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NSULIN was discovered more than 75 years ago,
but only recently have we begun to understand
the mechanisms by which insulin promotes the

uptake of glucose into cells. This review discusses re-
cent advances, their contribution to our understand-
ing of the pathogenesis of diabetes mellitus, and their
implications for the design of new therapies to pre-
vent and treat diabetes and its complications.

 

ROLE OF GLUCOSE TRANSPORTERS IN 

MAINTAINING GLUCOSE HOMEOSTASIS

 

Carbohydrates, and glucose in particular, are an im-
portant source of energy for most living organisms.
Tissues such as the brain need glucose constantly,
and low blood concentrations of glucose can cause
seizures, loss of consciousness, and death. However,
prolonged elevation of blood glucose concentrations,
as in poorly controlled diabetes, can result in blind-
ness, renal failure, cardiac and peripheral vascular
disease, and neuropathy. Therefore, blood glucose
concentrations need to be maintained within narrow
limits. This is accomplished by the finely tuned hor-
monal regulation of peripheral glucose uptake and
hepatic glucose production. During fasting, most of
the glucose in the blood is supplied by the liver and
is used by the brain, independently of insulin. After
a meal, the rise in blood glucose levels rapidly stim-
ulates insulin secretion, which results within minutes

I

 

in increased glucose transport, metabolism, and stor-
age by muscle and adipocytes. In addition, insulin
both inhibits glucagon secretion and lowers serum
free-fatty-acid concentrations, contributing to the
sharp decline in hepatic glucose production.

Because the lipid bilayers that make up cell mem-
branes are impermeable to carbohydrates, carbohy-
drate-transport systems are required. In recent years,
two distinct molecular families of cellular transporters
of glucose (and other hexoses, including fructose and
lactose) have been cloned. The sodium-linked glu-
cose transporters are largely restricted to the intestine
and kidney, where they actively transport glucose
against a glucose-concentration gradient by using so-
dium cotransport as an energy source.

 

1

 

 The other
group of transporters convey glucose by facilitated
diffusion down glucose-concentration gradients. This
group consists of five homologous transmembrane
proteins, GLUT-1, 2, 3, 4, and 5, that are encoded by
distinct genes. The GLUT proteins have distinct sub-
strate specificities, kinetic properties, and tissue dis-
tributions that dictate their functional roles (Table
1). Studies that have examined regulation of the ex-
pression of glucose-transporter genes as well as cell-
biologic characteristics of the GLUT proteins have led
to a better understanding of the mechanisms by
which carbohydrate metabolism is regulated.

Muscle is the principal site of insulin-stimulated glu-
cose disposal in vivo; less glucose is transported into
adipose tissue.

 

2

 

 Previous studies have indicated that
in muscle, glucose transport across the plasma mem-
brane is the rate-limiting step for glucose metabo-
lism in normal subjects

 

3-5

 

 and in those with diabe-
tes.

 

6-8

 

 In this issue of the 

 

Journal,

 

 Cline et al.

 

9

 

 report
their use of a novel 

 

13

 

C–

 

31

 

P nuclear magnetic reso-
nance approach to demonstrate that glucose transport
is the rate-controlling step in skeletal-muscle glucose
metabolism in both normal subjects and those with
type 2 diabetes. Resistance to the stimulatory effect of
insulin on glucose utilization is a key pathogenic fea-
ture of obesity, syndrome X (also known as the insulin
resistance syndrome and characterized by insulin re-
sistance, dyslipidemia, hypertension, and an increased
risk of cardiovascular disease), and most forms of
type 2 (non-insulin-dependent) diabetes. To a less-
er extent, insulin resistance contributes to the mor-
bidity associated with type 1 (autoimmune) diabetes.
The fact that nondiabetic relatives of subjects with
type 2 diabetes also have insulin resistance is evidence
of its genetic basis.

 

10

 

 Studies in subjects with either
type 1 or type 2 diabetes indicate that the defect lies
at the level of glucose transport or glucose phospho-
rylation.

 

6,8,11

 

 Now Cline et al. demonstrate that im-
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pairment of insulin-stimulated glucose transport, not
impairment of the phosphorylation step, is responsi-
ble for resistance to insulin-stimulated glycogen syn-
thesis in muscle in subjects with type 2 diabetes.

 

9

 

Hence, impaired glucose transport has a major role
in the pathogenesis of type 2 diabetes.

