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Abstract Stress-hyperglycemia and
insulin resistance are exceedingly
common in critically ill patients,
particularly those with sepsis. Multi-
ple pathogenetic mechanisms are re-
sponsible for this metabolic syn-
drome; however, increased release of
pro-inflammatory mediators and
counter-regulatory hormones may
play a pivotal role. Recent data sug-
gests that hyperglycemia may poten-
tiate the pro-inflammatory response
while insulin has the opposite effect.
Furthermore, emerging evidence

suggests that tight glycemic control
will improve the outcome of critically
ill patients. This paper reviews the
pathophysiology of stress hypergly-
cemia in the critically ill septic pa-
tient and outlines a treatment strategy
for the management of this disorder.
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Introduction

In recent decades the reported incidence of sepsis has
increased dramatically, largely due to the advancing age
of the population, an increased number of invasive
procedures being performed and immunosuppressive
therapy [1]. In the United States, approximately 750,000
cases of sepsis occur each year, at least 225,000 of which
are fatal [2]. Despite the use of antimicrobial agents and
advanced life-support care, the case fatality rate for
patients with sepsis has remained between 30 and 40%
over the past three decades [2, 3].

When the body is challenged by foreign microbial
agents homeostatic mechanisms come into play that
attempt to rid the body of the foreign agent without
damaging the host. This involves the activation of pro-
and anti-inflammatory pathways which are tightly con-
trolled and regulated [4]. In most infected persons, the
body is able to achieve a balance between pro-inflam-
matory and anti-inflammatory mediators and homeostasis
is restored. In some patients, however, this balance is
upset with an excessive pro-inflammatory response re-

sulting in the systemic inflammatory response syndrome
(SIRS), multisystem organ dysfunction, and ultimately
death [4, 5, 6, 7]. Attempts at down-regulating the pro-
inflammatory response with novel agents directed at
specific pro-inflammatory mediators has uniformly met
with failure [4, 8, 9, 10]. Recent provocative data suggests
that tight glycemic control with insulin may the restore
the balance between pro-inflammatory and anti-inflam-
matory mediators and improve the outcome of critically
ill patients [11, 12].

In this article we review the physiology of stress
hyperglycemia and the immune-modulatory role of insu-
lin in critically ill patients. The reader should be cau-
tioned that many of the studies quoted in our review were
performed in non-critically ill patients, many of whom
were diabetic. While it is likely that the pathogenetic
pathways are similar in both groups of patients, many of
these postulates remain unproven in the critical care
setting.
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Endocrinology of stress

Stress associated with critical illness is characterized by
activation of the hypothalamic–pituitary–adrenal (HPA)
axis with the release of cortisol from the adrenal gland
[13]. Activation of the HPA axis with the release of
cortisol is an essential component of the general adapta-
tion to illness and stress and contributes to the mainte-
nance of cellular and organ homeostasis.

In addition to increased cortisol secretion the stress
response is characterized by a marked increase in the
release of norepinephrine and epinephrine as well as
glucagon and growth hormone [14, 15, 16]. Insulin levels
are usually normal or decreased, despite peripheral insulin
resistance [17, 18, 19]. It has been suggested that insulin
release may be suppressed as the result of increased
activation of the pancreatic alpha receptors [19]. In
addition to causing insulin resistance, interleukin-1 (IL-1)
and tumor necrosis factor-a (TNF-a) inhibit insulin
release, an effect which appears to be concentration
dependent [20]. The low to normal insulin levels together
with insulin resistance in the presence of increased
secretion of the counter-regulatory hormones results in
stress hyperglycemia (see discussion below).

Glucose transporters and the mechanism
of insulin action

Glucose is normally taken up across the cellular mem-
branes by a system of carrier-mediated facilitated trans-
port [21]. Five transporter isoforms exists. Three of the
isoforms, GLUT 1, GLUT 2, and GLUT 4, are important
for glucose uptake [21]. GLUT 1 can be found in many
tissues and is responsible for basal uptake. It has a high
affinity for glucose and it ensures transport even under the
conditions of hypoglycemia. GLUT 2 mediates uptake
and release of glucose by hepatocytes and regulation of
glucose-stimulated insulin secretion in pancreas. The
GLUT2 transporter ensures that the liver is freely
permeable to glucose and that glucose transport is not
rate-limiting for hepatic glucose uptake. GLUT 4 isoform
is involved in glucose transport in tissues where uptake is
mediated by insulin which includes skeletal muscle,
cardiac muscle, and adipose tissue. Binding of insulin to
cell-surface receptors results in autophosphorylation and
activation of an intrinsic tyrosine kinase molecule of the
insulin receptor (IR) b-subunit. Activated tyrosine kinase
subsequently phosphorylates messenger molecular pro-
teins known as insulin receptor substrates (IRS1 and
IRS2). The IRS-1 associates with several proteins includ-
ing the enzyme phosphatidylinositol (PI) 3-kinase. Phys-
iologically insulin increases glucose uptake into the cell
by causing translocation of GLUT 4 from intracellular
compartments to the plasma membrane. The signaling
enzyme molecule PI-3-kinase is essential for insulin

