
critically ill patients in the intensive insulin therapyClinical symptoms of the autonomic response
trial.(sweating, tachycardia, tremor) and central nervous

symptoms like dizziness, blurred vision, altered The liver, the major site for gluconeogenesis, is
mental acuity, confusion and eventually convulsions another important insulin-sensitive organ that could
are often masked by concomitant diseases and by be involved in the improved outcome of the patients
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intensively treated with insulin. However, a recent doubtedly provide the answer to this fascinating
pathophysiological question.study showed that serum and gene expression levels

of insulin-like growth factor binding protein-1
(IGFBP-1) and gene expression levels of phosphoe- 8. Conclusion
nolpyruvate carboxykinase (PEPCK), the rate-limit-
ing enzyme in the gluconeogenesis, are not regulat-

In the last few years a renewed interest in theed by insulin. This may indicate that controlling
potential of insulin in the treatment of ‘stress hyper-gluconeogenesis was not the major factor in bring-
glycaemia’, both in diabetic and non-diabetic pa-ing about normoglycemia with exogenous insulin in
tients, has emerged. Evidence in favour of betterthe critically ill.[86]

glycaemic control (below 12 mmol/L) during seri-
Another major insulin-responsive organ is the ous illnesses such as MI and stroke was generated by

adipose tissue. The increased serum free fatty acid the DIGAMI and the GIST studies. In a recent study,
and triglyceride levels present during critical illness of which the goal was even more stringently aiming
and the relative accruement of adipose tissue as for normoglycaemia (4.5–6.1 mmol/L) with exoge-
compared with lean body mass (muscle and bone nous insulin, a dramatic decrease in mortality and
tissue) with feeding in the chronically critically ill morbidity was demonstrated.
patient, jointly point to a deranged lipid metabolism. A rough calculation of the financial implications
The effect of intensive insulin therapy on this imbal- of the demonstrated reduction in ICU stay with
ance remains to be investigated. intensive insulin therapy, brings the yearly cost sav-

ing to at least $US40 000 (2001 values) per ICUThe positive effects of intensive insulin therapy
bed, which is likely to be an underestimation as iton kidney function and the decreased incidence of
does not take into account the reduced need forcritical illness polyneuropathy may in part be ex-
expensive treatments such as dialysis, transfusionplained by maintenance of normoglycaemia, as both
and antibacterials.organs are supposedly, at least in part, insulin-insen-

Future studies will be needed to assess the realsitive. Here, although on a totally different time
impact on health economy and to further unravel thescale, a parallel with type 2 diabetes emerges. Long-
underlying mechanisms of this simple, cheap butterm studies have indeed shown that meticulous
highly effective intervention. Furthermore, the ben-blood glucose control decreases the incidence and
efit for other patient populations, such as patients onthe severity of diabetic nephropathy and the onset of
medical ICUs or hospitalised patients who do notdiabetic neuropathy, and ‘glucose-toxicity’ may be
require intensive care but who do present withthe underlying mechanism. However, the rapid on-
stress-induced hyperglycaemia, remains to be inves-set of critical illness polyneuropathy and of acute
tigated.renal failure suggest that other factors, which predis-

pose the critically ill to the toxic effects of hypergly-
caemia on neurons and kidneys, must play a role. Acknowledgements
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