 

Molecular Mechanisms of Insulin-Stimulated
Glucose Uptake

 

GLUT-4 is the main insulin-responsive glucose
transporter and is located primarily in muscle cells and
adipocytes. Its Michaelis–Menten constant for glu-
cose is 36 to 179 mg per deciliter (2 to 10 mmol per
liter), which is within the range of physiologic blood
glucose concentrations, so it can be saturated under
ambient conditions. The importance of GLUT-4 in
glucose homeostasis is best demonstrated by studies
of mice in which one allele of the 

 

GLUT-4

 

 gene has
been disrupted. These mice have approximately a 50
percent reduction in GLUT-4 concentrations in skel-
etal muscle, heart, and adipocytes; they have severe

 

Figure 1.

 

 Mechanisms Involved in the Translocation of GLUT-4 Glucose Transporters in Muscle Cells and Adipocytes.
In the absence of insulin, about 90 percent of GLUT-4 is sequestered intracellularly in distinct vesicles that also contain proteins
such as insulin-responsive aminopeptidase, synaptobrevin (also known as vesicle-associated membrane protein-2, or v-SNARE),
and the small guanosine triphosphate–binding protein Rab-4. In response to insulin, exercise, or contraction, vesicles containing
GLUT-4 move to the plasma membrane, where they dock, forming complexes involving syntaxin-4 (also known as target synapto-
some-associated protein receptor, or t-SNARE) and synaptobrevin. The vesicles fuse with the plasma membrane, increasing the
number of GLUT-4 molecules in the membrane and thus the rate of glucose transport into cells. Rab-4 leaves the vesicle and moves
into the cytosol in response to insulin stimulation. On removal of insulin stimulation, GLUT-4 is internalized by the budding of clath-
rin-coated vesicles from the plasma membrane. GLUT-4 enters early endosomes, from which it is re-sorted to intracellular GLUT-4–
containing vesicles.
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C

 

HARACTERISTICS

 

mmol/liter

 

GLUT-1 20 Widely expressed; high 
concentrations in 
brain, erythrocytes, 
and endothelial cells

Constitutive glucose 
transporter

GLUT-2 42 Kidney, small intestine 
epithelia, liver, pan-
creatic beta cells

Low-affinity glucose 
transporter; has a role 
in sensing glucose con-
centrations in islets

GLUT-3 10 Neurons, placenta High-affinity glucose 
transporter

GLUT-4 2–10 Skeletal muscle, cardiac 
muscle, adipose cells

Insulin-responsive glucose 
transporter

GLUT-5 NA Small intestine, sperm, 
kidney, brain, adi-
pose cells, muscle

Fructose transporter; very 
low affinity for glucose
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insulin resistance

 

12

 

; and in at least half the males,
frank diabetes develops with age.

 

13

 

In normal muscle cells and adipocytes, GLUT-4
is recycled between the plasma membrane and intra-
cellular storage pools. GLUT-4 differs from other
glucose transporters in that about 90 percent of it is
sequestered intracellularly in the absence of insulin
or other stimuli such as exercise (Fig. 1).

 

14,15

 

 In the
presence of insulin or another stimulus, the equilib-
rium of this recycling process is altered to favor the
translocation (regulated movement) of GLUT-4 from
intracellular storage vesicles to the plasma membrane
and, in the case of muscle, to the transverse tubules
as well. The net effect is a rise in the maximal veloc-
ity of glucose transport into the cell.

 

14,15

 

Insulin-stimulated intracellular movement of
GLUT-4 is initiated by the binding of insulin to the
extracellular portion of the transmembrane insulin re-
ceptor (Fig. 2). Its binding activates tyrosine kinase
phosphorylation at the intracellular portion of the
receptor. The chief substrates for this tyrosine kinase
include insulin-receptor–substrate molecules (IRS-1,

IRS-2, IRS-3, and IRS-4), Gab-1 (Grb2 [growth fac-
tor receptor–bound protein 2]–associated binder 1),
and SHC (Src and collagen-homologous protein).

 

16,17

 

In both adipocytes and skeletal muscle, subsequent
activation of phosphoinositide-3 kinase is necessary
for the stimulation of glucose transport by insulin

 

16,17

 

and is sufficient to induce at least partial transloca-
tion of GLUT-4 to the plasma membrane.

 

18-20

 

 Acti-
vation of downstream protein serine–threonine ki-
nases may also be involved.