stimulated GLUT 4 translocation [22]. PI-3-kinase also
mediates many of the metabolic effects of insulin,
including activation of glycogen synthase, protein syn-
thesis, lipogenesis, and the regulation of various genes in
insulin-responsive cells including inhibition of phospho-
enol pyruvate carboxykinase (PEPCK), the key enzyme of
gluconeogenesis.

Mechanisms of stress-induced hyperglycemia
and insulin resistance in sepsis

The prevalence of stress hyperglycemia in sepsis and
critical illness is difficult to establish due to limited data
and variations in the definition of hyperglycemia. Stress
hyperglycemia has been previously defined as a plasma
glucose above 200 mg/dl [23]; however, in view of the
results of the Leuven Intensive Insulin Therapy Trial (see
below), stress hyperglycemia should be considered in any
critically ill patient with a blood glucose in excess of
110 mg/dl [11]. In a study of septic non-diabetic ICU
patients 75% had a baseline blood glucose level above
110 mg/dl [24]. In the Leuven Intensive Insulin Therapy
Trial, 12% of patients had a baseline blood glucose above
200 mg/dl; however, 74.5% of patients had a baseline
blood glucose above 110 mg/dl, with 97.5% having a
recorded blood glucose level above 110 mg/dl sometime
during their ICU stay [11].

Changes in whole-body glucose uptake and glucose
oxidation in sepsis are complex and may depend on the
severity of illness and the stage of the disease. Whole-
body glucose uptake and glucose oxidation may be
increased in the early stages of sepsis and endotoxemia
[25, 26]. This may be the result of cytokine-induced
increase in non-insulin mediated glucose uptake by
tissues rich in mononuclear phagocytes, including the
liver, spleen, ileum, and lung [27, 28]. Enhanced non-
insulin mediated glucose uptake appears to result from an
increase in the synthesis, concentration or activity of the
GLUT1 transporter [29, 30]. With the development of
insulin resistance (see below) glucose utilization and
oxidation may decrease [25, 31, 32]. Exogenous insulin
increases glucose utilization and oxidation; however, non-
oxidative disposal (storage) remains impaired [25, 31,
32].

The metabolic milieu in which stress-induced hyper-
glycemia develops in the critically ill in the absence of
pre-existing diabetes mellitus is complex. A combination
of several factors, including the presence of excessive
counter regulatory hormones such as glucagon, growth
hormone, catecholamines, glucocorticoids, and cytokines
such as IL-1, IL-6, and TNF-a combined with exogenous
administration of catecholamines, dextrose, and nutrition-
al support together with relative insulin deficiency, play
an important role [23]. Increased gluconeogenesis com-
bined with hepatic insulin resistance are the major factors
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leading to hyperglycemia [33]. Recent human data
suggests that hepatic insulin resistence (and PEPCK
suppression) remains refractory to intensive insulin ther-
apy [34]. Increased hepatic output of glucose may
therefore be more important than peripheral insulin
resistance in the genesis of stress hyperglycemia [35].
Gluconeogenic substrates released during stress include
lactate, alanine, and glycerol with exogenous glucose
failing to suppress gluconeogenesis [16, 36]. Glucagon is
the primary hormonal mediator of gluconeogenesis, with
septic patients having a significant increase in serum
glucagon levels [16]. This effect is mediated by adren-
ergic stimulation by catecholamines and by cytokines
[37]. In addition, cytokines such as TNF-a and IL-1 and
catecholamines independently and synergistically pro-
mote hepatic glucose production [38, 39].