 

21

 

 Phosphoinositide-3
kinase also activates these other kinases by generat-
ing phosphatidylinositol lipid products in the lipid
bilayer of cellular membranes. These lipids, in turn,
bring into proximity and thereby activate key signal-
ing molecules. In this way, a serine–threonine ki-
nase called protein kinase B (or Akt) and phospho-
inositide-dependent kinase 1 are brought together,

 

22

 

allowing the latter to phosphorylate and activate
protein kinase B. Some isoforms of protein kinase
C are also activated by insulin, and phosphoinosi-
tide-dependent protein kinase 1 may contribute to
the activation of protein kinase C because it phos-

 

Figure 2.

 

 Insulin Signaling Pathways That Regulate Glucose Metabolism in Muscle Cells and Adipocytes.
GLUT-4 is stored in intracellular vesicles. Insulin binds to its receptor in the plasma membrane, resulting in phosphorylation of the
receptor and insulin-receptor substrates such as the IRS molecules. These substrates form complexes with docking proteins such
as phosphoinositide-3 kinase at its 85-kd subunit (p85) by means of SH2 (Scr homology region 2) domains. Then p85 is constitu-
tively bound to the catalytic subunit (p110). Activation of phosphoinositide-3 kinase is a major pathway in the mediation of insulin-
stimulated glucose transport and metabolism. It activates phosphoinositide-dependent kinases that participate in the activation of
protein kinase B (also known as Akt) and atypical forms of protein kinase C (PKC). Exercise stimulates glucose transport by path-
ways that are independent of phosphoinositide-3 kinase and that may involve 5'-AMP–activated kinase. 
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phorylates a site in the activation loop of protein
kinase C.

 

23

 

Intracellular translocation of GLUT-4 to the plasma
membrane is stimulated by the expression of active
forms of protein kinase B or atypical isoforms of
protein kinase C in cultured cells.

 

24-26

 

 This suggests
that one or both of these kinases may be the in vivo
mediator of the process in which insulin signals
GLUT-4 translocation. The atypical isoforms of pro-
tein kinase C are good candidates: it has been found
that blocking their action attenuates insulin-stimu-
lated movement of GLUT-4,

 

25,26

 

 whereas studies in
which the activation of protein kinase B is blocked
have had conflicting results with regard to GLUT-4
translocation.

 

27,28

 

 Furthermore, in muscle from dia-
betic subjects, stimulation of glucose transport is im-
paired at physiologic insulin concentrations, whereas
the activation of protein kinase B is normal.

 

29

 

The functionally important targets further down-
stream in the phosphoinositide-3-kinase signaling
cascade have not been identified, but they may be
proteins that regulate the docking of GLUT-4–con-
taining vesicles at the plasma membrane and their
fusion with it. Several proteins have been identified
in GLUT-4–containing vesicles (Fig. 1), most of
which are also present in other exocytotic vesicles
such as synaptic vesicles in neurons. One such protein,
insulin-responsive aminopeptidase, is of particular
interest because it also localizes in GLUT-4–contain-
ing vesicles in adipocytes and muscle cells, although its
physiologic function is unknown.

 

30

 

 A model of the
docking of GLUT-4 vesicles and their fusion with
the plasma membrane has been developed on the ba-
sis of mechanisms used by synaptic vesicles. This mod-
el proposes that proteins similar to those involved in
synaptosome fusion form a specific complex that links
the GLUT-4 vesicle with the plasma membrane.

 

30

 

Proteins such as Rab-4, a small guanosine triphos-
phate–binding protein, may modify the retention or
movement of the GLUT-4–containing vesicle.

 

POSSIBLE CAUSES OF RESISTANCE TO 

THE STIMULATORY EFFECTS OF INSULIN 

ON GLUCOSE TRANSPORT

 

Mutations in Glucose Transporters

 

Mutations in 

 

GLUT-1

 

 are associated with intrac-
table seizures resulting from a reduction in glucose
transport across the blood–brain barrier.

 

31

 

 

 

GLUT-2

 

mutations cause the Fanconi–Bickel syndrome, which
is a rare, autosomal recessive metabolic disorder char-
acterized by hepatic and renal glycogen accumula-
tion, nephropathy, and impaired utilization of glucose
and galactose.

 

32

 

 Mutations in 

 

GLUT-4

 

 could theo-
retically cause insulin resistance. However, polymor-
phisms in the 

 

GLUT-4

 

 gene are very rare in subjects
with type 2 diabetes and have the same prevalence
among nondiabetic subjects.