Sepsis is characterized by marked insulin resistance
[19, 25, 31, 32, 40, 41]. The insulin resistance in sepsis is
directly proportional to the severity of stress response
[19]. During sepsis, insulin induced tyrosine phosphory-
lation of IRS-1 and subsequent activation of PI-3-kinase
is impaired resulting in defective GLUT-4 receptor
translocation, diminished glucose uptake, insulin resis-
tance in skeletal muscle, and hepatic insulin resistance
[22]. The mechanism whereby sepsis induces these
alterations are unknown, but increased levels of TNF-a
may play a key role. Aljada and colleagues have
demonstrated that in endothelial cells TNF-a causes a
reduction of tyrosine phosphorylation and expression of
the insulin receptor [42]. TNF-a diminishes insulin-

induced IRS-1 tyrosine phosphorylation in hepatocytes
and adipocytes and impairs the activation of PI-3 kinase
[43, 44, 45, 46]. These alterations of the early steps in
insulin action are probably mediated by TNF-a induced
IRS-1 serine phosphorylation [43, 46, 47, 48]. Upon
serine phosphorylation, IRS1 proteins have a reduced
ability to interact with the insulin receptor, to be tyrosine
phosphorylated by the insulin receptor and to bind
phosphatidylinositol-3 kinase [44, 45].

Recently, Gao and colleagues have demonstrated that
activation of the inhibitor kB kinase (IKK) complex is
associated with serine phosphorylation of IRS-1 [49]. The
IKK is activated by endotoxin via Toll-like receptor 4
(LTR4) as well as by TNF-a and interleukin-1 (IL-1) [50,
51, 52]. The IKK is a serine kinase that controls the
activation of nuclear factor-kappa B (NF-kB) a ubiquitous
nuclear transcription factor closely associated with the
activation of the genes for almost all of the pro-inflam-
matory mediators [53]. Before activation, NF-kB is bound
to inhibitor kB (I kB). This association between I kB and
NF-kB results in the cytosolic localiazation of NF-kB.
The serine phosphorylation of I kB by the IKK complex
results in the degradation of I kB followed by the nuclear
translocation of NF kB. The serine phosphorylation of
IRS-1 and I kB by IKK may partly explain the insulin
resistance noted with activation of the pro-inflammatory
cascade (see Fig. 1).

Catecholamines have also been shown to inhibit
insulin binding, tyrosine kinase activity, and translocation
of GLUT-4 either directly through a receptor or a post-

Fig. 1 Postulated interaction
between the insulin signaling
pathway and activation of the
pro-inflammatory cascade in
the pathogenesis of stress hy-
perglycemia of sepsis. LPS li-
popolysaccharide, LBP lipo-
polysaccharide binding protein,
TLR4 Toll-like receptor 4, IkB
inhibitor, IKK inhibitor kB ki-
nase, IRS-1, insulin receptor
substrate-1, IL-1 interleukin-1,
TNF tumor necrosis factor, NF-
kB nuclear factor-kappa B



751

receptor mechanism [54, 55]. Blockade of a2 adrenergic
receptors has been demonstrated to reduce insulin resis-
tance in septic rats [40]. Glucocorticoids impair insulin
mediated glucose uptake in skeletal muscle, by down
regulating various signaling proteins with resulting inhi-
bition of translocation of GLUT-4 glucose transporter
from its internal membrane stores to the plasma mem-
brane [56]. Growth hormone inhibits the insulin pathway
by reducing insulin receptors and impairing its activation
through phosphorylation on tyrosine residues [57, 58].

Deleterious effects of hyperglycemia
in the critically ill

To some extent the deleterious effects of hyperglycemia
in the critically ill are similar to that of actual diabetes,
although the time scale obviously differs [59]. Stress
hyperglycemia but not pre-existing diabetes has been
shown to be associated with a worse outcome following
acute myocardial infarction and stroke [60, 61, 62, 63, 64,
65, 66]. The plasma glucose level on admission has been
shown to be an independent predictor of prognosis after
myocardial infarction [60, 61]. In diabetic patients with
acute myocardial infarction, therapy to maintain blood
glucose at a level below 215 mg/dl improves outcome
[62, 63, 64]. The presence of hyperglycemia following an
ischemic or hemorrhagic stroke is associated with a two-
to threefold increased mortality and significant impair-
ment in functional recovery [65, 66].

Pro-inflammatory effects

Glucose has been shown to be a powerful pro-inflamma-
tory mediator [67], and tight glucose control below
110 mg/dl with insulin has been shown to exert anti-
inflammatory effects in the critically ill patient [68]. The
oral administration of 75 g of glucose to healthy volun-
teers increases reactive oxygen species (ROS) generation
by polymorphonuclear leukocytes and mononuclear cells
[69]. Similarly, an oral glucose load has been demonstra-
ted to increase plasma IL-8 levels [70]. Chettab and
coworkers have demonstrated that hyperglycemia up-
regulates the IL-8 gene [71]. IL-8 is a potent neutrophil
chemoattractant, playing an important role in inflamma-
tion [72, 73, 74]. Glucose induces an increase in intra-
nuclear NF-kB, a fall in cytosolic I kB, and an increase in
I kB kinase in vivo and in vitro which are pro-inflam-
matory [75, 76, 77]. Glucose also has been shown to exert
pro-thrombotic effects and to increase oxidative stress due
to increased lipid peroxidation [78, 79]. Glucose increases
the expression and plasma concentration of matrix me-
talloproteinase-2 (MMP-2) and MMP-9, which aid in
spread of inflammation [80]. Acute hyperglycemia re-

duces endothelial nitric oxide levels, causing abnormal
vascular reactivity and organ perfusion [81].

Increased susceptibility to infection

In diabetic patients hyperglycemia has long been known
to increase the susceptibility to infections [82]. In
critically ill surgical and burn patients tight glycemic
control has been demonstrated to reduce the risk of septic
morbidity [11, 83, 84, 85]. The in vitro responsiveness of
leukocytes stimulated by inflammatory mediators is
inversely correlated with glycemic control [86, 87].
Rassias and colleagues demonstrated that tight glycemic
control partially prevented the postoperative decrease in
neutrophil phagocytic activity [88]. In addition, hyper-
glycemia has been demonstrated to decrease the oxidative
burst of leukocytes [89, 90].

Immune-modulatory role of insulin in sepsis

Besides control of hyperglycemia, insulin has potent
acute anti-inflammatory effects. In a group of obese
subjects, Dandona and colleagues demonstrated that an
infusion of insulin was associated with a significant fall of
intranuclear NF-kB, and increase in IkB in mononuclear
cells [91]. These changes were associated with a fall in
the generation of reactive oxygen species and a fall in the
serum levels of soluble intercellular adhesion molecule-1
(sICAM-1), monocyte chemoattractant protein-1 (MCP-
1), and plasminogen activator inhibitor-1 (PAI-1) [91]. In
a similar experiment Aljada et al. demonstrated that
insulin decreased expression of the pro-inflammatory
transcription factor, early growth response-1 (EGR-1),
and this was associated with a significant fall in plasma
tissue factor (TF) and PAI-1 levels [92]; thus, while
hyperglycemia has pro-thrombotic effects, insulin has
anti-thrombotic and fibrinolytic effects by suppressing TF
and PAI-1.

One mechanism underlying the anti-inflammatory
effect of insulin may be through the release of nitric
oxide (NO) from the endothelium. Insulin has been
demonstrated to induce an increase in the expression NO
synthase (NOS), the enzyme that generates NO [93]. The
NO has been demonstrated to down-regulate the expres-
sion of endothelial cell adhesion molecules (ECAMs) as
well as the pro-inflammatory cytokines [94, 95, 96, 97,
98]. While the anti-inflammatory effects of NO have not
been fully delineated, it is thought that NO inhibits the
activation of NF-kB. Several authors have demonstrated
that NO S-nitrosylates a key thiol group in the DNA
binding domain of NF-kB p50 and that this is associated
with decreased gene transcription and synthesis of NF-kB
[96, 99, 100].



752

NF-kB as a therapeutic target
for tight glycemic control

NF-kB is a nuclear transcription factor involved in the
regulation of over 150 genes related to inflammation,
including TNF-a, IL-1, IL-6, IL-8, cyclooxygenase-2, and
inducible nitric oxide synthase [53, 101]. Excessive
activation of NF-kB has been identified as a marker of
poor prognosis in sepsis [102, 103, 104]. Emerging data
suggests that NF-kB may be a therapeutic target for the
adjuvant treatment of sepsis [105, 106, 107, 108]. The
data cited above suggests that tight glycemic control with
insulin may decrease NF-kB activation. This hypothesis is
supported by the Leuven Intensive Insulin Therapy Trial
in which mannose-binding lectin (MBL) and C-reactive
protein (CRP) levels were significantly suppressed by
intensive insulin therapy [68].