 

33-35

 

Tissue-Specific Alterations in GLUT-4 Production

 

In various insulin-resistant states, expression of the

 

GLUT-4

 

 gene is regulated differently in muscle and
adipose tissue as shown by studies in both animals
(Table 2) and humans (Table 3).

 

36,37

 

 GLUT-4 con-
centrations are reduced in adipocytes from obese
subjects and those with impaired glucose tolerance
or type 2 diabetes, but GLUT-4 concentrations are
not reduced in skeletal muscle in obese subjects, sub-
jects with type 1 or type 2 or gestational diabetes, or
insulin-resistant relatives of subjects with type 2 di-
abetes.

 

36,37

 

 Since muscle is the primary site of insu-
lin-stimulated disposal of glucose, the impairment of
whole-body insulin sensitivity in these states cannot
be explained by a decrease in the production of
GLUT-4. In contrast, decreased GLUT-4 production

 

*Data are adapted from Abel et al.

 

36

 

 ND denotes not determined, and
VMH ventromedial hypothalamus. The symbol 

 

↑

 

 denotes moderately in-
creased, 

 

↑↑

 

 markedly increased, 

 

↔

 

 unchanged, 

 

↓

 

 moderately decreased,
and 

 

↓↓

 

 markedly decreased.

†The 

 

fa/fa

 

 rats are obese because of a mutation in the leptin receptor.
The 

 

KK/A

 

y

 

 mice are a cross between the diabetic 

 

KK

 

 mouse and the obese

 

A

 

y

 

 (lethal yellow) mouse, which has a mutation in the 

 

agouti

 

 gene. The

 

A

 

vy

 

/a

 

 mice have obesity and insulin resistance as well as a mutation in the

 

agouti 

 

gene. The 

 

db/db

 

 mice are obese and diabetic because of a mutation
in the leptin receptor.
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GLUT-4
C

 

ONCENTRATION

 

MUSCLE FAT

 

Zucker obese (

 

fa/fa) rats
Young
Old

↑
↑↑

↔
↔

↔
↔

↑↑
↓↓

Zucker diabetic fatty (ZDF/drt)
rats

↑ ↑↑ ↓↓ ↓↓

Rats with gold thioglucose–
induced obesity

↑↑ ↑ ↔ ↓↓

Diabetic (KK/Ay) mice ↑↑ ↑ ↓↓ ↓↓
Viable yellow (Avy/a) mice ↑↑ ↑ ↓↓ ↓↓
Brown-fat–ablated mice ↑↑ ↑ ↔ ND

Obese diabetic (db/db) mice ↑ ↑ ↔ ↔
Neuropeptide-injected rats ↑ ↔ ↔ ↑
Rats with VMH-lesion–

induced obesity
↑ ↔ ↔ ↑↑, 

then ↔
Rats with high-fat feeding ↑ ↔ ↔ ↓↓
Dexamethasone-treated rats ↑ ↑ ↔ ND

Rats and mice with strepto-
zocin-induced diabetes

↓ ↑↑ ↔ ↓↓

Spontaneously hypertensive rats ↑ ↔ ↔ ND

Aged rats ↑ ↔ ↓↓ ↓↓
Hyperthyroid rats ↓ ↔ ↑ ↑
Hypothyroid rats ↔ ↔ ↓ ND

Diabetic rats treated with
metformin 

↓ ↓ ↔ ND

Rats and mice given leptin ↓ ↓ ND ND

Rats given thiazolidinediones ↓ ↓ ↔ ↑
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in muscle with aging in normal subjects may play a
part in age-related declines in insulin sensitivity.36,37

Although decreased production of GLUT-4 is not
the cause of insulin resistance in obesity and diabetes,
there may be a therapeutic advantage to increasing the
concentrations of GLUT-4 in these conditions. Glu-
cose tolerance and insulin sensitivity are increased by
overproduction of GLUT-4 in muscle or adipose tis-
sue, or both, of normal38-41 or db/db obese, diabetic42

mice. Furthermore, an increase in GLUT-4 reduces
hyperglycemia and increases insulin sensitivity in mice
with streptozocin-induced diabetes.40,43 Exercise train-
ing increases both GLUT-4 concentrations and in-
sulin sensitivity in muscle from initially sedentary
middle-aged subjects, older subjects with insulin re-
sistance, and subjects with type 2 diabetes.44

Defects in the Intracellular Translocation of GLUT-4

The reduction in insulin-stimulated glucose up-
take in skeletal muscle in obese subjects and those
with diabetes is associated with an impairment in in-
sulin-stimulated movement of GLUT-4 from intra-
cellular vesicles to the plasma membrane.45 Since
GLUT-4 concentrations are normal in skeletal mus-
cle in these subjects, the most likely explanation for
the insulin resistance is a defect in the insulin-signaling
pathways that regulate the translocation of GLUT-4
(Fig. 2) or in the molecular machinery directly in-
volved in the recruitment of GLUT-4–containing
vesicles to the plasma membrane, their docking, and
their fusion with the membrane (Fig. 1).30 There is

evidence of at least two distinct intracellular pools of
recruitable GLUT-4 in muscle, and GLUT-4 in at
least one of the pools can respond to stimuli other
than insulin in subjects with insulin resistance. Stimuli
such as muscle contraction and hypoxia activate pools
distinct from that activated by insulin, and the glu-
cose-uptake response to exercise and hypoxia is nor-
mal in muscle from obese subjects and those with
diabetes.43 GLUT-4–containing vesicles also appear
to be normal: glucose transport in insulin-resistant
muscle is activated normally by inhibitors of both
serine–threonine phosphatases (e.g., okadaic acid21)
and tyrosine phosphatases (e.g., vanadate21). Both
classes of phosphatase inhibitors are thought to pro-
long the activation of distal components of the in-
sulin-signaling cascade.

Defects in Signaling Pathways

Attention has focused on phosphoinositide-3 ki-
nase because of its central role in insulin-stimulated
intracellular translocation of GLUT-4. Activation by
insulin of phosphoinositide-3 kinase in muscle is re-
duced in severely obese subjects with insulin resis-
tance46 and those with diabetes,47 and expression of
the regulatory subunit of phosphoinositide-3 kinase
is reduced in those who are morbidly obese.46 How-
ever, the main defects in signaling may be proximal in
sequence to the activation of phosphoinositide-3 ki-
nase, because concentrations of phosphorylated insu-
lin receptor and of IRS-1 are also decreased in mus-
cle from morbidly obese subjects46 and those with
diabetes.47

Impairment of insulin-stimulated glucose uptake
may also result from the up-regulation of proteins that
inhibit the signaling pathways. The expression and ac-
tivity of several protein tyrosine phosphatases are in-
creased in skeletal muscle and fat in obese subjects
but not in those with type 2 diabetes.48 Knockout
of the gene for one of these phosphatases in trans-
genic mice increases insulin signaling and prevents
both the insulin resistance and the obesity that usual-
ly occur with a high-fat diet.49 Another candidate may
be the 15-kd substrate of protein kinase C, described
as “phosphoprotein enriched in diabetes,” which is
overexpressed in insulin target tissues in both obese
subjects and those with diabetes.50 Overexpression
of this protein in cultured cells attenuates insulin-stim-
ulated GLUT-4 translocation and thus attenuates in-
sulin-stimulated glucose transport. Overexpression of
Rad, a small guanosine triphosphate–binding protein,
also inhibits GLUT-4 translocation in cultured cells,51

although there is controversy over whether Rad ex-
pression is increased in muscle in type 2 diabetes.52,53

These findings suggest that insulin resistance may
be overcome by increasing insulin signaling — for ex-
ample, by reducing the activity of molecules that
normally attenuate the action of insulin, such as the
tyrosine phosphatases. Vanadate, which inhibits tyro-

*Data are adapted from Abel et al.36 ND denotes not determined. Sym-
bols are explained in the footnotes to Table 2.

†A decrease occurs in morbidly obese subjects.