Intensive insulin therapy in the critically ill

Van Den Berghe et al. in a prospective randomized
controlled study involving 1548 patients demonstrated
that intensive insulin therapy reduced mortality and
morbidity among patients admitted to a surgical critical
care unit (the Leuven Intensive Insulin Therapy Trial)
[11, 12]. These authors compared an intensive insulin
therapy regimen aimed to maintain blood glucose be-
tween 80 and 110 mg/dl with conventional treatment in
which insulin infusion was only initiated when glucose
level was greater than 215 mg/dl and maintenance of
glucose between 180 and 200 mg/dl. At 12 months the
mortality was 4.6% with the intensive insulin regimen
compared with 8.0% in the control group. The benefit was
most apparent in patients with greater than 5 days of stay
in the intensive care unit. Intensive insulin therapy
reduced bloodstream infections by 46%, acute renal
failure by 41%, and critical illness poly-neuropathy by
44%. Using multivariate analysis the authors suggested
that improved metabolic control, as reflected by normo-
glycemia, rather than the infused insulin dose per se, was
responsible for the beneficial effects of intensive insulin
therapy [12]; however, achieving normoglycemia and the
administration of insulin are linked, and from the avail-
able evidence it appears likely that both factors played a
key role in the improved outcome.

The outcome data from the Leuven Intensive Insulin
Therapy Trial indicates that there is a dose response curve
between the degree of glycemic control and hospital
mortality [12] In the long stay patients (>5 days in the
ICU) the cumulative hospital mortality was 15% in
patients with a mean blood glucose less than 110 mg/dl,
25% in those with a blood glucose between 110 and
150 mg/dl, and 40% in those with a mean blood glucose
of greater than 150 mg/dl. In diabetic patients with acute
myocardial infarction, therapy to maintain blood glucose

at a level below 215 mg/dl improves outcome [62, 63,
64]. This data suggests that even “modest” glycemic
control will have an impact on patient outcome. This is
very important as in the “real world” it may be very
difficult (if not somewhat risky) to attempt to maintain a
blood glucose in the range of 80�110 mg/dl. This goal
may only be achievable in ICUs with a high nursing-to-
patient ratio and close physician supervision. On the other
hand, the Leuven study showed that in order to improve
morbidity by reducing the incidence of bacteremia, acute
renal failure, critical illness polyneuropathy, and transfu-
sion requirements, a blood glucose level of <110 mg/dl
was required. Indeed, a blood glucose level of 110–
150 mg/dl was not effective on these morbidity measures
as compared with >150 mg/d [12]. It is also important to
note that in the Leuven Intensive Insulin Therapy Trial all
patients received between 200 and 300 g of intravenous
glucose on the day of admission followed by parenteral or
enteral (or both) nutrition started on the second ICU day.
In this study tight early glycemic control was associated
with the more rapid improvement of insulin resistance
[12]. Based on the results of this study we recommend the
initiation of parenteral glucose and enteral nutrition in all
ICU patients on the day of ICU admission [109, 110, 111]
and the initiation of an insulin infusion in patients with a
blood glucose above 150 mg/dl (a threshold of 110 mg/dl
may be appropriate in select ICUs). Subcutaneous insulin
“sliding scales” are not recommended, at least during the
first few days, until the patient’s medical condition has
stabilized, the blood glucose is well controlled, and the
patient has achieved his/her nutritional goal.

Thiazolidinediones are a new class of drugs that are
used in the treatment of type-II diabetes mellitus. These
drugs reduce insulin resistence through its binding to
peroxisome proliferator-activated receptors-l (PPARl).
Ghanim and colleagues demonstrated that troglitazone
caused a significant fall in cellular NF-kB with an
increases in I kB in mononuclear cells of diabetic subjects
[112]. The changes were associated with a parallel fall in
serum levels of TNF-a, sICAM, MCP-1, and PAI-1.
While one expects these effects to be useful in chronic
situation, it is relevant that these anti-inflammatory were
observed within 3–7 days [112, 113]. In an experimental
model of acute myocardial infarction, even a single dose
of rosiglitazone has been shown to reduce myocardial
damage by 50% [114, 115]. Thiazolidinediones may
therefore have a role in the metabolic management of
patients with sepsis; however, clinical studies are required
before these agents can be recommended.

Conclusion

Stress-hyperglycemia and insulin resistance are almost
universal findings in patients with sepsis. Multiple patho-
genetic mechanisms are responsible for this metabolic
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