TABLE 3. CHANGES IN GLUT-4 MESSENGER RNA AND PROTEIN 
CONCENTRATIONS UNDER VARIOUS CONDITIONS IN HUMANS.*

CONDITION GLUT-4

MUSCLE ADIPOSE TISSUE

Type 1 diabetes ↔ ND

Pancreatic transplantation in subjects 
with type 1 diabetes

↓ ND

Type 2 diabetes ↔ ↓
Insulin resistance in relatives of subjects 

with type 1 diabetes
↔ ND

Obesity ↔† ↓
Gestational diabetes ↔ ↔ or ↓
Aging ↓ ND

Uremia ↔ ND

Polycystic ovary syndrome ND ↓
Pseudoacromegaly ↔ ND

Exercise ↑ ND

Sulfonylurea therapy ↔ ND

Weight loss ↔ ND
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sine phosphatases, stimulates glucose transport by in-
creasing the translocation of GLUT-1 and GLUT-4
in muscle and fat cells. Several organo-vanadium com-
pounds have been found to improve insulin sensitiv-
ity in both muscle and liver in subjects with type 2
diabetes and to reduce insulin requirements in those
with type 1 diabetes.54

Impairment of Insulin-Stimulated Glucose Transport 
by Circulating or Paracrine Factors

Free Fatty Acids

The chronic elevation of serum free-fatty-acid con-
centrations in many subjects with obesity or diabetes
may contribute to the decreased uptake of glucose
into peripheral tissues.55-58 In humans, lipid infusion
for four hours decreases insulin-stimulated glucose
uptake into muscle in association with a loss of the
ability of insulin to stimulate phosphoinositide-3 ki-
nase activity.59 The latter could lead to defective trans-
location of GLUT-4. In rodents, a high-fat diet can
induce insulin resistance through a combination of
reduced GLUT-4 expression in adipocytes36 and im-
paired insulin-stimulated translocation of GLUT-4
in skeletal muscle, as a result of defective insulin sig-
naling by phosphoinositide-3 kinase.60 The defect in
signaling may be caused by free-fatty-acid–induced
diversion of glucose into the hexosamine pathway (see
below).61 Despite the impaired action of insulin in
animals given high-fat diets, glucose transport in mus-
cle is activated normally by hypoxia and by agents
that stimulate the release of calcium from the sarco-
plasmic reticulum.60

Glucose Toxicity and the Hexosamine Pathway

Hyperglycemia itself has detrimental effects on in-
sulin secretion and on the action of insulin in pe-
ripheral tissues.62 In vitro incubation of muscle strips
with high concentrations of glucose leads to a re-
duction in insulin-stimulated glucose uptake.63 How-
ever, glucose-induced impairment of the action of
insulin can be reversed by restoring normal glucose
concentrations, suggesting that tight control of blood
glucose concentrations in subjects with diabetes can
probably improve insulin resistance in muscle.

The mechanism of glucose toxicity in muscle may
involve the hexosamine pathway,64 in which the en-
zyme glutamine:fructose-6-phosphate amidotransfer-
ase diverts glucose from the glycolytic pathway at
the level of fructose-6-phosphate, resulting in the
production of glucosamine-6-phosphate and, subse-
quently, other hexosamine products.64 Exposure of
muscle to glucosamine reduces stimulation by insulin
of glucose transport and GLUT-4 translocation.65,66

Transgenic mice that overexpress glutamine:fructose-
6-phosphate amidotransferase are resistant to the ef-
fects of insulin on glucose uptake in muscle.67 The po-
tential relevance of these models to our understanding
of insulin resistance in humans is demonstrated by

the finding that the activity of glutamine:fructose-
6-phosphate amidotransferase is also increased in skel-
etal muscle in subjects with diabetes.68

Tumor Necrosis Factor a

The cytokine tumor necrosis factor a (TNF-a)
has potent inhibitory effects on insulin signaling in
isolated muscle and adipose tissue.69 Serum TNF-a
concentrations in both lean and obese subjects are
very low, suggesting that TNF-a secreted by muscle
cells70 and adipocytes69 acts in a paracrine manner.
The finding that TNF-a expression is high in muscle
and fat in obesity and diabetes led to the hypothesis
that it may cause insulin resistance in vivo. Support
for this possibility comes from studies of genetically
obese Zucker (fa/fa) rats in which systemic admin-
istration of monoclonal antibodies that neutralize
TNF-a reversed insulin resistance.69 However, the
administration of similar antibodies to subjects with
type 2 diabetes did not result in an improvement in
insulin resistance.71

NON–INSULIN-MEDIATED STIMULATION 

OF GLUCOSE UPTAKE IN MUSCLE

AND FAT

Although insulin is the chief acute physiologic stim-
ulus of glucose disposal, other stimuli can also acti-
vate glucose uptake and intracellular translocation of
GLUT-4 to the cell membrane.

Exercise

Bouts of exercise stimulate translocation of GLUT-
4 to the plasma membrane and increase glucose trans-
port in skeletal muscle.44 The signals that mediate
exercise-induced GLUT-4 recruitment differ from
those that mediate insulin-induced recruitment, in
that phosphoinositide-3-kinase activity is not required
for the exercise effect.72 Instead, activation of the
5'-AMP–activated kinase may have a role (Fig. 2).73

The exercise-induced stimulation of GLUT-4 trans-
location is normal in insulin-resistant subjects. Thus,
exercise has a therapeutic effect on control of glyce-
mia in subjects with diabetes.44 Furthermore, regular
physical activity decreases the risk of type 2 diabetes
in subjects who are at high risk for the disease.44

Nitric Oxide and Bradykinin

Exercise-induced production of nitric oxide and
subsequent production of cyclic guanosine mono-
phosphate may be involved in the regulation of glu-
cose transport in muscle, independently of the ef-
fects of nitric oxide on vasodilatation.74 Bradykinin
may also play a part in exercise-induced glucose trans-
port, since it is released from muscle during exercise
and, in cells that express bradykinin receptors, it
stimulates GLUT-4 translocation.75 Muscle has high
levels of bradykinin receptors, and as with the glucose
uptake stimulated by exercise, bradykinin-stimulated
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glucose uptake is not blocked by inhibitors of phos-
phoinositide-3 kinase.75

Insulin-Like Growth Factors

Both insulin-like growth factor I and insulin-like
growth factor II (IGF-I and IGF-II) have a high de-
gree of sequence homology with insulin. Further-
more, the IGF-I receptor is highly homologous to the
insulin receptor, and the intracellular signaling path-
ways activated by these receptors are very similar.
Both IGF-I and IGF-II have insulin-like effects on
glucose transport in muscle and adipocytes in vi-
tro.76-78 IGF-I causes translocation of GLUT-4 to the
muscle cell surface in vitro,76 and its administration in
vivo has a potent hypoglycemic effect.79 Serum con-
centrations of free IGF-I and IGF-II are normally very
low, because they are sequestered by specific binding
proteins. Recent evidence suggests that alterations in
the serum concentrations of these proteins, as in un-
controlled type 1 diabetes, may affect glucose ho-
meostasis.79 IGF-I bypasses defects at the level of the
insulin receptor and effectively lowers blood glucose
concentrations in some subjects with severe insulin-
resistance syndromes of various causes, including mu-
tations in the insulin receptor, and in subjects with
type 1 or type 2 diabetes.79

C Peptide

C peptide, which is released by the processing of
proinsulin into mature insulin in pancreatic beta
cells, also increases glucose uptake into skeletal mus-
cle in both normal subjects and subjects with type 1
diabetes.80 It does not act through the insulin recep-
tor.80 However, C peptide probably does not have a
role in the treatment of insulin resistance, since serum
concentrations are high in many insulin-resistant sub-
jects, yet these high values are not sufficient to nor-
malize glucose disposal.

Leptin

Leptin, the protein product of the ob gene,81 is a
hormone that is secreted by adipocytes. It serves as
an “adipostat,” signaling the brain in response to
changes in energy stores.82 The primary site of lep-
tin’s action is thought to be the hypothalamus, but
it also has functions in peripheral tissues. Adminis-
tration of leptin to normal, genetically obese, or di-
abetic rodents improves sensitivity to insulin and re-
duces hyperinsulinemia before any changes in food
intake or body weight occur.83-85 Although this rapid
increase in insulin sensitivity may be due to an increase
in glucose disposal in skeletal muscle and brown ad-
ipose tissue, the effect is indirect, since leptin does
not directly increase glucose transport in muscle or
adipocytes.82,85-89 Indirectly, however, leptin-induced
increases in fatty acid oxidation87 could improve glu-
cose uptake. Whether the effects on glucose metab-
olism in insulin-sensitive tissues are mediated indi-

rectly through the brain and sympathetic nervous
system is controversial.85,90 The administration of lep-
tin may also increase insulin sensitivity as a result of
changes in physical activity, thermogenesis, serum
concentrations of substrates such as fatty acids,83 and
glucose flux in the liver.90

Thyroid Hormone

The rate of glucose transport into muscle and fat
is also affected by levels of thyroid hormone. Admin-
istration of thyroid hormone to normal animals for
several days increases both basal and insulin-stimu-
lated glucose uptake into muscle and adipocytes, at
least partly as a result of increases in GLUT-4 ex-
pression.36,37 In obese Zucker rats, the administration
of thyroid hormone is associated with total amelio-
ration of hyperinsulinemia.37

EFFECTS OF DRUG THERAPY OF DIABETES 

ON GLUCOSE TRANSPORT

Sulfonylureas

The main therapeutic effect of sulfonylureas is the
potentiation of insulin secretion by augmentation of
potassium-channel activity in pancreatic islet cells.91

By facilitating the translocation of both GLUT-4
and GLUT-1 to the cell surface,92 these drugs can also
increase glucose transport in adipocytes that have
been rendered insulin resistant in vitro.92 In vivo stud-
ies have not distinguished the potentially direct ef-
fects of the sulfonylureas on peripheral tissues from
the indirect effects produced by reversal of glucose
toxicity as a result of improved insulin secretion.

Biguanides

Although the liver is the primary site of action of
the biguanide drugs such as metformin, in vivo stud-
ies indicate that metformin also increases glucose
uptake into peripheral tissues.93 Metformin has also
been found to have short-term insulin-like effects on
glucose transport and GLUT-4 translocation in adi-
pocytes94 and muscle in vitro.95,96 However, the con-
centration of the drug required for these in vitro ef-
fects is at least an order of magnitude greater than
that required for a clinical effect. Therefore, it is un-
likely that acute stimulation of GLUT-4 translocation
is an important mechanism by which metformin im-
proves hyperglycemia in diabetes.

Thiazolidinediones

Thiazolidinediones are a new class of insulin-sen-
sitizing drugs that increase the disposal of glucose in
peripheral tissues in animals and humans with insulin
resistance, including subjects with type 2 diabetes and
women with the polycystic ovary syndrome.97-99 Treat-
ment of insulin-resistant rodents with thiazolidine-
diones restores the expression and translocation of
GLUT-4 in adipocytes.97,98,100,101 Thiazolidinediones
also overcome the TNF-a–induced inhibition of in-
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sulin-stimulated glucose transport in adipocytes.102

In insulin-resistant rats given high-fat diets and insu-
lin-deficient rats with streptozocin-induced diabetes,
thiazolidinedione treatment increases insulin-stimulat-
ed glucose uptake in muscle.97,98,100 Thiazolidinedi-
ones do not increase the expression of GLUT-4 in
rodent muscle or human muscle cells, although they
do induce the expression of GLUT-1.98,100,101 Further-
more, thiazolidinediones do not restore defective in-
sulin-stimulated GLUT-4 translocation in muscle
in insulin-resistant Zucker rats.103 Thus, the cellular
mechanism by which thiazolidinediones increase glu-
cose uptake in muscle in vivo is uncertain.

CONCLUSIONS

Insulin resistance is a major factor in the patho-
genesis of obesity, diabetes, and the insulin-resistance
syndrome and is associated with an increased risk of
cardiovascular disease. In skeletal muscle, insulin re-
sistance may be caused by defects in glucose trans-
port, which result from impairments in the transloca-
tion, fusion, or exposure and activation of GLUT-4
glucose transporters. These abnormalities in GLUT-4
translocation in muscle appear to result from defects
in intracellular signaling. These defects may be in-
herent in the tissue or may be due to circulating or
paracrine factors such as hyperglycemia itself (glucose
toxicity) or increased serum concentrations of free
fatty acids or TNF-a. Insulin-stimulated glucose up-
take in adipocytes is also defective, largely as a result
of the down-regulation of GLUT-4 expression. Studies
in transgenic mice indicate that increased intracellular
concentrations of GLUT-4 can ameliorate diabetes.

Drugs that increase insulin sensitivity, such as met-
formin and thiazolidinediones, can improve glyce-
mic control in subjects with type 2 diabetes, and in-
sulin-sensitizing drugs with various mechanisms of
action have additive effects. Because the impairment
in insulin-stimulated glucose transport in subjects
with type 2 diabetes can be bypassed by other stim-
uli, such as exercise and hypoxia, a greater under-
standing of the intracellular signaling pathways by
which these stimuli increase GLUT-4 translocation
could lead to new approaches to the treatment of in-
sulin resistance. Therapies that improve the recruit-
ment of glucose transporters to the cell surface are
likely to reduce the morbidity associated with type
2 diabetes and obesity and may prevent the develop-
ment of frank diabetes in people at high risk.
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